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Global Bifurcation from the Fu010Dik Spectrum.

WALTER DAMBROSIO (*)

ABSTRACT - In this paper we are concerned with boundary value problems
like

where u - (,0 p (u’))’ is the one-dimensional p-laplacian operator. By means
of an application of a multi-parameter abstract bifurcation theorem, we prove
the existence of global bifurcating sets of solutions to the problem consid-
ered.

1. Introduction.

In this paper we present a bifurcation result for a Dirichlet boundary
value problem associated to a second order differential equation involv-
ing the p-laplacian operator (p &#x3E; 1). The study of bifurcation theory has
been widely faced in the past decades, motivated e.g. by many applica-
tions to mathematical physics. We refer for instance to the book [4] for a
more complete discussion on this topic.

In a first approach to bifurcation problems, the existence of solution
pairs (A, u ) E R x X (X is a Banach space) to an abstract equation of the
form

was studied; more precisely, the existence of the trivial Line of solutions

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Torino, Via
Carlo Alberto 10, 10123 Torino, Italy. E-mail address: dambrosio@dm.unito.it
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(~, , 0) is assumed and the problem is to find and characterize the values
Ào ER (which will be called the «bifurcation points») such that in any
neiborhood of (A 0, 0) there exists a solution (A, u ) of ( 1.1 ) with u # 0 . In
particular, for an equation of the form

where L : X ~ X is a linear compact operator, H : R x X ~ X is compact
and H(~, , u ) = o( lul) for u --~ 0 , uniformly for ~, in bounded sets, the fol-
lowing fundamental result has been proved by P. H. Rabinowitz (see
[19, 20]):

THEOREM 1.1 [20], Th. 1.10. If L and H satisfy the above assump-
tions, then for every A o , eigenvalue of odd multiplicity of the linearized
equation

the point (À 0, 0) is a bifurcation point for (1.2). Moreover, from (À 0, 0)
bifurcates a connected branch of solutions to (1.2) which either is un-
bounded or contains a point of the fornz (~ 0, 0 ) where ,u 0 ~ ~ o is an
eigenvalue of (1.3).

An important application of Theorem 1. 1, given in [11], is the study
of solutions to the boundary value problem

where, for every 1, ~ p ( s ) = is

the one-dimensional p-laplacian operator) and g : :[0, x R 2 ~ R is a

continuous function such that

uniformly in t E [ o , a].

Let us denote by À k, p the eigenvalues of the operator - (ø p (u ’ ) )’ with
boundary conditions u(O) = 0 = u(n). The following result has been

proved ([11]):
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THEOREM 1.2 [11], Th. 2. If g satisfies (1.5), then for every k E N
there exists an unbounded connected set Ck of solutions (A, u) to (1.4),
with u having exactly k zeros in [0, n), bifurcating from the point
0).

We recall that in the case p = 2 Theorem 1 has been proved in the cel-
ebrated paper [20] by P. H. Rabinowitz.
We also observe that, in order to obtain Theorem 1.2 from Theorem

1.1, P. Drabek first developed an eigenvalue theory for p-laplacian oper-
ators [12], on the lines of the linear theory for the classical case

~=2.
Starting from Theorem 1.2, in particular for the case p = 2, a lot of

authors studied the existence of solutions to various boundary value
problems by means of bifurcation techniques; among others we quote
the interesting papers by M. J. Esteban [14] and by A. Ambrosetti, J.
Garcia-Azorero and I. Peral [2].

As it was done e.g. in [14], Theorem 1.1 applies to problems associat-
ed to an equation like (q5 p (u ’) )’ + f ( t , u , u ’ ) = 0 when f possesses a lin-
earization near u = 0, u ’ = 0, i.e. f is differentiable in ( t , 0 , 0) for every
t E [ 0 , n]. This remark motivates the result we obtain in this paper: in-
deed, let us denote u + = max (u, 0) and u - = max ( - u, 0). If we simply
assume f(t, u, u’ ) = /1-ø p(u + ) - vo p (u + g(t, u, u’ ), with g satisfy-
ing (1.6), then the BVP

cannot be studied through the previous theorem. Nevertheless, a bifur-
cating result for (1.6) still holds (see Theorem 2.7 in Section 2). Its proof
is based on the fact that we can replace the eigenvalues Å k, p in Theorem
1.2 by suitable values (/1-, v ) E R 2 belonging to the set 8 usually called
Fucik spectrum (see [16]): more precisely, 8 is the set of those pairs
(M, v ) E R 2 such that the autonomous BVP

admits a nontrivial solution. On the lines of Theorem 1.2 in the differen-
tiable case, once some «eigenvalues» have been introduced, a bifurcation
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result is required. In the new situation, we need an abstract theorem rel-
ative to a multi-dimensional bifurcation; this kind of questions has been
intensively studied (see e.g. [15,18] and the book [4]) and a global result
(see Theorem 2.2 in Section 2) for an equation as (1.1) (with A has
been obtained.

Motivated by the previous remarks, in Section 2 we prove a global bi-
furcation result (Theorem 2.7) for (1.6); the theorem of Rabinowitz quot-
ed above is a particular case of our Theorem 2.7. To the best of our
knowledge, only few results are concerned with bifurcation from the Fu-
cik spectrum; the most significant, in our opinion, has been proved by P.
Drabek and M. Kucera in [13] (see also the survey lecture note [12]). In-
deed, in [13] it is proved that every point of the Fucik spectrum is a «bi-
furcation point» for an equation of the form (op(u’))’ + u(t) op(u+) -
- v(t) op (u - ) = 0, where the coefficients u and v depend on the time vari-
able. However, we stress the fact that this is not a bifurcation result for
(1.6) and that also for the equation considered in [13] no description of
the global behaviour of the bifurcating set is given.

Next, in Section 3 we give an application of the results of Section 2 to
a boundary value problem as (1.6) when g does not depend on the deriva-
tive u ’ and satisfies some growth conditions at infinity. We are mainly
motivated by previous works ([7, 9]) in which multiplicity results for
Dirichlet or Neumann problems have been obtained; the basic assump-
tion is a superlinear asymmetric growth at infinity of the nonlinearity. In
this case,a more complete description of the global bifurcating set can be
given (see Lemma 3.1 and Proposition 3.2).

In what follows, for any Banach space X, for any linear compact oper-
ator L : X - X and for any subset we will denote by degLS (I -
- L , Q, 0) the Leray-Schauder degree of I - L (whenever it is defined)
and with Ind (L) the Leray-Schauder index of I - L near the (isolated)
zero 0 . We denote by WJ’P(O, Jr) the usual Sobolev space of the functions

such that = 0 = u(z); similarly, CJ([O, .7r]) is the

space of functions u E C 1 ([ o, jr]) such that = 0 = Moreover,
the space C ([0 , of the continuously differentiable real functions u
on [ o , ~z] will be equipped with the norm

Finally, as it was done in this Introduction, we denote by À k, p the eigen-
values of the one-dimensional p-laplacian operator with Dirichlet bound-
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ary conditions in (0, 7r); if we set

(observe that z 2 = Jr), then, from [10], we have , J

2. Bifurcation from the Fucik spectrum.

We start this section by recalling a multiparameter bifurcation theo-
rem, which can be found in different versions in several papers (see for
instance [15,18] and the book [4]). We confine ourselves to the case of a
bifurcation parameter ~, varying in R 2 ; we refer to the quoted papers for
the general case of À ERn.

We now introduce the notation to be used in the next results.
Let X be a real Banach space with the norm 11.11. For every ~, E let

compact map of the form f = Ix - F for some compact
mapping F : R 2 x X- X; for each ~, E [ o , 1 ], we writer = f (~, , ~ ) and we
assume that = 0 .

We are interested in the study of the solution pairs (À, u ) E R 2 x X of
the equation

We observe that equation (2.1 ) is satisfied by all the pairs of the form
(A, 0 ) for every A E R 2 ; we refer to the solutions of this form as the trivial
solutions. We will denote by S* the closure of the set of nontrivial sol-
ution pairs of equation (2.1). We give the well-known definition:

DEFINITION 2.1. A pair (À, 0 ) belonging to the set S* is called a bi-
furcation point for equation (2.1) if in any neighborhood of (A, 0) in

X there is at least a nontrivial solution of (2.1). The set of bifurca-
tion points of (2.11 ) is denoted 

The following theorem give conditions to obtain the existence of bi-
furcating sets of nontrivial solutions to (2.1):

THEOREM 2.2 ([15], Th. 2.4). For every A E R 2, Let f : R 2 x X -~ X be
a compact macp. Let X ~ 0 ~ be described by r= h -1 ( o ), where
h : R 2 ~ R is continuously differentiable and has 0 as a regular value.
Suppose that a E R 2 and f3 E R 2 lay in the same component of r, that
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neither a nor {3 are bifurcation points of f and that

Then, there exists a closed connected surface e c S* such that e n
f1 [a, 13] ~ 0, where [a, /3] denotes any arc of r between a and More-

over, one of the following alternatives is satisfied:

(a) C is unbounded,

As already observed in [15], in the formulation of Theorem 2.2 we can
recognize the global bifurcation result (Theorem 1.1 of the Introduction)
of P. H. Rabinowitz (cf. [19, 20]), relative to the one-dimensional case. We
stress the fact that in Theorem 2.2 no regularity (as e.g. differentiability)
of the functions fi in zero is required.

Theorem 2.2 and some generalizations (see for instance the paper by
J. Ize [18]) have been applied in various situations: we mention for in-
stance the results on elasticity obtained by S. Stuart Antman [4] (see
also the paper by J. C. Alexander and S. Stuart Antman [1]), the Sturm-
Liouville bifurcation theory for systems of second order equations devel-
oped, among others, by R. S. Cantrell [6] and S. C. Welsh [21] and a bi-
furcation result for boundary value problems depending on two real pa-
rameters due to P. A. Binding and Y. X. Huang [5].

Now, we turn our attention to the case when f can be written in the
form /(~, ~) = ~ 2013 L(~) ~ 2013 77(A, ~), where, for every ÄER2, L(Ä):
X-X is a positively homogeneous compact operator and H : R 2 X X-X
is a compact perturbation satisfying the condition

for u-0, uniformly for ~, in bounded sets .

We observe that in this case equation 2.1 becomes

Moreover, we notice the fact that we do not assume, as for instance in the
one-dimensional case considered in [19,20], that the term L(A) is
linear.

Now, according to the notation introduced in [4], a number À ER2
is called eigenvalue of the equation
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if (2.5) has a nontrivial solution. We denote by 8 the set of eigenvalues
of (2.5).

The set 8 is closely related with the set of bifurcation points for (2.4);
indeed, we have the following:

PROPOSITION 2.3. If (A 0, 0 ) is a bifurcation point for (2.1 ), then ~, o
belongs to 8.

The proof of Proposition 2.3 in the case when L(~,) is linear can be
found e.g. in [4], Th. 4.1; the proof for the positively homogeneous case is
similar and then it is omitted.

It is well-known, also in the one-dimensional situation, that the con-
verse of Proposition 2.3 is not true. A sufficient condition for bifurcation
is Theorem 2.2.

Now, we will apply Theorem 2.2 to the study of a Dirichlet boundary
value problem associated to a strongly nonlinear second order differen-
tial equation. In particular, we will see how the differential equation con-
sidered can be put into the form (2.4).

To this aim, let us consider the following bvp:

where (,u , v ) E R 2 , p &#x3E; 1 and ~:[0~jr]x~!~-~~! is a continuous map
such that

uniformly in t E [ 0, .7l].

In what follows, we will use the notation A = (y, v ) E R 2 .
Let X = Wo ~ p ( [ o , ~] ); we say that u eX is a weak solution of (2.6) if

and only if

for every v E X. In [12] it has been proved that whenever u is a weak sol-
ution to (2.6) then 0 p (u ’) E CJ ([ 0, ;rl) and the equation in (2.6) holds for
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every t E (0, jr): therefore a weak solution of (2.6) is indeed a classical
solution.

Let us also denote by X * the dual space of X ; we define the operators
J, S, G : X~X* by

for every u, v E X. It can be shown [12] that J is a homeomorphism;
moreover, as in [12], u is a weak (and hence a classical) solution to (2.6) if
and only if

where

Moreover, from [12], we deduce that, for every A E R2, the operator
LO.): X -~ X and the map H : R x X-X are compact; it is also easy to
check that the map ~, H Lo.) is continuous. Next, from (2.7), we infer that
condition (2.3) is fulfilled. Finally, the following lemma proves that for
every Ä. e R the operator L(~, ) is positively homogeneous:

LEMMA 2.4. The operators J and S defined in (2.9) are positively
homogeneous of the operator J 

-1 is positively homoge-
neous of degree 1/(p - 1 ) and, for every A E R2, the operator L(Ä.) is posi-
tively homogeneous (of degree 1).
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PROOF. Let us consider ~ &#x3E; 0; then, for every u E X and for every v E
E X we have

i.e.

Analogously, it can be proved that ,~ is homogeneous of degree p - 1 as
well.

Moreover, from (2.12), we deduce that

therefore, setting Ju = p and , we obtain

and this proves the statement for J -1. Finally, let us observe that, for
every ~ &#x3E; 0 and for every u e X, we have (iu) + = iu + and ( ~u ) - _ ~u - ;
from this, we can immediately infer that, for every A = (,u , v ) E R 2 , for
every ~ &#x3E; 0 and for every u E X we have:

The lemma is proved.

Now, in order to apply Theorem 2.2, we have to study the set 8 of the
eigenvalues of the «linearized» equation (2.5); to do this, we observe
that, in the present case, (A, v) is a solution of (2.5) if and only if (~,, v)
satisfies the equation

with boundary condition

Now, following the ideas of [8,16], in [12] it has been proved that prob-
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lem (2.27)-(2.28) has a nontrivial solution if and only if A belongs to
the set 8 defined by

where, for every k E N,

and

The set 8 defined above is usually known as the Fucik 
Let us introduce the following regions of R 2 :

and

where

and
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The following proposition, whose proof can be found in [ 12], will be cru-
cial to prove our main result:

PROPOSITION 2.5. Let us assume that A E QB 8; then the Leray-
Schauder index Ind (I - L(À), 0) is well defined and

- I :1." ., - A

The following lemma will be the key in the verification of the assump-
tions of Theorem 2.2:

LEMMA 2.6. Let A e QB 6. Then

PROOF. Let us start by observing that the thesis first means that the
Leray-Schauder index Ind(/-L(A)-~(~,’),0) is well defined and
then that the equality in (2.15) holds.

Indeed, let us consider t E [0, 1 ] and define

We will show that there exist &#x3E; 0 such that for every t E [ o , 1 ] and for

every with Ilull = R we have Zt(u) ~ 0. Indeed, suppose that for
every n E N there exist tn E [ o , 1 ] and with such

that

Dividing (2.16) by Ilun II, setting &#x3E; and using the
positive homogeneity of L(~, ), we obtain

Letting n -~ + ~ , from (2.3) we deduce that the last term in (2.17) is in-
finitesimal ; moreover, by the compactness of L(~,) we can find a subse-
quence wn~ such that L(~, ) ~ ’J converges. Therefore, also w~. must con-



272

verge to some W EX from (2.17), w must satisfy

and so A e 8: absurd.

Then, the Leray-Schauder index Ind(7-L(~)-~(A, .), 0) is well
defined and the homotopy invariance of the degree permits to con-
clude.

Now, we recall that the set 8 is the union of the curves and Y k,
k varying in N. Moreover, let S+ denote the set of functions x with
x’ (0) &#x3E; 0 and denote the set of the functions cp E X with exactly l sim-
ple zeros in [0, n), with ç ’ (0) &#x3E; 0 and such that all the zeros of cp in

[0, jr] are simple. Let S- = - S+, Sl- - - Sl+ and Si = Si+ U we ob-
serve that the sets are open in Sl.
We are ready to prove our bifurcation result:

THEOREM 2.7. Let g : [ o , a continuous map satisfy-
ing (2.7) and let Ào = 6. Moreover, consider h : de-

fined by h(x, y) and r=~’~(0).
( for then there exist two closed connect-

ed unbounded c ((R x S~ ) U (6 x { 0 ~ ) ) n S* bifurcating
from (/1- 0, v o ).

If (/1- 0, vo) E y k (resp. (/1- 0, v o ) then there exists a closed con-
nected unbounded surface

bifurcating from (,u 0, v o ).

REMARK 2.8. 1) From the statement of Theorem 2.7 we deduce
that every point of the Fucik spectrum for (2.13)-(2.14) is a bifurcation
point. Moreover, the set of solutions which bifurcates from any point
of the Fucik spectrum is a unbounded closed connected surface.
To the best of our knowledge, the only result which is concerned
with a bifurcating behaviour from the points of the Fucik spectrum
has been obtained by P. Drdbek and M. Kucera: in the paper [13],
they show that every point of the set 8 is a bifurcation point not
for (2.6), but for the boundary value problem with variable coef
ficients
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Moreover, we stress the fact that in [13] (see also [12]), no (local
or global) description of the bifurcating set is given.

2) The proof of Theorem 2.7 will follow from an application of The-
orem 2.2. As in the one-dimensional case considered by Rabinowitz (see
[20] and Theorem 1.1 in the Introduction), the abstract theorem cont
ains an alternative for the behaviour of the bifurcating set; in the appli-
cation to differential equations, it is shown that one of the alternatives
never occurs.

Before proving Theorem 2.7; we need some preliminary results. First
of all, we denote by v21 any eigenfunction corresponding to À e y ~ with
(v2k )’ ( 0 ) &#x3E; 0 and by V2k any eigenfunction corresponding to À e y k with
(vi 1’ ( 0 )  0 . Analogously, let v2k + 1 be any eigenfunction corresponding
to (observe that (v2k++1)’ (0) &#x3E; 0 ) and be any eigenfunction
corresponding to ÀEYk (observe that (~+i)’(0)0). It is easy to

check, following the construction and the description of the set E given
e.g. in [17], that, for every kEN, each V2k has exactly 2 k zeros in [0, n)
and each v2k + 1 has exactly 21~ + 1 zeros in [ 0, n); therefore, vL± and

the normalization = 1 makes vt unique.
This remark on the number of zeros of each vl (l E N) in [ 0 , n) will be

crucial for the proof of Theorem 2.7.
Now, we give a lemma on the uniqueness of the solution to a Cauchy

problem associated to the equation in (2.6); the proof of this result is
quite classical and therefore it will be omitted.

LEMMA 2.9. 7/’(~, u) is a solution of (2.6) and there exists r e [0, Jr]
such that = u’ (r) = 0, then u == 0 in [0, yr].

The following lemma is required to prove Theorem 2.7 (cf. [20]):

LEMMA 2.10. For each j E N and for each 
U y ~~ _ 1~2 ~ there exists a neighborhood N,’ 0) such that if (~, , u ) E

and then 

PROOF. We use an argument similar to the one already developed in
the proof of Lemma 2.6. We prove the result only for the sets 5~, the
other case being similar.

Suppose by contradiction that there exists a sequence (Àn, un ) E S~
such that 5~ and (~, n , un ) -~ (À j, 0 ). Let Wn = and let
us divide (2.10) by using the positive homogeneity ofL(A) for every
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~, E R 2 , we obtain

Now, as already observed, by (2.7),
moreover, by (2.11),

the continuity of A~-4L(A) implies that and

therefore the first term on the right of (2.20) tends to 0 as n - + oo . Fi-
nally, by the compactness of there exists a subsequence of L(Â j)wn
which is convergent. Therefore, from these remarks and from (2.20), it
follows that there exists a subsequence wni of wn converging to some
function w ( w E ,S + ) such that =1 and

Then, w E S, + ; since this set is open, for ni large enough we deduce that
wni E Si contrary to our assumption.

PROOF OF THEOREM 2.7. Step 1. We apply Theorem 2.2. We only
have to take two suitable points a and {3 on F; we give the details for the
choice of a and P for the case when E y k (for some k E N), the
other cases being similar. Indeed, if (,u o, v o) E y k, it is sufficient to take
a E T n Ak+ and B E T n Ak.

Then, neither a nor P belong to 8: Proposition 2.3 implies that a and {3
are not bifurcation points for (2.4). Moreover, from Proposition 2.5 and
Lemma 2.6, we have

Therefore, all the assumptions of Theorem 2.2 are satisfied and the exis-
tence of a bifurcating set is proved.

Step 2. In the sequel, we denote the set bifurcating from À 0,
whose existence has been proved in the previous Step.

Let us suppose that A 0 E y k ; since only have to
show that is contained in S2k ) U x ~ 0 ~ ). Indeed, if this is
true, then alternative (b) of Theorem 2.2 cannot hold; suppose in fact
that there exists ~, * ~ ~, o , such that (~, * , 0) E ~ (~, o ). Then neces-
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sarily (since 0 gt S2k) and this is absurd since y  n r = ~~, o ~.
Hence, suppose that ~(~, o ) is not contained in 

x {0}). Then there exists (A, u ) E e(Âo) n (R 2 (yk x
x ( 0 ) ) and (£ , u) = Hm un ) with Un E S2 k . Now, ifUEaS2k then, by
Lemma 2.9 u = 0 : hence Therefore, for some j ~ 2 k, we can
find a neighbourhood .Nj of (A, 0) satisfying the properties stated in
Lemma 2.10; now, we observe that, for n large enough, (~, n, un ) n

But, by Lemma 2.10, we also have and this is

absurd.
In the case E y k (resp. À 0 E y k ) we can prove in the same way that

e( o) is contained in {0}) (resp. (R2xS21+1)U
and from this the thesis easily follows.

3. Applications to superlinear asymmetric boundary value prob-
lems.

In this section, we consider an application of the results proved in
Section 2 to the study of the solution set of a boundary value problem as
(2.6) when some conditions on the behaviour of g at infinity are assumed.
We are mainly motivated by previous works [7,9], where nonlinearities
satisfying a superlinear asymmetric growth at infinity are consid-
ered.
We recall the problem we are dealing with:

where (,u , v ) E R 2 , p &#x3E; 1 and ~:[0,jr]x~!~~~! is a continuous map
such that

for u - 0, uniformly in i

As before, we will use the notation A = (/1-, v ) E R 2 .
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Now, let us assume that there exists a continuous function

/?:[0,jr]-~R~ such that

uniformly in

uniformly in

Under the only assumption (Ho ), from Theorem 2.7 we deduce that from
every point A o = (/1-, v) E y k (for some k E N) of the Fucik spectrum 8 em-
anate (bifurcate) two unbounded continua (i.e. closed and connected

of nontrivial solutions (A, u) of (3.1); moreover, these
continua are contained in (R x ,Sm ) U (8 x ( 0 )) (for m = [k/2]). Analo-
gously, from every point ~, o = (,u , v) E y’ k (resp. ~, o = (,u , v) E y k ) bifur-
cates an unbounded (resp.

c (R x U (8 x 10 of nontrivial solutions (A, u) of (3.1) (for
m = Ck/2 ] ).

If, in addition, we assume condition (H 00), then some global results
for ~(~, o ) can be obtained. More precisely, the following variant of Lem-
ma 7 in [14] (where the case p = 2 = v is considered) can be
proved:

LEMMA 3.1 ([14], Lemma 7). Under assumptions (Ho ) and (H~ ),
for every k E N there exists a positive constant ~ k such that if (/1-, v , u)
is a solution of (3.1) and u has exactly k zeros in [0, .7r), and

v  Ek.

PROOF. First of all, we observe that conditions (Ho ) and (H~ ) imply
that there exists a constant C1 &#x3E; 0 such that

for every t E [ o , .7r] and for every u E R .
Now, let (,u , v , u ) be a solution of (3.1) and suppose that u has exactly

k zeros in [0, it is easy to check that (,u, v, u) satisfies

setting from (3.2) we deduce that
for every t E [ o , yr], u E



277

Hence, by (3.3), v is the kth eigenvalue of 2013(~p(~’))’ - p( t, u) with
Dirichlet boundary conditions. By standard comparison theorems (see
e.g. [3,17]), v is smaller than the k-th eigenvalue of the operator
-(~p(~))’+C~(~); this implies that v ~ ~ k : _ ~, ~, p + Cl 
and /~ ~/c  v . By swapping the role of /1- and v we infer if

,u ; v and v ~ ~ k This proves the result.

In terms of the continuum 6(Ao), Lemma 3.1 means that it is con-
tained in the region of space of v) : ,u ~ ~ o , v ~ ~ o ~, for
some E0 depending on k0. We stress the fact that this further informa-
tion is a consequence of assumption (H~ ).

The following result specifies the global behaviour of the bifurcating
branches. It is a characterization of the values (/1-, v ) where a branch

~(~, o ) can become unbounded:

PROPOSITION 3.2. Assume conditions (Ho ) and (H ~ ). For 
let m = [k/2] and let be a point. in moreover, Let

and ~i=max{~):~e[0,jr]}. We denote
bye: the branch (contained in R 2 x Sk U 8 x ~ 0 ~ ) bifurcating from

Then, either Ck’ intersects the set 0 = ~ (,u , v , u ) : 
U ~ (,u , v , u ) : v = 0 ~ or it is unbounded in a neighborhood of a value v
such that

An analogous staternent holds for Ci , with m = [ ( 1~ + 1 ) /2 ], when
(~m~ 

The proof of Proposition 3.2 will be an easy consequence of some lem-
mas already proved in [7, 9]. First, let 1 be the largest integer such
that

and l ’ be the smallest integer such that

Moreover, let us denote by n(u) the number of simple zeros in [ 0, jr) of a
solution u of (3.1); it is well defined because of Lemma 2.9.
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According to [7, 9], we have:

LEMMA 3.3. There exists Mz &#x3E; 0 such that if u is a solution of (3.35)
then

Moreover, for every k E N there exists Mlt &#x3E; 0 such that if u is a solution
of (3.1 ) u( 0 ) &#x3E; Mit, then

Analogously, if u is a solution of (3.1 ) with u( 0 ) then

Finally, we can state a classical lemma, which gives an a prior bound for
solutions to (3.1) with a prescribed number of zeros:

LEMMA 3.4 ([9], Corollary 3.11). For every and for every
M * &#x3E; 0 there exists M &#x3E; 0 such that if u is a solution of (3.1 ) with
n (u) = k and ~(0~ ~M*, then 

PROOF OF PROPOSITION. 3.2. Let us fix k E N; if et does not meets
0, then, by Lemma 3.1, it is contained in 1(,u, v , u ) : 0  ,u ~ ~ k , 0  v %
~ ~ k ~. Therefore, it must be unbounded in u . We will show that this hap-
pens for the values v described in (3.4).

We consider the definitions of 1 and l ’ given in (3.5) and (3.6), re-
spectively. According to the different values of v , we distinguish the fol-
lowing cases:

Case A.

Case B.

and i

and i

Case C.

Case D.

and 1

and i

We continue our discussion in the case k is even, k = 2 ~n ; the other
case is left to the reader.



279

Case A Let and let us assume u( 0 ) &#x3E; M * :
then, by Lemma 3,

i.e.

By the definition of 1 and L ’ we infer that

and

Therefore, if v does not satisfy (3.7), 0  u( o )  M * and, by Lemma 3,4
there exists a constant M such that actually, this is the

thesis.

Case B. As in the previous case, if &#x3E; M * , we get

This implies that

and so

Case C. It is immediate to check that in this case we obtain again
condition (3.8).

Case D. In this case, from
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we deduce that

By a simple computation we obtain

In any case, condition (3.39) must be fulfilled and the result is

proved.

Acknowledgements. The author is grateful to Prof. Pejsachowicz for
many stimulating discussions on the subject of this paper; special thanks
are addressed to Prof. Capietto for her supervision of the work.

REFERENCES

[1] J. C. ALEXANDER - S. ANTMAN STUART, Global and local behaviour of bifur-
cating multidimensional continua of solutions for multiparameter nonlin-
ear eigenvalue problems, Arch. Rat. Mech. Anal., 76 (1981), pp. 339-354.

[2] A. AMBROSETTI A. - J. GARCIA-AZORERO - I. PERAL, Quasilinear equations
with a multiple bifurcation, Diff. Int. Eq., 10 (1997), pp. 37-50.

[3] A. AMBROSETTI - G. PRODI, A primer of Nonlinear Analysis, Cambridge
Studies in Adv. Math. Cambr. Univ. Press, 1993.

[4] S. ANTMAN STUART, Nonlinear problems of elasticity, Applied Math. Sci-
ences, 107, Springer-Verlag, 1995.

[5] P. A. BINDING - Y. X. HUANG, Bifurcation from eigencurves of the p-lapla-
cian, Diff. Int. Eq., 8, n. 2 (1995), pp. 415-428.

[6] R. S. CANTRELL, Global preservation of nodal structure in coupled systems
of nonlinear Sturm-Liouville boundary value problems, Proc. A.M.S., 107
(1989), pp. 633-644.

[7] A. CAPIETTO - W. DAMBROSIO, Multiplicity results for some two-point super-
linear asymmetric boundary value problem, Nonlinear Analysis, TMA, 38,
n. 7 (1999), pp. 869-896.

[8] E. N. DANCER, On the Dirichlet problem for weakly nonlinear elliptic par-
tial differential equations, Proc. Royal Soc. Edinburgh, 76A (1977), pp. 283-
300.

[9] W. DAMBROSIO, Multiple solutions of weakly-coupled systems with p-Lapla-
cian operators, Results Math., 36, n. 1-2 (1999), pp. 34-54.

[10] M. DEL PINO - M. ELGUETA R. MANÁSEVICH, A homotopic deformation along
p of a Leray-Schauder degree result and existence for (|u’ |p-2 u’ )’ +
+ f(t, u) = 0, u(0) = u(T) = 0, p &#x3E; 1, J. Differential Eq., 80 (1989), pp. 1-13.



281

[11] P. DRÁBEK, On the global bifurcation for a class of degenerate equations,
Annali Mat. Pura Appl. (IV), 159 (1991), pp. 1-16.

[12] P. DRÁBEK P., Solvability and bifurcation of nonlinear equations, Pitman
Res. Notes in Math. Series, 264. Longman Scient. &#x26; Tech., 1992.

[13] P. DRÁBEK P. - M. KUCERA, Bifurcations of second order problems with
jumping nonlinearities, Bull. Austr. Math. Society, 37 (1988), pp. 179-
187.

[14] M. J. ESTEBAN, Multiple solutions of semilinear elliptic problems in a ball,
J. Differential Eq., 57 (1985), pp. 112-137.

[15] P. M. FIZPATRICK - I. MASSABÒ - J. PEJSACHOWICZ, Global several-parameter
bifurcation and continuation theorems: a unified approach via comple-
menting maps, Math. Ann., 263 (1983), pp. 61-73.

[16] S. FU010DIK, Solvability of Nonlinear equations and Boundary value prob-
lems, Math. and its Applications, 4. D. Reidel Publishing Company,
1980.

[17] Y. X. HUANG - G. METZEN, The existence of solutions to a class of semilinear
differential equations, Diff. Int. Eq., 8, n. 2 (1995), pp. 429-452.

[18] J. IZE, Connected sets in multiparameter bifurcation, Nonlinear Analysis,
TMA, 30, n. 6 (1997), 3763-3774 (Proc. 2nd World Congress of Nonlinear
Analysis).

[19] P. H. RABINOWITZ, Some global results for nonlinear eigenvalue problems,
J. Funct. Anal., 7 (1971), pp. 487-513.

[20] P. H. RABINOWITZ, Some aspects of nonlinear eigenvalues problems, Rocky
Mountain J. Math., 3 (1973), pp. 161-202.

[21] S. C. WELSH, A vector parameter global bifurcation result, Nonlinear Analy-
sis, TMA, 25, n. 14 (1995), pp. 1425-1435.

Manoscritto pervenuto in redazione il 3 dicembre 1998.


