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Blow-up of Oriented Boundaries.

GIAN PAOLO LEONARDI (*)

ABSTRACT - Blow-up techniques are used in Analysis and Geometry to investigate
local properties of various mathematical objects, by means of their observa-
tion at smaller and smaller scales. In this paper we deal with the blow-up of
sets of finite perimeter and, in particular, subsets of R n (n ~ 2 ) with pre-
scribed mean curvature in L ~° . We prove some general properties of the blow-
up and show the existence of a «universal generator», that is a set of finite
perimeter that generates, by blow-up, any other set of finite perimeter in R n .
Then, minimizing sets are considered and for them we derive some results:
more precisely, Theorem 3.5 implies that the blow-up of a set with prescribed
mean curvature in L I either gives only area-minimizing cones with the same
surface measures or produces a family of area-minimizing cones whose surface
measures fill a continuum of the real line, while Theorem 3.9 states a suffi-
cient condition for the uniqueness of the tangent cone to a set with prescribed
mean curvature in L p , p &#x3E; n .

Introduction.

Blow-up techniques are widely used in Analysis and Geometry to in-
vestigate, for example, the local properties of various mathematical ob-
jects : in order to obtain information about the behavior of a surface near
a point, it may be useful to observe the surface at smaller and smaller
scales; in many interesting cases, this «magnification process» can help
to discover some remarkable asymptotic properties.

In the theory of sets of locally finite perimeter (Caccioppoli sets) this
technique consists in «enlarging» a given set E of finite perimeter in R n
with respect to a point xo E aE , thus constructing a sequence of dilations

(*) Indirizzo dell’A.: Universita degli Studi di Trento, Dipartimento di Mate-
matica, 1-38050 Povo (Trento) Italia.
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with «magnification factors- increasing towards oo. Usually, thanks to
compactness results, one can obtain from this sequence a limit set F,
which will be called a blow-up of E (with respect to xo : written
F E 83 U (E, xo)).

It is well known that, starting from a point of the reduced boundary
of E (i.e. if xo E a* E) one gets in the limit the so called tangent half-space
to E at xo (see e.g. Theorem 3.7 in [7] or Section2.3 in [13]).

Also, if E is a set of least perimeter (with respect to compact varia-
tions) then one gets an asymptotic area-minimizing cone F, which is a
half-space if and only if xo is a regular point of aE (see [13], Sec-
tion2.6.1).

Various and deep results, obtained by several authors from 1960 to
1970, have yielded the proof of a fundamental regularity theorem, which
says that an area-minimizing boundary in R n can be decomposed in a re-
al, analytic submanifold of codimension 1 and a closed, singular set of
Hausdorff dimension at most n - 8 (De Giorgi - Federer’s Theorem, cfr.
[7] and [13]). Nevertheless, the problem of the uniqueness of the tangent
cone to a least-area boundary (at a singular point) is still open (see, for
instance, [1]).

Indeed, regularity results of the previous type remain true in more
general situations: for example, in the case of oriented boundaries with
prescribed mean curvature in ([11], [12]), while in the case
p  n they are clearly false (actually, it is proved in [4] that every set of
finite perimeter has curvature in L 1 ). The «borderline» case p = n is
more elusive and only recently (see [9]) an example of a set E c R 2 with
prescribed mean curvature in L 2, having a singular point on aE, has
been found; however, the study of the case p = n is far from its conclu-
sion and offers many interesting cues (see however the recent work of
L.Ambrosio and E.Paolini [3], where a new regularity-type result is

proved): for instance, is every blow-up of a subset of R n, with boundary
of prescribed mean curvature in L n, still a minimizing cone?

In the present work, which is part of our Ph.D. thesis ([10]) to which
we refer for a more detailed discussion, we will be especially concerned
with this kind of problem, and more generally we will investigate the set

xo ) of all blow-ups of a given set E with respect to the point xo .
We now briefly describe the contents of the following sections.
In Section 1 we introduce the main definitions and recall some well-

known properties which will be useful in the following.
In Section 2, some general properties of the set xo ) are first-
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ly established; then we show the existence of a universal generator M,
i.e. a set of finite perimeter such 0) contains all sets of fi-
nite perimeter in R n . In Section3 we firstly deal with the blow-up of sub-
sets of R" with prescribed mean curvature in L n (indeed, satisfying the
weaker minimality condition (3.1)). In particular, we prove that, if E is a
subset of this kind, then the following alternative holds (Theorem 3.5):
either is exclusively made of area-minimizing cones with a com-
mon surface measure (i.e. the perimeter of any such cone in the unit ball
of R n is constant), or there exists a family I CA, A E [ l , L ], 1  L} of area-
minimizing cones in R n , such that for all A E [1, L], CA has surface mea-
sure = ~, . Then we state a sufficient condition (Theorem 3.9) for the

uniqueness of the tangent cone to a set with prescribed mean curvature
in L p , p &#x3E; n . We remark that the existence of a family of area-minimiz-
ing cones whose surface measures fill a continuum, as well as the unique-
ness of the tangent cone to an area-minimizing boundary, are, in their
full generality, still open problems.

1. Preliminaries.

For E , with n a 2, A open and E measurable, the perimeter,
of E in A is defined as follows:

This definition can be extended to any Borel set B c R n by setting

For further properties of the perimeter we refer to [2], [7], [13].
We say that E is a set of locally finite perimeter (or a Caccioppoli set)

if P(E , A)  00 for every bounded open set A c R n . We denote by 
the open Euclidean n-ball centered in x ERn with radius r &#x3E; 0, whose

Lebesgue measure is wnrn, and by r) the perimeter of E normal-
ized in i.e.

Given F, V, with A open and bounded, we define the following
distance between F and V in A:
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where F 6. V = (F n V) and I is the Lebesgue measure in R n .
Obviously we intend that F and V coincide when they differ for a set with
zero Lebesgue measure. In the following we will say that a sequence
(Eh )h of measurable sets converges in L~~ (R n ) (or simply converges) to a
measurable set E (in symbols, Eh ~ E) if and only if .

for all open bounded sets A c R n .

We define deviation from minimality of a Caccioppoli set E in an
open and bounded set A the function

where F 4l E cc A means that F A E is relatively compact in A . In partic-
ular, the condition A) = 0 says that E has least perimeter (with re-
spect to compact variations) in A.

DEFINITION 1.1. Let E, be Caccioppoli sets and xo E R n ar-
bitrarily chosen. We say that F is a blow-up of E with respect to xo (or
F E if and only if there exists a monotone increasing se-
quence (À h)h of positive real numbers tending to infinity and such that,
if we = XO + Àh(E - xo ), the sequence Eh converges to F.

From now on, without loss of generality, we will only consider the
case xo = 0 E aE (where aE is the so called measure-theoretical bound-
ary of E, i.e. the closed subset of the topological boundary whose ele-
ments x satisfy 0 1 = wnrn for all r &#x3E; 0), because
the blow-up with respect to internal and external points is, respectively,
R n and the empty set, thus not really interesting.

Moreover, we will write Br, P(E, r), a E (r), dist (F, V; r), r),
P(E) and instead of, respectively, P(E, Br), r),
dist (F, V; Br), Br), P(E, Rn) and 0).

Properties of 1jJ.

(P.1 ) If A and B are open sets and A c B , 

(P.2) y~ ( ~ , A ) is lower semicontinuous with respect to convergence in
L~~ (A).
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(P.3) Given an open and bounded subset A of Rn, suppose that Eh and
y (Eh, A) converge, respectively, to E and A), and moreover
that P(E, aB ) = 0 for some open set B relatively compact in A.
Then

, for every t , r &#x3E; 0 .

For the proof see, e.g., [16] and [17].

Properties of a E

(P.5) a E (r) is lower semicontinuous on (0, oo) and has bounded varia-
tion on every compact interval [ a , b] c (0, oo ).

(P.6) a E (r) is left continuous on (0, oo) and for all r &#x3E; 0

(P.7) a tE (r) = a E (r/t) for every r, t &#x3E; 0 . In particular, if E is a cone of
vertex 0 (that is, tx E E for all x E E and t &#x3E; 0) then a E is a con-
stant function coinciding with the perimeter of E in the unit ball:
in the following we will refer to this quantity as the surface mea-
sure of the cone E.

To prove (P.5), (P.6) and (P.7) simply observe that P(E, r) is non-de-
creasing in that lim P(E , s ) = P(E , r) and finally that

P(E, Br) = P(E, r) + P(E, aBr).

«Mixed» properties.

(P.8) For every s &#x3E; r &#x3E; 0 we have

a straightforward consequence of this inequality and of property
(P.1 ) is that, if R) = 0 for some R &#x3E; 0, then a E is non-de-
creasing on (0, R).
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(P.9) For almost every s &#x3E; r &#x3E; 0 it holds that

here x E denotes the characteristic function of E (more precisely,
its trace in the sense of BV-function theory, see e.g. [7], chapter
2) and ~Cn -1 is the (n - 1 )-dimensional Hausdorff measure. One
can observe that the left-hand side of this inequality vanishes for
almost every s &#x3E; r &#x3E; 0 if and only if E coincides, up to a negligible
set, with a cone with vertex 0. It follows that, if 1jJ(E, R) = 0 and
a E is constant on (0, R ), then E is equivalent to a cone inside BR .
On the other hand, one checks immediately that the set ,S c R 2 de-
fined by

(1.1) ,S = ~ t(cos (log t + a), sin (log t + a ) ) : t &#x3E; 0, 0  a  

which is «trapped» between two antipodal logarithmic spirals,
verifies a s (r) = 2 V2 for all r &#x3E; 0 . This shows the importance of
the minimality condition R) = 0 to ensure the conicity of E
inside BR .

(P.10) 
E (0, R), hence P(E, r) and a E (r) are continuous on (0, R).

For the proof of (P.8) and (P.9) see, e.g., [13], chapter 5.
Property (P.10) is a consequence, for example, of formula (17.5) of

[15]; here we give a very simple and direct proof (suggested to us by M.
Miranda) which combines De Giorgi’s Regularity Theorem with the fact
that, if S and M are two hypersurfaces of class C 2 , with mean curvature
Hs ~ HM at all points of S n M, then necessarily one has

To show this, we proceed in the following way. Fix xo then, up
to a translation and a rotation of the coordinate system, we can assume
that xo = 0 and that S and M are, near 0, the graphs of two functions 0 s
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of class C 2 over an open set A of and =

= OM(0) = 0.Now, set Y(y) = OS(y) - OM(y) for all y E A and consider its
gradient Vy ( 0 ) = If 0 then, by the implicit
function theorem, the intersection n M is locally a submanifold of codi-
mension 2, thus Xn -1-negligible. If Vy(0) = 0, then we can suppose,
without loss of generality, that = = 0; in this case, we
have that A 0 s (0) = (n - I ) Hs(0 ) (n - 1) HM(0) (where

is the laplacian of 0), hence d y~ ( 0 ) ~ 0 (for example, &#x3E; 0). Therefore,
&#x3E; 0 near y = 0 for some ... , n - 1 ~. This forces V) to be

(locally) strictly convex in the direction of the i-th axis, hence every line
parallel to the i-th axis intersects the zero set of y in at most 2 points,
that is, this set is Hn -1-negligible. This proves (1.2). The conclusion of
(P.10) follows from (1.2) with S = aBr and M = a* E (Hs = r -1, HM = 0)
and from the identity P(E , ~Cn -1 ( a* E n aBr ) (see e.g. [7], chap-
ter 4).

2. General properties of the blow-up.

In this Section we first prove some general properties of the family
83 U (E), also giving some examples, and finally we construct a «univer-
sal generator», that is a set M c R n of finite perimeter for which 83 ‘L1, (M)
contains any other set of finite perimeter in R n .

PROPOSITION 2.1. Choose F E then for all

0&#x3E;0.

PROOF. Following the definition let us consider a se-

quence Eh = A h E converging to F and &#x3E; 0 and a bounded open set

A . The new sequence Eh = QÅ hE is such that

that is Eh tends to 

It follows immediately from Proposition 2.1 that, if E admits a unique
blow-up (that is ~ ‘U, (E ) _ ~ F ~ ) then F is a cone with vertex 0 . Of

course, if C is a cone with vertex 0 then 

PROPOSITION 2.2. is closed with respect to convergence in
L1loc(Rn).
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PROOF. Consider a sequence Fh contained in 83U(E) and conver-
gent to a set We Rn. For every h E N there exists a sequence EA = 
convergent to Fh and an index ih with the property

Hence, the new sequence must converge to W, that means
W E B U (E).

PROPOSITION 2.3. 83 U(F) c 83 for every FE 83 

PROOF. It is an immediate consequence of Proposition 2.1 and

2.2.

PROPOSITION 2.4. If E = eE for some e &#x3E; 0 , o ~ 1, that is, E is self-
homothetic, then

PROOF. Since E = oE implies E = o -1 E, we can restrict ourselves to
the case p &#x3E; 1. It is easy to see that Eh : = Q hE = E for every h e N, thus
necessarily and, from Proposition 2.1, the inclusion D

follows.

On the other hand, for every F E fB U (E) there exists a sequence
Àh such that Eh : _ ÀhE converges to F . Now, fix h and consider

satisfying o ih ~ ~, h  ~ ih + 1, then set a h = e); recall-
ing that one obtains

hence converges to F . Up to subsequences, a h tends to a E [ 1, p],
therefore converges to QE and, since the limit is unique,
F = oE.

When a set E satisfies the condition E E ~3 U (E), we will say that E is
asymptoticaLLy self-homothetic. It follows from Proposition 2.4 that self-
homothetic sets are asymptotically self-homothetic, the converse being
false in general, as will be clear later on.

REMARK 2.5. Let us consider now a Caccioppoli set E, with 0 E aE,
and suppose there exist c and R &#x3E; 0 such that
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for all 0  r  R . Then, taken a sequence (A h)h as above, there exists a
subsequence, again denoted whose corresponding «magnified
sets» Eh converge to some limit set F . In fact, for each s &#x3E; 0, we
have

for every h such that Åh &#x3E; s/R . We can then apply a classical compact-
ness theorem and the conclusion follows. In particular, (2.1) guarantees
that 93 U (E) is not empty.

We have seen (Proposition 2.1 ) that the presence of a non-conical

blow-up Fe 93 U (E) implies the presence of all enlarged sets oF. On the
other hand, we may ask what happens when contains two or

more elements.
Let E be a Caccioppoli set verifying (2.1) and let F, VE 93 U (E). Sup-

pose that for some r &#x3E; 0 we have dist (F, V; r) = d &#x3E; 0, then consider
two sequences A h and U h such that i and, moreover,

For h sufficiently large we have dist (A hE, F; r)  d/4 and dist@4 hE,V;r) 
 d/4 ; this last relation, together with the triangle inequality, implies
that so there must be with the

property because the function dist ( tE , F ; r) is

continuous with respect to the t variable. As a further consequence of the
triangle inequality, we get dist (thE, V; r) ~ d/2, hence the sequence
Eh = th E converges, up to subsequences, to a blow-up W satisfying

and, consequently,

thanks to the continuity of dist with respect to convergence in

L1loc(Rn).
More generally, for every (0, 1 ) it is possible to find W e 

verifying
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The following proposition is a straightforward generalization of the pre-
vious facts.

PROPOSITION 2.6. If E verifies (2.1 ), then []3 contains either a

single cone or infinitely many elements.

For further information on this and related topics we refer to [10].
It seems useful, at this point, to recall some meaningful exam-

ples :

(i) If E is an open set of class C 1, that is, E is locally the subgraph
of a class C 1 function, then the blow-up of E at any point x E aE is the
tangent half-space to E at x . More generally, this is true for the blow-up
of any Caccioppoli set at every point of its reduced boundary (see [7],
Theorem 3.7).

(ii) On the other hand, it is easy to find examples of self-homothet-
ic sets with Lipschitz boundary that are not cones, for which, according
to Proposition 2.4, contains infinitely many elements; for instance,
as in [14], one can take the subgraph of a sawtooth function with homoth-
etically increasing teeth: just set

where

it is now immediate to see that E = 2E.

Another (non-Lipschitz) example of this kind is the «logarithmic spi-
ral» ,S defined in (1.1): actually, it is quite easy to check that ,S =

= e 2n S .
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(iii) «Bilogarithmic spiral» (see [9] or [2], chapter 1): it is a 2-di-

mensional example of a set E for which ~3 U (E) is made of all half-planes
passing through 0. We will recall it in Section 3.

We can now ask the following question: given a set F of finite perime-
ter in R n, is it possible to find E such that F E ~3 U (E)? The next con-
struction leads to an affirmative answer.

Let F be a set of finite perimeter in R n and, for rh = ( h! ) -1 and th =
, define

Clearly E is contained in B1 and has finite perimeter in R n :

We have

hence, for a fixed R &#x3E; 0 and for all h &#x3E; R 2

This shows that, as h tends tao 00, the sequence Eh = th E converges to F
(actually, in a stronger sense).
A much more general result can be obtained with a suitable extension

of the preceding construction. Let lfklk be a countable family of sets of
perimeter less than 2 and dense, with respect to the convergence in

into the class "P of sets of perimeter less than 1. The existence
of such a family can be proved starting from the density of polyhedral
sets into the class of all bounded sets with finite perimeter, as originally
shown by E. De Giorgi in [5]. Indeed, standard truncation arguments,
coupled with the fact that (according to the isoperimetric inequality) any
set of finite perimeter in R n (n ~ 2) either has finite Lebesgue measure
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or is the complement of a set of finite measure, then give the sequence Fk
(see [10] for more details). Now, define

with rh and th as above and note that

Taken E in the class T, there exists a subsequence F hm converging to E ,
hence we can conclude that Mm = th. M converges to E , as This

means that for every E E 0. On the other hand, from Pro-
position 2.1, fJ3 U (M) contains every set E of finite perimeter, because
AE r= T for some contraction factor A  1. In particular, it follows that M
is asymptotically self homothetic, that is

but at the same time it cannot be self-homothetic (by virtue of Proposi-
tion 2.4).
We collect the preceding results in the following

PROPOSITION 2.7. (Universal generator) There exists of fi-
nite perimeter, such that

{E: E has finite perimeter in 

3. Blow-up of minimizing sets.

We now consider Caccioppoli sets verifying the following condi-
tion :

with e(r) infinitesimal as r --~ 0 + ; every such set E will be said weakly-
minimizing (at the origin: actually, we are assuming that 0 lies on the
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measure-theoretical boundary of E). As we shall see later, this assump-
tion leads to some interesting properties concerning the blow-up set
83 U (E) (see especially Theorem 3.5) and, moreover, to some «density es-
timates» (see Remark 3.8). For a better understanding of this condition,
it may be useful to recall the notion of (boundaries of) sets with pre-
scribed mean curvature, i.e. minimizers of the functional

where G is a set of finite perimeter in R n and H is a given integrable
function on By using H61der’s inequality with p &#x3E; 1, one has

that

holds true whenever E has prescribed mean curvature H (that is, E is a
minimizer of (3.2)), for all r &#x3E; 0 and x E R n .

Different situations are determined, depending on the relation be-
tween p and n . Thus, given R &#x3E; 0 , z and then

(3.3) becomes

for all 0  r  R and x E BR ( z ), with C independent of x and r, and a =
- (p - n)/2p. It turns out that (3.4) is satisfied by the solutions to a large
class of least-area type problems, subject to various constraints and
boundary conditions. By extending the original work of U. Massari ([11],
[12]), it has been proved in [16], [17] that this last condition (stronger
than (3.1)) implies the C 1 ~ °‘ regularity of the reduced boundary of E (de-
noted by a* E) and the estimate of the Hausdorff dimension of the closed
singular set aEBa* E (which does not exceed n - 8 ). In this case more-
over, it is well known (see again [16] and [17]) that every blow-up of E is
an area-minimizing cone, thanks to a monotonicity formula that will be
discussed later on (Remark 3.6).

On the other side, when 1  p  n, singular points of aE can appear
even in low dimension; as for the limit case p =1, it has been proved that
every set of finite perimeter in R n , n &#x3E; 2, has prescribed mean curvature
in (see [4]). At the same time, non-conical blow-ups can be found
in ~3 U (E) even when E has mean curvature in L q for all q  n : this is
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precisely the case of the two self-homothetic sets described in Section 3,
example (ii), as it can be shown by a calibration argument (see [10]).
Again, p = 1 is a limit case: just remember that the universal generator
of Proposition 2.7 is a bounded set with finite perimeter, therefore it has
mean curvature in L 1 !

The case p = n is special and its study is, for several aspects, still

open (see however the recent contribution by L.Ambrosio and E.Paolini
in [3]). In 1993, E. Gonzalez, U. Massari and I. Tamanini ([9]) gave a two-
dimensional example of a set E with prescribed mean curvature in L 2 ,
with 0 as a singular boundary point and for which B U (E) consists of all
half-planes through the origin: E is «trapped» between two bilogarith-
mic spirals parameterized by = sin [ 8 i ( t ) ] ) , where i =
=1, 2, 0  t  1 and = log ( 1 - log t ) + ( i - 1) yp. In general, given
R , z and H as before, when p = n one gets from (3.3)

for all 0  r  R and with e( r) infinitesimal as r ~ 0 + . Again,
this uniform condition is stronger than (3.1 ).

After this preliminary discussion of our main assumption (3.1), we
start deriving from it the following upper area-density estimate, which
implies, in particular, that ill U (E) is not empty (see Remark 2.5). Lower
area-density and volume-density estimates will be discussed in Remark 3.8.

PROPOSITION 3.1. If E is weakly-minimizing, then

PROOF. Fix 77 &#x3E; 1, then for every F such that it holds
that

Now, take F = E U Br, then F = and finally, summing the two cor-
responding inequalities, one obtains

and the conclusion follows at once.
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We proceed with some preliminary lemmas, the first of which is a uni-
form convergence result - an easy consequence of pointwise conver-
gence combined with monotonicity and the continuity of the limit.

LEMMA 3.2. Let IcR be an open interval and let fh be a sequence of
non-decreasing (non-increasing) functions, pointwise converging on I
to a continuous function g. Then g is non-decreasing (non-increasing)
and fh converges to g uniformly on every compact subinterval [a, b] of I.

LEMMA 3.3. Let us consider a sequence Eh converging to F, such
that for all r &#x3E; 0 one has

Then, , for all r &#x3E; 0,

(iii) P(F, r) and a F (r) are continuous and non-decreasing on
( 0 , 

PROOF. (i) follows from Property (P.2), (ii) follows from (P.3) taking
account of (i) and (P.10), while (iii) follows from (i), (P.8) and

(P.10).

LEMMA 3.4. that E is weakly-minimizing. Then, for each
F E ~3 U (E) and for every sequence Eh = A h E converging to F, we have
1/J (F, r) = 0 for all r &#x3E; 0, a F continuous and non-decreasing on ( 0, ~ )
and moreover

uniformly on every compact subset of (0, ~ ).

PROOF. Fix F e and consider a sequence Eh = À hE converg-
ing to F. Given r &#x3E; 0 we have (recall Property (P.4))

From Lemma 3.3 we obtain y (F, r) = 0 and the convergence of P(Eh, r)
toward P(F, r), for all r &#x3E; 0, with P(F, r) continuous on (0, (0); then, by
using Lemma 3.2 we deduce that P(Eh, r) converges to P(F, r) (hence
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converges to a F) uniformly on every compact subset of (0, 00). The
remaining statements follow directly from Lemma 3.3.

We are now in a position to prove the following result:

THEOREM 3.5. Let E be a weakly-minimizing set, i. e. satisfying
(3.1 ), and define

so that 0 ~ l ~ L ~ nw n/2 (recall Proposition 3.1 ). Then we have the fol-
lowing alternative:

(a) if 1 = L then every F E ~3 U (E) is an area-minimizing cone
with surface measure a F = L ;

(b) if l  L then, for each A E [1, L], there exists an area-minimiz-
ing cone CA E 83 with surface measure a c, = A.

PROOF.

(a) Let us consider a sequence Eh = A h E converging to F and ob-
serve that, for all r &#x3E; 0 ,

by virtue of Lemma 3.4 and Property (P.7). Finally, from minimality of F
(see again Lemma 3.4) and from (P.9), we immediately deduce that F is a
cone.

(b) Fix two sequences ai, zi of positive real numbers, decreasing
toward 0 and such that

For r E ( 0, 1) define (keeping in mind (P.6))

and observe that t7(r) = 0 if and only if a E is continuous on (0, r]. We
claim that
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to see this we argue by contradiction: if (3.7) did not hold, there would
exist a sequence Q h 10 and a real number E &#x3E; 0 such that aE (p+h) -

that is

Now, up to subsequences, Eh = must converge to an area-minimiz-

ing set M (from Lemma 3.4), with uniform convergence of a Eh to a M in a
neighborhood of r =1. This contradicts (3.8), because of the continuity of
a M , thus proving our claim.

Fix now A E (l, L) and consider the interval I(r) = [A - t7(r), i~ +

+ t7(r)]. For sufficiently large i we have

where the previous set is certainly not empty by virtue of (3.9), (3.10) and
(3.11). Observe that the infimum bi is actually a minimum, thanks to
(P.5), hence for all we get

with the help of (P.6). At this point, we claim that

Indeed, if this were false, we would have, passing possibly to a

subsequence,

By setting Ei = bi-1 E and using formula (P.7) we would also obtain

while, up to subsequences, Ei would converge to an area-minimizing set
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M (Lemma 3.4). From the uniform convergence of to a M, together
with the monotonicity and continuity of a M, it would follow

thanks to (3.12) and (3.7). This contradicts our assumption A  L and

proves (3.13).

Now, choose r E (0, 1). Then there exists ir such that 
a2 
 r for every

bi ’t
i ~ ir . Taking Ei = bi-1 E and M as before and observing that rbi E ( ai , bi )
whenever i ~ ir, we get, as a consequence of (3.12),

and the monotonicity of a M yields, for all r  1,

From (P.9) we deduce that (up to a negligible set) M coincides, in B1,
with an area-minimizing cone, hence, by analytic continuation CA = M
must be a cone in R n with surface measure a ~~ _ A.

When A = 1 (respectively, A = L) the argument is virtually the same,
but calculations are much simpler: the sequence (resp., pro-
duces a limit cone of least area, with surface measure 1 (resp., L ).

REMARK 3.6. The case (a) of Theorem 3.5 applies, in particular, to
boundaries with prescribed mean curvature in L p, p &#x3E; n : indeed, from
(3.4) and (P.8) one deduces that the function

is non-decreasing in r, thus admitting a limit as r- 0+ , hence l = L .

More generally, this holds if merely
n

which is in-

deed the case of the «bilogarithmic spiral- quoted above (see especially
[9], Remark 2.3, or [10]).

REMARK 3.7. As shown above, has prescribed mean curva-
ture in L n, then it is a weakly-minimizing set (actually, in a «uniform
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way»). Therefore, the alternative of Theorem 3.5 applies as well (for
example, the bilogarithmic spiral falls within the case (a) of that theo-
rem). On the other hand, it is well known that, in dimension % % 7, area-
minimizing cones are either half-spaces (see [7], [13]) or trivial cones (R n
and 0), hence in this case 1 = L . In higher dimension, the existence of
families of area-minimizing cones with surface measures filling a contin-
uum represents an open problem which seems quite interesting in itself.
However, in the special case of dimension n = 8 we conjecture that such
a family cannot exist and will investigate this fact in a future work.

REMARK 3.8. Area-density and volume-density estimates for sets of
least perimeter are well known in the literature: if E is any such set,
then one has cv n _ 1 ~ a E (x , for all r &#x3E; 0 and x E aE (see, for
instance, [6], pp. 52 and 55). We have seen (Proposition 3.1) that weak-
minimality is sufficient to give the (asymptotic) upper area-density
estimate

however we cannot expect an analogous estimate from below: for

example, if 0 is a cuspidal point of a Caccioppoli set E c R 3 such
that

then (3.1 ) is clearly true, because 1jJ(E, r)  P(E , r) = a E ( r) r n -1.
A straightforward consequence of Theorem 3.5 is, again, the follow-

ing alternative: keeping the same notation, we have that either L = 0, in
which case as r ---&#x3E; 0’ owing to the
isoperimetric inequality on balls, or 1, in which case one gets by
integration (see [10]) the voLume-density estimate

To see this latter fact, suppose L &#x3E; 0, then L must be the surface mea-
sure of a non trivial area-minimizing cone CL , whence 
~ if 1 = L the assertion follows, otherwise we still have that ~, is the
surface measure of some non-trivial area-minimizing cone CA for every
1  ~, ~ L , hence £ * 1 and therefore L ~ 1 as well. Actually, re-
calling that 1 is an isolated value for the surface measure of area-
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minimizing cones (see [8]), we would have in this last case

that is, every CA is a singular cone. Lower area-density estimates are
well known for boundaries with prescribed mean curvature in L p , p ~ n .
More precisely, if p &#x3E; n one obtains W n - 1 by means of monotonicity
(Remark 3.6) combined with a density argument (see [12], [16]); this fact
still remains true when p = n , because in this case one firstly obtains 1 &#x3E;

&#x3E; 0 (see, e.g., [9], [10]) so that, by the previous argument, 1 must actually
be greater than or equal to cv n _ 1.

Finally, we consider the problem of the uniqueness of the tangent
cone to a minimizing set E : by a careful use of Property (P.9) we show
that uniqueness is implied by some assumptions on the initial behavior of
a E (e.g., when a E is H61der-continuous near 0). The following result
stands as a model in this direction (see [10] for a more detailed

discussion): 

THEOREM 3.9. Let E be such that

for some R , &#x3E; 0 and for all 0  r  R (in particular, this holds for
sets with prescribed mean curvature in L P, p &#x3E; n , as (3.4) says), and
suppose be of class in (0, R). Then 93U(E) contains a
unique area-minimizing cone.

PROOF. We know from the preceding discussion (Remark 3.6) that
each member of 93 U (E) is an area-minimizing cone, so only uniqueness
has to be proved. For that, it is sufficient to show

where

Indeed, this condition means that the trace of tE on the boundary of B1
has the Cauchy property (with respect to the norm) when t-
- oo, therefore it is equivalent to the uniqueness of the tangent cone.

Choose 0  r  s  R with s sufficiently small, such that (recall
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Proposition 3.1)

and set si = 2 - i s , i = 0 , ... , k + 1, with 1 ~ r  sk . By using the trian-
gle inequality, we have

and then, applying Property (P.9) together with (3.15) and the minimali-
ty assumption on E, we obtain

where . Similarly,
also using the monotonicity of (Remark 3.6), we
deduce

Then, combining (3.16), (3.17) and (3.18) with the assumption about a E,
we get

and (3.14) follows at once.
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