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On the Automorphism Group
of a Second Order Structure.

LEONARDO BILIOTTI (*)

Introduction.

This paper will deal with some property of the automorphism group
of special second order structures which are associated to semisimple
flat homogeneous spaces. We will consider a second order structure Q,
i.e. a subbundle of the 2-frame bundle P 2 (M) over a smooth manifold M,
which is associated to a semisimple flat homogeneous space L/Lo with
dim M=dim L/Lo . Such structures have been intensitevely studied by
Ochiai ([3]) and generalize some well-known structures, such as projec-
tive and conformal ones. We will confine ourself to the case when M is a

reductive homogeneous space and Q is a second order structure, that it
has a Cartan connection which is preserved by any automorphism; such
class of semisimple flat homogeneous space L/Lo , has been classificated
by Ochiai and the classification will be given in Table 1.

In section 1 we will briefly recall basic facts about semisimple flat ho-
mogeneous space according to the paper by Ochiai [3] to which we shall
refer throughout the following.

In section 2 we will prove our main theorem, which can be formulated
as follows:

THEOREM 1. Let M = G/K be a reductive homogeneous space and
let Q be a second order structure over M associated to a semisimple flat
homogeneous space L/Lo where (L , Lo ) belongs to Table 1. If G acts as
an automor~phism group of Q, then there exists a G-invariant torsion-
free a, f, f’ine connection T belonging to Q.

(*) Indirizzo dell’ A.: IMECC-UNICAMP, 13083-970, Campinas (SP), Brasil,
e-mail: biliotti@ime.unicamp.bz
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TABLE 1.

Our result generalizes the one in [4], where only the projective struc-
tures are taken into consideration. As far as we know, it is still unknown,
which of the special semisimple flat homogeneous space considered by
Ochiai have some meaningful geometric interpretation, besides the pro-
jective and conformal ones. In any case, our result greatly simplifies the
study of transitive group G of automorphism, since it realize G as a group
of affine transformation of some torsionfree connection.

1. Preliminaries.

Let L/Lo be a connected homogeneous space on which a semisimple
Lie group L acts effectively and transitively. The homogeneous space
L/Lo is called semisimple flat homogeneous space if the Lie algebra 1 of
L has a graded structure 1 [ gi , such that go fl9
fl9 g, is the Lie algebra of Lo; we may therefore write Lo = Go. G1, where Go
is a closed subgroup with Lie algebra go and G1 is a connected Lie group
corresponding to gl; more precisely Go is a normalizer of gi, i.e. Go = ~ a E

i = -1, 0, 1 (see [3]).
Let M be a manifold of dimension n = dim L/Lo . We denote by P r (M)

the r-frame bundle over M with structure group P 1 (M) is usually
called the frame bundle and G 1 (n) is isomorpic to GL(n, R). It turns out
that Lo is realizable as a subgroup of G 2 (n) and 

Now, let P be a Go-structure over M, i.e a Go-reduction and
let T be a Go-connection without torsion, i.e. a torsionfree connection r
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on such that T has values into the Lie algebra of Go, when restri-
cted to P . By a result due to Kobayashi (see [2]), there exists a one-to-
one correspondence between affine connections without torsion and ad-
missible cross-section, i.e. an application s : P 1 (M) -~ P 2 (M), satisfying
s(ua) = s(u) a, da E G 1 (n). Hence each Go-connection without torsion on
P gives a Go-subbundle s(P) of P2 (M). Since Go c Lo c G 2 (n), we have a
Lo-subbundle Q(n of P 2 (M) obtained by extending the structure group
of s(P) from Go to Lo.

The above consideration allows to define an equivalence relation,
called Lo-equivalence, in the set A(P), the set of Go-connection without
torsion of P, as follows: if r, O are element of A(P), then

T is equivalent to 0 if and only if Q(r) = Q( O) .

The Lo-subbundle Q(a) of P 2 (M), where a is any class of A(P), will be
called a Lo-structure of second order. The Lo-equivalence is a generaliza-
tion of some well-know structures such as projective and conformal; we
will briefly recall some facts about such structures:

Projective Georrzetry.

In this case L/Lo is a projective space, Go is GL(n, R) and the
Lo-equivalence is the projective equivalence: two torsionfree connection
cv , cv ’ E ~l 1 (P) are equivalent if and only if there exists p : 
such that:

where e is a canonical form Geometricaly, the condition above,
means that cv and (9’ have the same geodesic up to reparametrization.
The projective geometry studies the invariant properties of a projective
equivalence class (see [2] for detailed exposition).

ConformaL Geometry.

In this case L/Lo is the n-dimensional Mbbius space, Go is CO(n) and
the Lo-equivalence relation is the conformal equivalence: 0-) is equivalent
to cv ’ if and only if there where Q is a CO( n )-structure,
such that

It can be proved that, given a CO(n)-structure on M, then its first pro-
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longation is a conformal structure as a subbundle and vicever-

sa. On the other hand, CO(n)-structure on M are in a natural one to one

correspondence with conformal equivalence class of Riemannian metrics
on M. We refer to [2] for a detailed exposition.
We now fix a Lo-structure of second order Q , relative to a Go-struc-

ture P and a Go torsionfree connection T and we consider the group
Aut (M, Q) of the automorphism of such structure; a diffemorphism 0
belongs to Aut (M, Q) if and only if its natural Ifft 0(2) to P 2 (M) pre-
serves Q. It is clear that any 0 in Aut (M, Q) acts as a permutation on
A(P). For some special class of semisimple flat homogeneous space,
Ochiai proved the existence and uniqueness of a special normaL Cartan
connection OJ Q on Q , which is automatically preserved by any automor-
phism in Aut (M, Q). This theorem is a generalization of existence and
uniqueness of normal Cartan connection of projective and conformal
structures; he showed that the existence of a normal Cartan connection
is related to the vanishing of certain Spencer cohomology group; we will
give all such Lie algebras 1, in Table 1.

We recall that a Cartan connection in a bundle Q is a 1-form (o on Q
with values in the Lie algebra 1 of L such that:

Here we denote by A * the fundamental vector field corresponding on
element A of the Lie algebra go fl9 gi . By definition of Cartan connection
it follows in particular that cv gives an absolute parallelism on Q; by a
classical Theorem of Kobayashi the mapping

where u is any fixed element of Q , gives a closed embedding of G into Q.
The aim of this note is to give a simple criterium on the Lie group

structure of G = Aut (M, Q) in order that there exists an affine connec-
tion T in A(P) left fixed by G or, is equivalent, a fixed point by the action
of G on A(P). The existence of such fixed connection greatly simplifies
the study of the G-action on M.
We consider the case when M = G/K, where G is a Lie group and K is

a Lie closed subgroup of G . We will assume that G c Aut (M , Q ), where Q
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is a second order structure on M = G/K and M = G/K is a reductive, that
is, if g and k are the Lie algebras of G and K respectively, there is Ad(K)-
invariant subspace m of g so that

In the next section we will give a proof of the main theorem.

2. Proof of the Theorem 1.

Let ~ be a projection of G over G/K = M, ir the projection of Q over
G/K = M, (o a normat Cartan connection on Q and, since (o is 1-valued
form, we put (o For every we get an embedding
of G into Q given by

where g ~2~ is a lift of the trasformation g of G/K = M to an automorphism
of the bundle Q . We use that embedding to define, for every u e Q , a sub-
space Hu of T Q as follows:

where g is any element of G with ~(g) =,7r(u); the definition is well-posed
because the subspace Ad( g)(m ) does not depend on the choice of ele-
ment g thanks to the reductivity. We can easily prove, see [4], that Hu is
isomorphic, by the differential of 7r, to T n(u) M and the distribution H is
G-invariant and Lo-invariant. Our aim is to show that

is a principal Go-subbundle isomorphic to P; if we prove this, then the re-
striction of O o to where O o is the gl ( n ; R )-component of the canoni-
cal form 0 of P 2 (M), gives a torsionfree Go-connection, which is
G-invariant.

We fix a point u E=- Q then there exist unique vector Xi , ... , Xn of Hu
that is = ei , where el, ... , en is a base of g _ 1; that is because

Hu is an isomorphism onto We can identify the Lie algebra
go as a Lie subalgebra of gl ( g _ 1 ), see [3], as follows:
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Now we consider the bilinear application B : (X, Y] );
this is a duality between g - 1 and g, because - 2 B(X , ~ = B(X , ~,
where B is the Killing-Cartan form of 1 (see [3]). We can costruct, thanks
to the duality, an element y E gl in the following way:

and we claim that if we put w = exp (y) E Lo , then

Indeed we have Huw = (Rw)*Hu and

because cv is a Cartan connection and 1 is a graded Lie algebra. On the
other hand Tr ( [ y , = B( y , from the definition

of y .
Now let w, and w2 in Lo such that uwi = 0 ), VX EHuW1’ i=1, 2,

and note that we can write for
some x E gl and jo E Go so for every X E Huwl we have

where ( )go means the go-component. Hence

by the action of Ad into the Lie algebra go . Now we recall that the g,
values 1-form cv 1 ~ uw1: Huwi -~g_ 1 is surjective, Go normalizes gi i=-1, 0, 1
in Lo and Tr (cv 0 (X) = 0). Hence x = e and Go; more precise-
ly we have shown that Vu e Q there exist a unique element p E Gl such
that = 0 , So we can define a differential map

where for every u e Q we define £(u) to be the class [h] in Lo/Go of any
element h E Lo with

It is easy to check that A is a Lo-equivariant map, i.e. = g -1 ~,(~),
Vu e Q and dg E Lo . We note that r o = ~, -1 ( [ e ] ); we obtain that r o is a
Go-subbundle by the following general result.
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LEMMA 2.1. Let (Q(M, Lo), M, ~) be a principal fibre bundle over
M with structure group Lo . Suppose now Go to be a closed subgroup of
Lo and suppose there is a differential map A

that is Lo-equivariant, i. e. ~,(ug) = g -1 À( u), du E Q(M, and V g E Lo .
Then r o = A 

-1 (id) with projection 7r r o is a Go-principal bundle.

The proof can be visited in [4].
Now let T be a Go torsionfree connection on P belonging to an equiva-

lence class a that generates Q, and let s be an admissible cross-section
corresponding to T. We can define the map

where o(s(u)) is the unique element of Gl for which

Now, it is easy to check that F is a fibre bundle isomorphism; indeed we
only need to prove that F is injective. If ul, u2 E P are such that 
= F(u2 ) then we can find go E Go with U2 = ul go and

Hence since 1 for i =1, 2 and I
= e, then go = e and Ul = U2. Q.E.D.

We will briefly recall now the notations used in Table 1.

Let K denote the field of real number R, or the complex field C or
quaternions field Q; in a natural way, R c C c Q . For each element x E K
we define the element Y and ~ as follows:

If X=XO + x1 i with xi E R then

We use the following notation:

(1) gl (n; K) = {all matrices of order n over the field I~~;
(2) sl (n ; K) = the semisimple part of gl (n ; K);

where the
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matrix Ip, q is:

We remember also that the Lie algebra
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