RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

JIŘÍ NEUSTUPA

Stabilizing influence of a Skew-symmetric operator in semilinear parabolic equation

Rendiconti del Seminario Matematico della Università di Padova, tome 102 (1999), p. 97-123

http://www.numdam.org/item?id=RSMUP_1999__102__97_0

© Rendiconti del Seminario Matematico della Università di Padova, 1999, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Stabilizing Influence of a Skew-Symmetric Operator in Semilinear Parabolic Equation (*).

JIŘÍ NEUSTUPA (**)

ABSTRACT - Sufficient conditions for asymptotic stability of the zero solution of a nonlinear parabolic differential equation in a Hilbert space are formulated by means of spectral properties of a certain linear operator L. The operator L need not be dissipative and its spectrum may have a continuous part touching the imaginary axis. Stability is a consequence of an appropriate influence of a skew-symmetric part of the operator L.

1. Introduction.

This paper deals with stability of the zero solution of the differential equation

(1)
$$\frac{\mathrm{d}u}{\mathrm{d}t} = Lu + N(t, u)$$

where L=A+B, A is a nonpositive selfadjoint operator in a real Hilbert space H which does not have zero as its eigenvalue, B is a linear operator «of a lower order» than A and N(t, .) is a nonlinear operator in H. Many works have studied the same problem on a more or less abstract level under various conditions on the operators A, B and N.

^(*) The research was supported by the Grant Agency of the Czech Republic (grant No. 201/96/0313).

^(**) Indirizzo dell'A.: Czech Technical University, Faculty of Mechanical Engineering Department of Technical Mathematics, Karlovo nám. 13, 121 35 Praha 2, Czech Republic.

The situation when the operator L is essentially dissipative is studied in detail in the work of G. P. Galdi - M. Padula (1990). Conditions leading to a similar situation are also used in the papers of K. Masuda (1975), P. Maremonti (1984), G. P. Galdi - S. Rionero (1985), W. Borchers - T. Miyakawa (1992) and H. Kozono - M. Yamazaki (1995). All these conditions involve the requirement that operator B is in some sense «sufficiently small» in comparison with A.

If the symmetric part L_s of operator L has some eigenvalues on the positive side of the real axis then operator L is non-dissipative. The zero solution of equation (1) can be stable even in this case if the skew-symmetric (\equiv antisymmetric) part of L has an appropriate influence on the behaviour of solutions of equation (1). This influence is involved in the widely used assumption that Re $\lambda \leq -\delta$ for some $\delta > 0$ and all $\lambda \in \sigma(L)$, where $\sigma(L)$ denotes the spectrum of L (see e.g. G. Prodi (1962), D. H. Sattinger (1970) and H. Kielhöfer (1976)). However, this assumption cannot be satisfied if the spectrum of L has an essential part which has a nonempty intersection with the imaginary axis. Such a case is typical for problems in exterior domains. Sufficient conditions for the stability of the zero solution of equation (1) which can be fulfilled if L is not dissipative and the spectrum of L touches the imaginary axis are derived in J. Neustupa (1994). However, these conditions are not formulated as conditions on the spectrum of L only. Operator L is supposed to have the form $-A + B_1 + B_2$ where A is a nonnegative selfadjoint operator which does not have zero as its eigenvalue, B_1 , B_2 are certain operators «of the lower order» and the conditions used in J. Neustupa (1994) also involve certain boundedness of B_1 and B_2 with respect to A.

The present paper deals with the case when operator L is not dissipative and its spectrum has an essential part which has a non-empty intersection with the imaginary axis, but sufficient conditions for stability are expressed mainly by an assumption abount $R_{\lambda}(L)$ (the resolvent operator of L). This assumption (see condition (iv) in Section 2) does not require «sufficient smallness» of operator B relative to A and it can be regarded as a generalization of the condition «Re $\lambda \leq -\delta$ for all $\lambda \in \sigma(L)$ ».

This paper has the following structure: Section 2 contains basic assumptions and auxiliary lemmas. The main result on stability at an abstract level is proved in Section 3. A simple example in one space dimension is given in Section 4. The results from Sections 2 and 3 can also be applied to a general parabolic system in three space dimensions and to

the Navier-Stokes equations in an exterior domain. Follow-up papers are being prepared on these themes.

The author wishes to thank Prof. M. Padula and Prof. G. P. Galdi for their encouragement to study the stabilizing influence of a skew-symmetric operator in parabolic equations.

2. Basic assumptions and auxiliary lemmas.

Let H be a real Hilbert space with a scalar product $(., .)_0$ and an associated norm $\|.\|_0$. Suppose that

$$L = A + B_s + B_a$$

where A is a selfadjoint operator in H which is nonpositive (i.e. its spectrum is a subset of the interval $(-\infty, 0]$) and it does not have 0 as its eigenvalue. B_s and B_a are linear operators in H such that their domains $D(B_s)$ and $D(B_a)$ contain D(A), B_s is symmetric and B_a is skew-symmetric. N(t, .) is for each $t \in [0, +\infty)$ a nonlinear operator in H with the domain D(N) which does not depend on t and $D(A) \subset D(N)$.

Throughout this paper, $\sigma(L)$ will denote the spectrum of L, $\varrho(L)$ will denote the resolvent set of L and $R_{\lambda}(L)$ will be the resolvent of L (i.e. $R_{\lambda}(L) = (L - \lambda I)^{-1}$). We put

$$\|\phi\|_1 = \|(-A)^{1/2}\phi\|_0$$
 for $\phi \in D((-A)^{1/2})$, $\|\phi\|_2 = \|A\phi\|_0$ for $\phi \in D(A)$.

 H_1 will be the completion of $D((-A)^{1/2})$ in the norm $\|.\|_1$ and H_2 will be the completion of D(A) in the norm $\|.\|_2$. We shall use the following assumptions for operators B_s and B_a :

(i) $\exists c_1 > 0 : ||B_s \phi||_0 \le c_1 ||\phi||_1 \text{ for } \phi \in H_1$,

(ii)
$$\exists \alpha \in [1/2, 1)$$
 $\exists c_2, c_3 \ge 0 : ||B_a \phi||_0 \le c_2 ||(-A)^\alpha \phi||_0 + c_3 ||\phi||_1$ for $\phi \in D((-A)^\alpha)$.

It can be verified (for example by means of the resolution of identity for the operator (-A) and the Hölder inequality) that $\|(-A)^{\alpha}\phi\|_0 \le \|\phi\|_2^{2\alpha-1}\|\phi\|_1^{2-2\alpha}$. Hence it follows from condition (ii) that if $\mu > 0$ is given and $k(\mu) = (2c_2^2)^{1/(2-2\alpha)}\mu^{(1-2\alpha)/(2-2\alpha)} + 2c_3^2$ then

(2)
$$||B_{\alpha}\phi||_{0}^{2} \leq \mu ||\phi||_{2}^{2} + k(\mu)||\phi||_{1}^{2}$$

for all $\phi \in D(A)$.

It can be derived from condition (i) that operator B_s is A-bounded

with an A-bound arbitrarily small. Hence operator $A + B_s$ is selfadjoint (see T. Kato (1996), p. 287). Let us denote its resolution of identity by $E(\lambda)$. Put

$$P' = \int_{0}^{+\infty} dE(\lambda), \qquad P'' = I - P', \qquad H' = P'H, \qquad H'' = P''H.$$

P', P'' are orthogonal projections in H and H', H'' are closed orthogonal subspaces of H such that $H = H' \oplus H''$. Both projections P' and P'' commute with $A + B_s$ on $D(A + B_s) \equiv D(A)$ and so $P'D(A) \subset D(A)$ and $P''D(A) \subset D(A)$.

LEMMA 1. If condition (i) is satisfied then there exist positive constants c_4 , c_5 , c_6 and c_7 so that

(3)
$$||P'\phi||_1^2 + ||P''\phi||_1^2 \le c_4 ||\phi||_1^2 + c_5 ||\phi||_0^2$$

(4)
$$||P'\phi||_2^2 + ||P''\phi||_2^2 \le c_6 ||\phi||_2^2 + c_7 ||\phi||_0^2$$

for $\phi \in D(A)$.

PROOF.

$$\begin{split} \|P'\phi\|_{1}^{2} + \|P''\phi\|_{1}^{2} &= \\ &= (-AP'\phi, P'\phi)_{0} + (-AP''\phi, P''\phi)_{0} = ((-A - B_{s}) P'\phi, P'\phi)_{0} + \\ &+ ((-A - B_{s}) P''\phi, P''\phi)_{0} + (B_{s}P'\phi, P'\phi)_{0} + (B_{s}P''\phi, P''\phi)_{0} + \\ &+ ((-A - B_{s}) \phi, \phi)_{0} + \|B_{s}P'\phi\|_{0} \|P'\phi\|_{0} + \|B_{s}P''\phi\|_{0} \|P''\phi\|_{0} \leq \\ &\leq ((-A - B_{s}) \phi, \phi)_{0} + \|B_{s}P'\phi\|_{0} \|P''\phi\|_{0} + \|B_{s}P''\phi\|_{0} \|P''\phi\|_{0} \leq \\ &\leq (-A\phi, \phi)_{0} + [\|B_{s}\phi\|_{0} + \|B_{s}P'\phi\|_{0} + \|B_{s}P''\phi\|_{0}] \cdot \|\phi\|_{0} \leq \\ &\leq \|\phi\|_{1}^{2} + c_{1}[\|\phi\|_{1} + \|P'\phi\|_{1} + \|P''\phi\|_{1}] \cdot \|\phi\|_{0} \leq \\ &\leq \|\phi\|_{1}^{2} + \varepsilon c_{1}[\|\phi\|_{1} + \|P'\phi\|_{1} + \|P''\phi\|_{1}]^{2} + \frac{c_{1}}{4\varepsilon} \|\phi\|_{0}^{2} \leq \\ &\leq (1 + 3\varepsilon c_{1}) \|\phi\|_{1}^{2} + 3\varepsilon c_{1} \|P''\phi\|_{1}^{2} + 3\varepsilon c_{1} \|P''\phi\|_{1}^{2} + \frac{c_{1}}{4\varepsilon} \|\phi\|_{0}^{2}, \end{split}$$

$$(1 - 3\varepsilon c_1)[\|P'\phi\|_1^2 + \|P''\phi\|_1^2] \le (1 + 3\varepsilon c_1)\|\phi\|_1^2 + \frac{c_1}{4\varepsilon}\|\phi\|_0^2.$$

If ε is chosen for example so that $1 - 3\varepsilon c_1 = 1/2$ then we obtain the estimate (3). The inequality (4) can be derived in a similar way.

Then next condition we shall need is:

(iii)
$$\exists c_8 \in (0, 1): ((A + B_s) \phi, \phi)_0 \le -c_8 \|\phi\|_1^2 \text{ for } \phi \in H'' \cap D(A).$$

The following lemma shows the case when (iii) is fulfilled.

LEMMA 2. Let there exist $\varepsilon > 0$ such that $\sigma(A + B_s + \varepsilon P'' B_s)|_{H''}$ (i.e. the spectrum of the operator $A + B_s + \varepsilon P'' B_s$ reduced to H'') is a subset of the interval $(-\infty, 0]$. Then condition (iii) is satisfied.

PROOF. It follows from the assumption of the lemma that $((A + B_s + \epsilon P'' B_s) \phi, \phi)_0 \le 0$ for all $\phi \in H''$. This can be rewritten as

$$((A+B_s) \phi, \phi)_0 \leq \frac{\varepsilon}{1+\varepsilon} (A\phi, \phi)_0.$$

Since $(A\phi, \phi)_0 = -\|\phi\|_1^2$, the above inequality confirms the validity of (iii).

The projection P'' is identical with I-P'. Since space H' can be finite-dimensional in many practical cases, P' can easily be expressed and there exists a good possibility to verify the assumptions of Lemma 2. We shall show this verification in a concrete example in Section 4 and we formulate other conditions implying the validity of the assumptions of Lemma 2 in another concrete situation in Section 5.

If $z \in \mathbb{C}$, $z \neq 0$ then $\arg z$ will denote the number $\varphi \in (-\pi, \pi]$ such that $z = |z|e^{\varphi i}$.

We shall denote by H_C a so called complexification of H. It is the space of all elements of the type $\phi_r + i\phi_i$, where ϕ_r , $\phi_i \in H$. The scalar product of two elements $\phi \equiv \phi_r + i\phi_i$, $\psi \equiv \psi_r + i\psi_i$ in H_C is defined by

$$(\phi, \psi)_0 = [(\phi_r, \psi_r)_0 + (\phi_i, \psi_i)_0] + i[(\phi_i, \psi_r)_0 - (\phi_r, \psi_i)_0].$$

Operators A, B_s and B_a can be extended in the usual way to the operators in H_C so that, for example, if $\phi \equiv \phi_r + i\phi_i \in H_C$ and ϕ_r , $\phi_i \in D(A)$ then $A\phi = A\phi_r + iA\phi_i$.

Since operator (-A) is selfadjoint and nonnegative in H, it is sectorial in H. Using conditions (i), (ii) and applying Theorem 1.3.2 from D. Henry (1981), p. 19, we can derive that operator (-L) is sectorial, too. Thus, there exists $\varphi \in (\pi/2, \pi)$, $a \in \mathbb{R}$ (we can assume that $a \ge 0$ without loss of generality) and $c_9 > 0$ so that

$$S \equiv \{\lambda \in \mathbb{C}; \lambda \neq a \text{ and } |\arg(\lambda - a)| < \varphi\} \subset \varrho(L)$$

and

(5)
$$||R_{\lambda}(L) \phi||_{0} \leq \frac{c_{9}}{|\lambda - a|} ||\phi||_{0}$$

for all $\lambda \in S$ and $\phi \in H$. Moreover, $R_{\lambda}(L)$ ϕ is an analytic H_C -valued function of λ in $\varrho(L)$ for every $\phi \in H$. It follows from D. Henry (1981), p. 20, that operator L is a generator of an analytic semigroup e^{Lt} in H and there exists $c_{10} > 0$ so that

(6)
$$\|\mathbf{e}^{Lt}\phi\|_{0} \le c_{10}\,\mathbf{e}^{at}\,\|\phi\|_{0}$$

for all $t \ge 0$ and $\phi \in H$.

Denote $C_+(-\delta) = \{z \in \mathbb{C}; \text{ Re } z > -\delta\}$. The next condition we shall use is:

(iv) $\exists \delta > 0$ so that if $\phi \in H'$ then $P'R_{\lambda}(L)$ ϕ can be extended (in dependence on λ) from $\varrho(L) \cap \mathbb{C}_+(-\delta)$ to an H_C -valued analytic function in $\mathbb{C}_+(-\delta)$.

The validity of this condition will be verified in an example in Section 4.

REMARK 1. It is obvious that condition (iv) is satisfied if there exists $\delta > 0$ so that for each $\phi \in H'$ the equation

$$(7) (L - \lambda I) y_{\lambda} = \phi$$

has a solution $y_{\lambda}(\phi)$ such that $P'y_{\lambda}(\phi)$ can be extended from $\varrho(L) \cap \cap C_{+}(-\delta)$ to an H_{C} -valued analytic function of λ in $C_{+}(-\delta)$.

We shall denote by δ_1 the number $\delta/2$ in the rest of this paper.

Lemma 3. If conditions (i), (ii) and (iv) are satisfied then there exists $c_{11} > 0$ so that $\|P' e^{Lt} \phi\|_0 \le c_{11} e^{-\delta_1 t} \|\phi\|_0$ for all $\phi \in H'$ and $t \ge 0$.

PROOF. Assume first that $t \ge 1$. Put $\eta = -\delta_1 + i\xi$, where ξ is a positive real number which is so large that $\eta \in S$. Denote $\psi = \arg \eta$. It is clear that $\psi \in (\pi/2, \pi)$. Let us define the curves Γ_1 , Γ_2 , Γ_3 and Γ_4 in C by means of their parametrizations — in order not to complicate the notation we denote the parametrizations by the same letters as the curves:

$$\begin{split} &\Gamma_1(s) = - \, s \, \mathrm{e}^{- \psi i}; \, s \! \in \! (- \, \infty, \, - \, \big| \, \eta \, \big| \, \big], \quad \Gamma_2(s) = - \, \delta_1 + i s; \, s \! \in \! [\, - \, \xi, \, \xi \,], \\ &\Gamma_3(s) = s \, \mathrm{e}^{\psi i}; \, s \! \in \! [\, \big| \, \eta \, \big|, \, + \, \infty \,), \qquad \qquad \Gamma_4(s) = a + \, \big| \, \eta - a \, \big| \, \mathrm{e}^{s i}; \, s \! \in \! [\, - \, \psi, \, \psi \,]. \end{split}$$

Curves Γ_1 , Γ_4 and Γ_3 are subsets of S, the end point of Γ_1 = the initial point of $\Gamma_4 = \overline{\eta}$ and the end point of Γ_4 = the initial point of $\Gamma_3 = \eta$.

The semigroup e^{Lt} can be defined by the formula

$$\mathrm{e}^{Lt} = rac{1}{2\pi i}\int\limits_{\Gamma_1\cup\,\Gamma_4\cup\,\Gamma_2} \mathrm{e}^{\lambda t} R_\lambda(L) \,\mathrm{d}\lambda \;.$$

Since projector P' is closed in H, we have

$$P' e^{Lt} = \frac{1}{2\pi i} \int_{\Gamma_1 \cup \Gamma_4 \cup \Gamma_2} e^{\lambda t} P' R_{\lambda}(L) d\lambda .$$

Suppose that $\phi \in H'$. Denote by $y_{\lambda}'(\phi)$ the analytic extension of $P'R_{\lambda}(L)$ ϕ to the domain $\mathbb{C}_{+}(-\delta)$. It follows from Cauchy's theorem that the integral of $e^{\lambda t}y_{\lambda}'(\phi)$ on Γ_{4} is equal to the integral of the same function on Γ_{2} . This means that

(8)
$$P' e^{Lt} \phi = \frac{1}{2\pi i} \int_{\Gamma_1 \cup \Gamma_2 \cup \Gamma_3} e^{\lambda t} y_{\lambda}'(\phi) d\lambda = \frac{1}{2\pi i} \int_{\Gamma_1} e^{\lambda t} P' R_{\lambda}(L) \phi d\lambda + \frac{1}{2\pi i} \int_{\Gamma_2} e^{Lt} y_{\lambda}'(\phi) d\lambda + \frac{1}{2\pi i} \int_{\Gamma_3} e^{\lambda t} P' R_{\lambda}(L) \phi d\lambda.$$

Using estimate (5) and the expression of the integral on Γ_1 by means of parametrization, we get

$$\begin{split} & \left\| \frac{1}{2\pi i} \int_{\Gamma_{1}} \mathrm{e}^{\lambda t} P' R_{\lambda}(L) \phi \, \mathrm{d}\lambda \, \right\|_{0} = \\ & = \frac{1}{2\pi} \, \left\| \int_{-\infty}^{-|\eta|} \mathrm{e}^{-s\exp(-\psi i)t} \cdot P' R_{-s\exp(-\psi i)}(L) \phi \cdot \mathrm{e}^{-\psi i} \, \mathrm{d}s \, \right\|_{0} \leq \\ & \leq \frac{1}{2\pi} \int_{-\infty}^{-|\eta|} \mathrm{e}^{-s(\cos\psi)t} \| R_{-s\exp(-\psi i)}(L) \phi \|_{0} \, \mathrm{d}s \leq \frac{1}{2\pi} \int_{-\infty}^{-|\eta|} \mathrm{e}^{-s(\cos\psi)t} c_{12} \| \phi \|_{0} \, \mathrm{d}s = \\ & = \frac{c_{12}}{2\pi} \frac{(-1)}{\cos\psi \cdot t} \, \mathrm{e}^{|\eta|(\cos\psi)t} \| \phi \|_{0} \leq \frac{c_{12}}{2\pi} \frac{(-1)}{\cos\psi} \, \mathrm{e}^{|\eta|(\cos\psi)t} \| \phi \|_{0}. \end{split}$$

Since Re $\eta = |\eta|(\cos \psi) = -\delta_1$, we have

(9)
$$\left\| \frac{1}{2\pi i} \int_{\Gamma_1} e^{\lambda t} P' R_{\lambda}(L) \phi \, d\lambda \, \right\|_0 \le c_{13} e^{-\delta_1 t} \|\phi\|_0$$

where $c_{13} = -c_{12}/(2\pi \cdot \cos \psi)$. We can also derive the same estimate for the integral over Γ_3 . Further, we have

$$\begin{split} \left\| \frac{1}{2\pi i} \int_{\Gamma_{2}} \mathrm{e}^{\lambda t} y_{\lambda}'(\phi) \, \mathrm{d}\lambda \, \right\|_{0} &= \frac{1}{2\pi} \, \left\| \int_{-\xi}^{\xi} \mathrm{e}^{-\delta_{1}t + is} y_{-\delta_{1} + is}'(\phi) \, i \, \mathrm{d}s \, \right\|_{0} \leq \\ &\leq \frac{1}{2\pi} \, \mathrm{e}^{-\delta_{1}t} \int_{-\xi}^{\xi} \| y_{-\delta_{1} + is}'(\phi) \|_{0} \, \mathrm{d}s = \frac{1}{2\pi} \, \mathrm{e}^{-\delta_{1}t} \, \left| \int_{\Gamma_{2}} \| y_{\lambda}'(\phi) \|_{0} \, \mathrm{d}\lambda \, \right| \, . \end{split}$$

Let $L^2(\Gamma_2; H_C)$ be the Banach space of mappings f_{λ} which are defined a.e. in Γ_2 and their values belong to H_C . The norm of f_{λ} in $L^2(\Gamma_2; H_C)$ is $\left| \int\limits_{\Gamma_c} \|f_{\lambda}\|_0^2 \mathrm{d}\lambda \right|^{1/2}$. The mapping $\mathfrak{C}: \phi \to y_{\lambda}(\phi)$ can be re-

garded as a linear mapping of H' to $L^2(\Gamma_2; H_C)$. Let us show that this mapping is closed:

Assume that $\{\phi_n\}$ is a sequence in H' such that $\phi_n \to \phi$ in H' and $\mathcal{C}\phi_n \to \Phi$ in $L^2(\Gamma_2; H_C)$. The behaviour of the functions $\sin [k\pi(\lambda - \overline{\eta})/(2\xi i)]$ for $\lambda \in \Gamma_2$ is the same as the behaviour of the functions $\sin k\lambda$ for $\lambda \in [0, \pi]$. Hence the set M of all functions of the type

(10)
$$\Psi(\lambda) = \sum_{k=1}^{n} \psi_k \cdot \sin\left[k\pi(\lambda - \overline{\eta})/(2\xi i)\right]$$

(where $n \in \mathbb{N}$ and $\psi_1, \ldots, \psi_n \in H_C$) is dense in $L^2(\Gamma_2; H_C)$. This can be proved by a contradiction: If M is not dense in $L^2(\Gamma_2; H_C)$ then there exists $\varphi \in L^2(\Gamma_2; H_C)$, $\varphi \neq 0$, which is orthogonal to \overline{M} . In particular, this means that if $\psi \in H_C$ and Ψ has the form (10) with $\psi_k = \alpha_k \psi$ ($\alpha_k \in C$, $k = 1, \ldots, n$) then

$$(\varphi, \Psi)_{L^2(\Gamma_2; H_C)} = \int_{\Gamma_2} (\varphi(\lambda), \psi)_0 \cdot \sum_{k=1}^n \alpha_k \sin\left[k\pi(\lambda - \overline{\eta})/(2\xi i)\right] d\lambda = 0.$$

Hence $(\varphi(\lambda), \psi)_0 = 0$ for a.a. $\lambda \in \Gamma_2$. Since ψ was chosen arbitrarily in H_C , φ is equal to the zero element of $L^2(\Gamma_2; H_C)$. But this is a contradiction. Suppose now that Ψ is an arbitrary function of type (10). Then Ψ is ana-

lytic (in dependence on λ) in C. Using Cauchy's theorem and the convergence

$$\begin{split} \left| \int\limits_{\Gamma_4} \|y_\lambda{}'(\phi_n) - y_\lambda{}'(\phi)\|_0^2 \,\mathrm{d}\lambda \,\, \right| &= \left| \int\limits_{\Gamma_4} \|P\,{}'R_\lambda(L)\,\phi_n - P\,{}'R_\lambda(L)\,\phi\|_0^2 \,\mathrm{d}\lambda \,\, \right| \leq \\ &\leq \mathrm{const.} \,\, \left| \int\limits_{\Gamma_4} \|\phi_n - \phi\|_0^2 \,\mathrm{d}\lambda \,\, \right| \leq \mathrm{const.} \,\, \|\phi_n - \phi\|_0^2 \to 0 \,\, , \end{split}$$

we can write,

$$\int_{\Gamma_2} (y_{\lambda}'(\phi_n), \Psi(\lambda))_0 d\lambda = \int_{\Gamma_4} (y_{\lambda}'(\phi_n), \Psi(\lambda))_0 d\lambda \rightarrow
\rightarrow \int_{\Gamma_4} (y_{\lambda}'(\phi), \Psi(\lambda))_0 d\lambda = \int_{\Gamma_2} (y_{\lambda}'(\phi), \Psi(\lambda))_0 d\lambda .$$

So $y'_{\lambda}(\phi_n) \to y'_{\lambda}(\phi)$ weakly in $L^2(\Gamma_2; H_C)$. Since $\mathfrak{C}\phi_n \equiv y'_{\lambda}(\phi_n) \to \Phi$ in $L^2(\Gamma_2; H_C)$, we have $\Phi = y'_{\lambda}(\phi)$. Thus, the operator \mathfrak{C} is closed.

The domain of definition of \mathcal{C} is the whole space H' and hence, due to the closed graph theorem, \mathcal{C} is bounded. There exists $c_{14} > 0$ (which does not depend on ϕ) so that

$$\left| \int_{\Gamma_2} \|y_{\lambda}'(\phi)\|_0 \, \mathrm{d}\lambda \, \right| \leq \sqrt{2\xi} \left| \int_{\Gamma_2} \|y_{\lambda}'(\phi)\|_0^2 \, \mathrm{d}\lambda \, \right|^{1/2} = \sqrt{2\xi} \|\mathfrak{F}\phi\|_{L^2(\Gamma_2; H_C)} \leq c_{14} \|\phi\|_0.$$

So we obtain the estimate

(11)
$$\left\| \frac{1}{2\pi i} \int_{\Gamma_0} e^{\lambda t} y_{\lambda}'(\phi) d\lambda \right\|_0 \leq \frac{c_{14}}{2\pi} e^{-\delta_1 t} \|\phi\|_0.$$

It follows from (8)-(11) that

$$||P' e^{Lt} \phi||_0 \le \left(2c_{13} + \frac{c_{14}}{2\pi}\right) e^{-\delta_1 t} ||\phi||_0.$$

We have derived this estimate for $t \ge 1$ and $\phi \in H'$. However, if we also use inequality (6) for $t \in [0, 1)$, we can easily obtain the desired estimate $\|P' e^{Lt} \phi\|_0 \le c_{11} e^{-\delta_1 t} \|\phi\|_0$ for all $t \ge 0$ and $\phi \in H'$.

We shall use the following assumption about nonlinear operator N:

$$\begin{array}{ll} (\text{v}) \ \exists \beta \in [\,0\,,\,1\,] & \exists \gamma \geq 2-\beta & \exists c_{15} > 0: \|N(t,\,\phi)\|_0 \leq c_{15} \|\phi\|_1^\gamma [\,\|\phi\|_2 + \\ + \|\phi\|_1]^\beta \ for \ t \geq 0 \ and \ \phi \in D(A). \end{array}$$

Under solutions of equation (1) or another analogous equation in a time interval [0, T) (where $T \in (0, +\infty]$), we understand functions u such that:

- a) if J is a compact interval in [0, T) then $u \in L^2(J; H_2) \cap L^2(J; H)$ and $du/dt \in L^2(J; H)$,
 - b) u satisfies a given equation a.e. in (0, T).

It follows from the theory of interpolation spaces (see J. L. Lions - E. Magenes (1972)) that if a solution u has the regularity which is required in condition a) then it is (after a possible change on a subset of [0, T) whose measure is zero) a continuous mapping from [0, T) to H_1 .

LEMMA 4. Let $\tau > 0$ and $f \in L^2(0, \tau; H)$. Then there exists a unique solution v of the equation

(12)
$$\frac{\mathrm{d}v}{\mathrm{d}t} = Av + f(t)$$

with the initial condition v(0) = 0 in the time interval $[0, \tau)$ and

$$(13) ||v||_{L^{2}(0, \tau; H_{2})} + ||\frac{\mathrm{d}v}{\mathrm{d}t}||_{L^{2}(0, \tau; H)} \leq \sqrt{2} ||f||_{L^{2}(0, \tau; H)} + \sqrt{2} ||v||_{L^{2}(0, \tau; H)}.$$

PROOF. The idea of the proof is the same as that used in the proof of Theorem IV.1 in O. A. Ladyzhenskaya (1970). Let us define

$$D(\mathcal{L}) = \left\{ u; u(t) = \int_0^t \varphi(s) \, \mathrm{d}s, \, \varphi \in L^2(0, \, \tau; \, H_2) \right\}, \qquad \mathcal{L}u = \frac{\mathrm{d}u}{\mathrm{d}t} - Au.$$

 $D(\mathcal{L})$ is dense in $L^2(0, \tau; H)$. The adjoint operator \mathcal{L}^* to \mathcal{L} is densely defined in $L^2(0, \tau; H)$ and so \mathcal{L} is closable. Let $\overline{\mathcal{L}}$ be the closure of \mathcal{L} . Let $u \in D(\mathcal{L})$ and $t \in [0, \tau]$ now. Then

$$(\mathcal{L}u,\,\mathcal{L}u)_{L^2(0,\, au;\,H)}=\int\limits_0^t\!\left(rac{\mathrm{d}u}{\mathrm{d}s}-Au,\,\,rac{\mathrm{d}u}{\mathrm{d}s}-Au
ight)_0\mathrm{d}s=$$

$$= \int\limits_0^t \left[\left\| \frac{\mathrm{d} u}{\mathrm{d} s} \, \right\|_0^2 + \|u\|_2^2 + 2 \left(\frac{\mathrm{d} u}{\mathrm{d} s} \, , (-A) \, u \right)_0 \right] = \int\limits_0^t \left[\left\| \frac{\mathrm{d} u}{\mathrm{d} s} \, \right\|_0^2 + \|u\|_2^2 \right] \mathrm{d} s + u(t) \|_1^2.$$

It is seen from these equalities that if $u_n \in D(\mathcal{L})$, $u_n \to u$ in $L^2(0, \tau; H)$,

 $\mathcal{L}u_n \to \mathcal{L}u$ in $L^2(0, \tau; H)$ then $\{\mathrm{d}u_n/\mathrm{d}t\}$ converges in $L^2(0, \tau; H)$, $\{u_n\}$ converges in $L^2(0, \tau; H_2)$ and $\{u_n(t)\}$ converges in H_1 uniformly for $t \in [0, \tau]$. Thus, we have $\mathrm{d}u/\mathrm{d}t \in L^2(0, \tau; H)$ and $u \in L^2(0, \tau; H_2) \cap C([0, \tau]; H_1)$ for $u \in D(\overline{\mathcal{L}})$.

Let us now show that $R(\overline{\mathcal{L}}) = L^2(0, \tau; H)$. $(R(\mathcal{L}))$ is the range of $\overline{\mathcal{L}}$. Suppose that this is not true. Then there exists $g \in L^2(0, \tau; H)$, $g \neq 0$, which is orthogonal to $R(\overline{\mathcal{L}})$ and consequently, also to $R(\mathcal{L})$. Since the element $\int\limits_0^t A^{-1}g(s)\,\mathrm{d}s$ belongs to $D(\mathcal{L})$, it holds:

$$\begin{split} 0 &= \left(g,\, \mathcal{L} \int_0^t A^{\,-1} g \,\mathrm{d} s \right)_{L^2(0,\,\tau;\,H)} = \int_0^\tau \!\! \left[g(t),\, A^{\,-1} g(t) - \int_0^t \!\! g(s) \,\mathrm{d} s \right)_0 \mathrm{d} t = \\ &= -\int_0^\tau \!\! \left[\|(-A)^{-1/2} g(t)\|_0^2 + \frac{1}{2} \,\frac{\mathrm{d}}{\mathrm{d} t} \, \left\| \int_0^t \!\! g(s) \,\mathrm{d} s \, \right\|_0^2 \right] \mathrm{d} t \;. \end{split}$$

So $(-A)^{-1/2}g(t)=0$ for a.a. $t\in[0,\,\tau]$, which means that g is the zero element in $L^2(0,\,\tau;\,H)$. This is the desired contradiction. So $R(\overline{\mathcal{L}})=L^2(0,\,\tau;\,H)$. This implies the existence of the solution v of equation (12) with initial condition v(0)=0 in the interval $[0,\,\tau]$.

Suppose that v_1 , v_2 are two such solutions. Put $w = v_1 - v_2$. Then $\mathrm{d}w/\mathrm{d}t = Aw$ and w(0) = 0. Hence $w(t) = \mathrm{e}^{at}w(0) = 0$. This proves the uniqueness of the solution.

Inequality (13) can be obtained if we multiply equation (12) by v in $L^2(0, \tau; H)$.

LEMMA 5. Let conditions (i), (ii) be fulfilled and let u be a solution of equation (1) in the interval [0, T). Then the initial-value problem given by the equation

(14)
$$\frac{dv}{dt} = Av + B_s v + P'' B_a v + P'' N(t, u)$$

and the initial condition v(0) = P''u(0) has a unique solution v in the interval [0, T) such that $v(t) \in H''$ for a.a. $t \in [0, T)$.

PROOF. Let us denote u' = P'u and u'' = P''u. Applying projection P'' to equation (1), we obtain

(15)
$$\frac{\mathrm{d}u''}{\mathrm{d}t} = Au'' + B_s u'' + P'' B_a u'' + P'' B_a u' + P'' N(t, u).$$

So if we prove that there exists a solution v_1 of the equation

(16)
$$\frac{\mathrm{d}v_1}{\mathrm{d}t} = Av_1 + B_s v_1 + P'' B_a v_1 - P'' B_a u'$$

with the intial condition $v_1(0) = 0$ in the interval [0, T), we can put $v = u'' + v_1$ and if we add equations (15), (16) and the intial values of functions u'' and v_1 , we can see that v is the desired solution of equation (14) which satisfies the initial condition v(0) = P'' u(0).

Let $\tau < T$. It follows from inequalities (3), (4), condition (ii) and the fact that $u \in L^2(0, \tau; H_2) \cap L^2(0, \tau; H)$ that $P''B_au' \in L^2(0, \tau; H'')$. Using operator $\overline{\mathcal{L}}$ from the proof of Lemma 4, we can write equation (16) with the initial condition $v_1(0) = 0$ in the equivalent form

(17)
$$v_1 = (\overline{\mathcal{L}})^{-1} (B_s v_1 + P'' B_a v_1) - (\overline{\mathcal{L}})^{-1} P'' B_a u'.$$

Applying inequality (13) and standard but rather laborious estimates, we can obtain:

$$\begin{split} \|(\overline{\mathcal{E}})^{-1}(B_{s}v_{1} + P''B_{a}v_{1})\|_{L^{2}(0,\ \tau;\ H_{2})} + \left\| \ \frac{\mathrm{d}}{\mathrm{d}t}(\overline{\mathcal{E}})^{-1}(B_{s}v_{1} + P''B_{a}v_{1}) \ \right\|_{L^{2}(0,\ \tau;\ H)} \leq \\ \leq \sqrt{2}\varepsilon \|v_{1}\|_{L^{2}(0,\ \tau;\ H_{2})} + K(\varepsilon)\ \tau^{1/2} \left\| \ \frac{\mathrm{d}v_{1}}{\mathrm{d}t} \ \right\|_{L^{2}(0,\ \tau;\ H)} + \\ + \sqrt{2}\tau^{1/2} \left\| \ \frac{\mathrm{d}}{\mathrm{d}t}(\overline{\mathcal{E}})^{-1}(B_{s}v_{1} + P''B_{a}v_{1}) \ \right\|_{L^{2}(0,\ \tau;\ H)} \end{split}$$

for each $\varepsilon > 0$. Let $\varepsilon > 0$ and $\tau_0 > 0$ be chosen so small that

$$\sqrt{2}\varepsilon \leqslant \frac{1}{4}$$
, $K(\varepsilon) \tau_0^{1/2} \leqslant \frac{1}{4}$, $\sqrt{2}\tau_0^{1/2} \leqslant \frac{1}{2}$.

Assume that $\tau \leq \tau_0$ at first. Then we have

$$\begin{split} \|(\overline{\mathcal{L}})^{-1}(B_s \, v_1 + P^{\, \prime \prime} \, B_a \, v_1)\|_{L^2(0, \, \tau; \, H_2)} + \, \left\| \, \, \frac{\mathrm{d}}{\mathrm{d}t} \, (\overline{\mathcal{L}})^{-1}(B_s \, v_1 + P^{\, \prime \prime} \, B_a \, v_1) \, \, \right\|_{L^2(0, \, \tau; \, H)} & \leq \\ & \leq \frac{1}{2} \bigg[\|v_1\|_{L^2(0, \, \tau; \, H_2)} + \, \left\| \, \, \frac{\mathrm{d}v_1}{\mathrm{d}t} \, \, \right\|_{L^2(0, \, \tau; \, H)} \bigg]. \end{split}$$

Thus, the operator $I - (\overline{\mathcal{L}})^{-1}(B_s + P''B_a)$ is invertible and equation (17) is uniquely solvable in $[0, \tau]$.

Now let $\tau > \tau_0$. We can assume without loss of generality that τ_0 was chosen so that $\tau = 2^k \tau_0$ for some $k \in \mathbb{N}$. We have proved the existence of solution v_1 of equation (16) with the initial condition $v_1(0) = 0$ in the time interval $[0, \tau_0]$. Put

$$v_2(t) = \left\{ \begin{array}{ll} v_1(t) & \text{for } t \in [\,0,\,\tau_{\,0}\,]\,, \\ \\ v_2(2\,\tau_{\,0} - t) & \text{for } t \in [\,\tau_{\,0},\,2\,\tau_{\,0}\,]\,. \end{array} \right.$$

Let v_3 be the solution of the equation

$$\frac{\mathrm{d}v_3}{\mathrm{d}t} = Av_3 + B_s v_3 + P'' B_a v_3 - P'' B_a u'(t + \tau_0) +$$

$$+P''B_au'(\tau_0-t)+2\frac{\mathrm{d}v_1}{\mathrm{d}t}(\tau_0-t)$$

with the initial condition $v_3(0)=0$ in the interval $[0,\,\tau_0]$. (Its existence can be proved in the same way as the existence of solution v_1 in $[0,\,\tau_0]$.) Put $v_4(t)=0$ for $t\in[0,\,\tau_0],\,v_4(t)=v_3(t-\tau_0)$ for $t\in[\tau_0,\,2\tau_0]$. It can easily be verified that $v_1=v_2+v_4$ is the solution of equation (16) with the initial condition $v_1(0)=0$ in the interval $[0,\,2\tau_0]$. This solution can be extended in the same way to the time interval $[0,\,\tau]$. Since τ can be chosen arbitrarily near to T (if $T<+\infty$) or arbitrarily large (if $T=+\infty$), the solution exists on the interval $[0,\,T)$.

Uniqueness of the solution can be proved by the standard procedure: we suppose that we have two solutions, we subtract them and we prove that their difference is equal to the zero element of H identically in [0, T). To do that, we can use the fact that the operator $A + B_s + P''B_a$ generates an analytic semigroup in H, which can be shown in the same way as in the case of operator L. Since equation (14) and

the initial condition v(0) = P''u(0) represent the problem in H'', the values of solution v remain in H''.

LEMMA 6. Let conditions (i), (ii) be fulfilled. Then u is a solution of equation (1) in the interval [0, T) if and only if u = v + w where the functions v, w are solutions of the equations

(18)
$$\frac{\mathrm{d}v}{\mathrm{d}t} = Av + B_s v + P'' B_a v + P'' N(t, v + w),$$

(19)
$$\frac{\mathrm{d}w}{\mathrm{d}t} = Aw + B_s w + B_a w + P' B_a v + P' N(t, v + w)$$

in the interval [0, T), satisfying the initial conditions v(0) = P''u(0), w(0) = P'u(0).

PROOF. Let u be a solution of equation (1) in [0, T). It follows from Lemma 5 that there exists a solution v of equation (14) in [0, T), satisfying the condition v(0) = P''u(0). If we put w = u - v, we can see that equation (14) is identical with equation (18) and subtracting equations (1), (18), we can see that w is a solution of equation (19) in [0, T). Subtracting also the initial conditions which are satisfied by functions u and v, we get: w(0) = P'u(0).

On the other hand, if v and w are solutions of equations (18) and (19) on the interval [0, T), satisfying the initial conditions v(0) = P''u(0) and w(0) = P'u(0), then we can add equations (18), (19) and we can see that u = v + w is a solution of equation (1) on [0, T).

3. Main theorem about stability.

We shall not treat the question of the existence of solutions of equation (1) in this section. We are going to derive estimates of each solution u whose value at time t=0 is «small enough» and these estimates will be valid as long as the solution exists, i.e. in a time interval where solution u is defined. Thus, u cannot finish with a «blow up» in the neighbourhood of the right end point of its domain of definition. It is natural to expect that u can be defined in the time interval $[0, +\infty)$. In fact, to prove this, it would be necessary to use some additional assumptions about the nonlinear operator N (see e.g. D. Henry (1981)) and in order not to complicate this paper, we do not want to do this here.

Theorem 1. Let conditions (i), (ii), (iii) [or (iii)'], (iv) and (v) be satisfied. Then to any given $\varepsilon > 0$, there exists $\kappa > 0$ so that if u is a solution of equation (1) in the interval [0, T), $\|u(0)\|_0 + \|u(0)\|_1 \le \kappa$ then $\|u(t)\|_0 + \|u(t)\|_1 \le \varepsilon$ for all $t \in [0, T)$. Moreover, if $T = +\infty$ then $\lim_{t \to +\infty} (\|u(t)\|_1 + \|P'u(t)\|_0) = 0$.

PROOF. Let u be a solution of equation (1) in a time interval [0, T). It follows from Lemma 6 that u = v + w, where v and w are solutions of equations (18) and (19) in [0, T), satisfying the initial conditions v(0) = P'u(0) and w(0) = P'u(0). We are first going to derive estimates which will be valid a.e. in the interval (0, T).

If we multiply equation (18) by v, use condition (iii) and the fact that $v(t) \in H''$ for a.a. $t \in [0, T)$, we obtain

(20)
$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} ||v||_0^2 = ((A+B_s) v, v)_0 + (P''B_a v, v)_0 + (P''N(t, v+w), v)_0 \le$$

$$\leq -c_8 ||v||_1^2 + ||N(t, v+w)||_0 ||v||_0.$$

Multiplying the equation (18) by (-Av) and using conditions (i), (ii), we get

$$\begin{split} &\left(\frac{\mathrm{d}v}{\mathrm{d}t}\,,\, -Av\right)_0 = \frac{1}{2}\,\frac{\mathrm{d}}{\mathrm{d}t}(v,\, -Av)_0 = \frac{1}{2}\,\frac{\mathrm{d}}{\mathrm{d}t}\|v\|_1^2 = \\ &= -\,\|v\|_2^2 + (B_sv,\, -Av)_0 + (P''B_av,\, -Av)_0 + (P''N(t,\,v+w),\, -Av)_0 \leqslant \\ &\leqslant -\,\frac{1}{2}\,\|v\|_2^2 + \frac{3}{2}\,\|B_sv\|_0^2 + \frac{3}{2}\,\|B_av\| + \frac{3}{2}\,\|N(t,\,v+w)\|_0^2 \leqslant \\ &\leqslant -\,\frac{1}{2}\,\|v\|_2^2 + \frac{3}{2}\,c_1^2\,\|v\|_1^2 + \frac{3}{2}\,u_1\,\|v\|_2^2 + \frac{3}{2}\,k(\mu_1)\|v\|_1^2 + \frac{3}{2}\,\|N(t,\,v+w)\|_0^2. \end{split}$$

If we choose $\mu_1 = 1/6$ and denote $c_{16} = 3(c_1^2 + k(1/6))$, we obtain

(21)
$$\frac{\mathrm{d}}{\mathrm{d}t} \|v\|_1^2 \le -\frac{1}{2} \|v\|_2^2 + c_{16} \|v\|_1^2 + 3 \|N(t, v + w)\|_0^2.$$

The solution w of equation (19) can be expressed in the form

$$w(t) = e^{Lt}w(0) + \int_{0}^{t} e^{L(t-s)}F(s) ds$$
,

where $F(s) = P' B_a v(s) + P' N(s, v(s) + w(s))$. Thus, we have

$$P'w(t) = P'e^{Lt}w(0) + \int_{0}^{t} P'e^{L(t-s)}F(s) ds.$$

Using Lemma 3, we obtain

$$||P'w(t)||_0 \le c_{11} e^{-\delta_1 t} ||w(0)||_0 + \int_0^t c_{11} e^{-\delta_1 (t-s)} ||F(s)||_0 ds.$$

Denote by h(t) the right hand side of this inequality. Then

and moreover, it can be verified that h satisfies the equation

(23)
$$\frac{\mathrm{d}h}{\mathrm{d}t} + \delta_1 h = c_{11} ||F(t)||_0$$

and the initial condition $h(0) = c_{11} ||w(0)||_0$. Multiplying equation (23) by h, one gets

$$\begin{cases} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} h^{2} \leq -\delta_{1} h^{2} + c_{11} ||F||_{0} h, \\ \frac{\mathrm{d}}{\mathrm{d}t} h^{2} \leq -\delta_{1} h^{2} + \frac{c_{11}^{2}}{\delta_{1}} ||F||_{0}^{2} \leq -\delta_{1} h^{2} + \\ + \frac{2c_{11}^{2}}{\delta_{1}} ||B_{a}v||_{0}^{2} + \frac{2c_{11}^{2}}{\delta_{1}} ||N(t, v + w)||_{0}^{2} \leq \\ \leq -\delta_{1} h^{2} + c_{17} \mu_{2} ||v||_{2}^{2} + c_{17} k(\mu_{2}) ||v||_{1}^{2} + c_{17} ||N(t, v + w)||_{0}^{2} \end{cases}$$

where $c_{17} = 2c_{11}^2/\delta_1$. The number μ_2 in (24) can be chosen arbitrarily in the interval (0, 1).

Let us use the notation w' = P'w, w'' = P''w for a while. If we multiply the equation (19) by w, we obtain:

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} ||w||_{0}^{2} = ((A + B_{s}) w, w)_{0} + (B_{a}w, w)_{0} + (P'B_{a}v, w)_{0} + (P'N(t, v + w), w)_{0} = \\
= ((A + B_{s}) w', w')_{0} + ((A + B_{s}) w'', w'')_{0} + (P'B_{a}v, w')_{0} + \\
+ (P'N(t, v + w), w')_{0} \le (Aw', w')_{0} + (B_{s}w', w')_{0} - c_{s}||w''||_{1}^{2} + \\$$

$$\begin{split} + & \|w'\|_0^2 + \frac{1}{2} \|P'B_av\|_0^2 + \frac{1}{2} \|P'N(t,v+w)\|_0^2 \leqslant \\ & \leqslant -c_8 (\|w'\|_1^2 + \|w''\|_1^2) + (c_8-1) \|w'\|_1^2 + \mu_3 \|B_sw'\|_0^2 + \frac{1}{4\mu_3} \|w'\|_0^2 + \|w'\|_0^2 + \\ & + \frac{1}{2} \mu_4 \|v\|_2^2 + \frac{1}{2} k(\mu_4) \|v\|_1^2 + \frac{1}{2} \|N(t,v+w)\|_0^2 \leqslant \\ & \leqslant -\frac{1}{2} c_8 \|w\|_1^2 + (c_8-1) \|w'\|_1^2 + \mu_3 c_1^2 \|w'\|_1^2 + [1/(4\mu_3) + 1] \|w'\|_0^2 + \frac{1}{2} \mu_4 \|v\|_2^2 + \\ & + \frac{1}{2} k(\mu_4) \|v\|_1^2 + \frac{1}{2} \|N(t,v+w)\|_0^2. \end{split}$$

If we choose $\mu_3 = (1 - c_8)/c_1^2$ and use (22), we obtain:

$$(25) \qquad \frac{\mathrm{d}}{\mathrm{d}t} \|w\|_0^2 \le -c_8 \|w\|_1^2 + c_{18} h^2 + \mu_4 \|v\|_2^2 + k(\mu_4) \|v\|_1^2 + \|N(t, v + w)\|_0^2$$

where $c_{18} = c_1^2/(2-2c_8) + 2$. μ_4 can be an arbitrary number in the interval (0, 1).

If we multiply equation (19) by (-Aw), we obtain:

$$\begin{split} \left(\frac{\mathrm{d}w}{\mathrm{d}t}\,,\, -Aw\right)_0 &= \frac{1}{2}\,\frac{\mathrm{d}}{\mathrm{d}t}(w,\, -Aw)_0 = \frac{1}{2}\,\frac{\mathrm{d}}{\mathrm{d}t}\|w\|_1^2 = \\ &= -\|w\|_2^2 + (B_s\,w,\, -Aw)_0 + (B_a\,w,\, -Aw)_0 + (P'\,B_a\,v,\, -Aw)_0 + \\ &+ (P'\,N(t,\,v+w),\, -Aw)_0 \leqslant \\ &\leqslant -\frac{1}{2}\|w\|_2^2 + 2\|B_s\,w\|_0^2 + 2\|B_a\,w\|_0^2 + 2\|B_a\,v\|_0^2 + 2\|N(t,\,v+w)\|_0^2 \leqslant \\ &\leqslant -\frac{1}{2}\|w\|_2^2 + 2\mu_5\|w\|_2^2 + 2(c_1^2 + k(\mu_5))\|w\|_1^2 + 2\mu_6\|v\|_2^2 + 2k(\mu_6)\|v\|_1^2 + \\ &+ 2\|N(t,\,v+w)\|_0^2. \end{split}$$

If we choose $\mu_5 = \mu_6 = 1/8$ and denote $c_{19} = 4(c_1^2 + k(1/8))$, we get:

$$(26) \qquad \frac{\mathrm{d}}{\mathrm{d}t} \|w\|_{1}^{2} \leq -\frac{1}{2} \|w\|_{2}^{2} + c_{19} \|w\|_{1}^{2} + \frac{1}{2} \|v\|_{2}^{2} + 4k \left(\frac{1}{8}\right) \|v\|_{1}^{2} + 4 \|N(t, v + w)\|_{0}^{2}.$$

Let ξ , ζ , η and ω be positive numbers. (Their concrete values will be specified later.) Put

$$V(v, h, w) = ||v||_0^2 + \xi ||v||_1^2 + \zeta h^2 + \eta ||w||_0^2 + w ||w||_1^2.$$

It follows from (20), (21), (24), (25), (26) that

$$(27) \qquad \frac{\mathrm{d}}{\mathrm{d}t} V(v, h, w) \leq \left[-2c_8 + c_{16}\xi + c_{17}k(\mu_2) \, \xi + k(\mu_4) \, \eta + 4k \left(\frac{1}{8} \right) \omega \right] \|v\|_1^2 + \\ + \left[-\frac{1}{2} \, \xi + c_{17}\mu_2 \, \xi + \mu_4 \, \eta + \frac{1}{2} \, \omega \right] \|v\|_2^2 + \left[-\delta_1 \, \xi + c_{18} \, \eta \right] h^2 + \\ + \left[-c_8 \, \eta + c_{19} \, \omega \right] \|w\|_1^2 - \frac{1}{2} \, \omega \|w\|_2^2 + \\ + \left[3 \, \xi + c_{17} \, \xi + \eta + 4 \, \omega \right] \|N(t, v + w)\|_0^2 + 2 \|N(t, v + w)\|_0 \|v\|_0.$$

Let us choose ξ , ζ , η and ω so that

$$\begin{split} c_{16}\,\xi + c_{17}\,k(\mu_{\,2})\;\zeta + k(\mu_{\,4})\;\eta + 4\,k\left(\frac{1}{8}\right)\omega &= c_{8},\\ \\ -\frac{1}{4}\,\xi + c_{17}\mu_{\,2}\,\zeta + \mu_{\,4}\,\eta + \frac{1}{2}\,\omega &= 0\;,\\ \\ -\frac{1}{2}\,\delta_{\,1}\,\zeta + c_{18}\,\eta &= 0\;,\\ \\ -\frac{1}{2}\,c_{8}\,\eta + c_{19}\,\omega &= 0\;. \end{split}$$

This system has a positive solution:

$$\xi = \frac{c_8}{\varDelta} \left[c_{17} \mu_2 + \frac{\delta_1 \mu_4}{2c_{18}} + \frac{c_8 \delta_1}{8c_{18}c_{19}} \right], \quad \zeta = \frac{c_8}{4\varDelta}, \quad \eta = \frac{c_8 \delta_1}{8 \varDelta c_{18}}, \quad \omega = \frac{c_8^2 \delta_1}{16 \varDelta c_{18}c_{19}}$$

where

$$\varDelta = c_{16} \left[c_{17} \mu_2 + \frac{\delta_1 \mu_4}{2c_{18}} + \frac{c_8 \delta_1}{8c_{18}c_{19}} \right] + \frac{1}{4} \left[c_{17} k(\mu_2) + \frac{\delta_1 k(\mu_4)}{2c_{18}} + \frac{c_8 \delta_1 k(1/8)}{c_{18}c_{19}} \right].$$

If we substitute these values of ξ , ζ , η and ω to (27), we obtain

$$(28) \qquad \frac{\mathrm{d}}{\mathrm{d}t} V(v,h,w) \le -c_8 ||v||_1^2 - \frac{1}{4} \xi ||v||_2^2 - \frac{1}{2} \delta_1 \xi h^2 - \frac{1}{2} c_8 \eta ||w||_1^2 - \frac{1}{2} \omega ||w||_2^2 + c_{20} ||N(t,v+w)||_0^2 + ||N(t,v+w)||_0 ||v||_0,$$

where $c_{20} = 3\xi + c_{17}\zeta + \eta + 4\omega$. Let us denote

$$|||(v, w)||| = \left[c_8||v||_1^2 + \frac{1}{4}\xi||v||_2^2 + \frac{1}{2}\delta_1\zeta h^2 + \frac{1}{2}\eta c_8||w||_1^2 + \frac{1}{2}\omega||w||_2^2\right]^{1/2}.$$

Using condition (v), we can derive that there exist $c_{21} > 0$ and $c_{22} > 0$ so that

$$||N(t, v + w)||_0^2 \le c_{21} V(v, h, w)^{2(\beta + \gamma - 1)} |||(v, w)|||^2,$$

$$||N(t, v + w)||_0 ||v||_0 \le c_{22} V(v, h, w)^{\beta + \gamma - 1} |||(v, w)|||^2.$$

Substituting this into (28), we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t}V(v,\,h,\,w) \leq$$

$$\leq \| (v, w) \|^2 [-1 + c_{20} c_{21} V(v, h, w)^{2(\beta + \gamma - 1)} + c_{20} c_{22} V(v, h, w)^{\beta + \gamma - 1}].$$

Thus, if

$$c_{20}c_{21}V(v(0), h(0), w(0))^{2(\beta+\gamma-1)} + c_{20}c_{22}V(v(0), h(0), w(0))^{\beta+\gamma-1} \le 1$$
 then

$$\frac{\mathrm{d}}{\mathrm{d}t}V(v,\,h,\,w)\leq 0$$

for a.a. $t \in (0, T)$. This means that

(29)
$$V(v(t), h(t), w(t)) \le V(v(0), h(0), w(0))$$

for a.a. $t \in [0, T)$. Hence we have

$$(30) ||u(t)||_{0}^{2} + ||u(t)||_{1}^{2} = ||v(t) + w(t)||_{0}^{2} + ||v(t) + w(t)||_{1}^{2} \le$$

$$\le c_{23} [||v(t)||_{0}^{2} + \xi ||v(t)||_{1}^{2} + \eta ||w(t)||_{0}^{2} + \omega ||w(t)||_{1}^{2}] \le$$

$$\le c_{23} V(v(t), h(t), w(t)) \le c_{23} V(v(0), h(0), w(0)) =$$

$$\begin{split} &= c_{23}[\|v(0)\|_{0}^{2} + \xi\|v(0)\|_{1}^{2} + (\xi c_{11}^{2} + \eta)\|w(0)\|_{0}^{2} + w\|w(0)\|_{1}^{2}] = \\ &= c_{23}[\|P''u(0)\|_{0}^{2} + \xi\|P''u(0)\|_{1}^{2} + (\xi c_{11}^{2} + \eta)\|P'u(0)\|_{0}^{2} + \omega\|P'u(0)\|_{1}^{2}] \leq \\ &\leq c_{24}[\|P''u(0)\|_{0}^{2} + \|P'u(0)\|_{0}^{2}] + c_{25}[\|P''u(0)\|_{1}^{2} + \|P'u(0)\|_{1}^{2}] \leq \\ &\leq c_{24}\|u(0)\|_{0}^{2} + c_{25}[c_{4}\|u(0)\|_{1}^{2} + c_{5}\|u(0)\|_{0}^{2}] \leq c_{26}[\|u(0)\|_{0}^{2} + \|u(0)\|_{1}^{2}]. \end{split}$$

These estimates complete the proof of the first part of the theorem.

Suppose that $T = +\infty$ and the initial values of v and w are so small that

$$c_{20}c_{21}V(v(0), h(0), w(0))^{2(\beta+\gamma-1)} + c_{20}c_{22}V(v(0), h(0), w(0))^{\beta+\gamma-1} \leq \frac{1}{2}$$

now. Then

$$\frac{\mathrm{d}}{\mathrm{d}t}V(v, h, w) \le -\frac{1}{2} \| (v, w) \|^2$$

for a.a. $t \in (0, +\infty)$ and hence

$$\lim_{t \to +\infty} V(v(t), h(t), w(t)) + \frac{1}{2} \int_{0}^{+\infty} |||(v(s), w(s))|||^{2} ds \leq V(v(0), h(0), w(0)).$$

Put $W(v, h, w) = ||v||_1^2 + ah^2 + b||w||_1^2$ where a, b are such positive constants that $-1/2 + ac_{17}\mu_2 + (1/2)b < -1/4$. Since $W(v, h, w) \le$ \le const. $|||(v, w)|||^2$, W(v, h, w) is integrable on $(0, +\infty)$. It follows from (21), (26) and the boundedness of V(v, h, w) (see (29)) that

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t}W(v,\,h,\,w)\leqslant \left[-\frac{1}{2}+ac_{17}\mu_{\,2}+\frac{1}{2}\,b\right]\|v\|_{2}^{2}-a\delta_{\,1}\,h^{\,2}-\frac{1}{2}\,b\|w\|_{2}^{2}+\\ &+\left[c_{16}+ac_{17}k(\mu_{\,2})+4bk\left(\frac{1}{8}\right)\right]\|v\|_{1}^{2}+bc_{19}\|w\|_{1}^{2}+[3+ac_{17}+4b]\|N(t,v+w)\|_{0}^{2}\leqslant\\ &\leqslant -\frac{1}{4}\|v\|_{2}^{2}-a\delta_{\,1}\,h^{\,2}-\frac{1}{2}\|w\|_{2}^{2}+c_{27}+c_{28}\,V(v,\,h,\,w)^{2(\beta+\gamma-1)}\,|||\,(v,\,w)\,|||^{\,2}\leqslant\\ &\leqslant -\frac{1}{4}\|v\|_{2}^{2}-a\delta_{\,1}\,h^{\,2}-\frac{1}{2}\|w\|_{2}^{2}+\end{split}$$

$$+\,c_{29}\,V\!(v\!\left(0\right),\,h\!\left(0\right),\,w\!\left(0\right))^{2(\beta\,+\,\gamma\,-\,1)}\!\left(\,\frac{1}{4}\,\|v\|_{2}^{2}\,+\,a\delta_{\,1}\,h^{\,2}\,+\,\frac{1}{2}\,\|w\|_{2}^{2}\right)+\,c_{30}\,=\,$$

$$= \big[c_{29} \, V\!(v(0), \, h(0), \, w(0))^{2(\beta \, + \, \gamma \, - \, 1)} - 1 \, \big] \left(\frac{1}{4} \, \|v\|_2^2 + a \delta_{\, 1} \, h^{\, 2} + \frac{1}{2} \, \|w\|_2^2 \right) + c_{30}.$$

Thus, if the initial data are so small that $c_{29}V(v(0), h(0), w(0))^{2(\beta+\gamma-1)} \leq 1$ then the time derivative of W(v, h, w) is bounded above a.e. in $(0, +\infty)$. This, together with the continuity and integrability of W(v, h, w) on the interval $(0, +\infty)$, implies:

$$\lim_{t\to +\infty} W(v(t), h(t), w(t)) = 0.$$

Thus, we have: $\lim_{t \to +\infty} (\|u(t)\|_1 + \|P'u(t)\|_0) = 0.$

4. An example in one space dimension.

This section contains an illustrative example of the operator $L \equiv A + B_s + B_a$ which is not dissipative, and conditions (i)-(iv) are satisfied. Hilbert space H is $L^2((0, +\infty))$ here. D(A) is $W^{2,2}((0, +\infty)) \cap W_0^{1,2}((0, +\infty))$ and

$$Lu = u'' + [U(x) u]',$$

where $U(x)=2\pi^2 x$ for $x\in[0,1]$ and $U(x)=2\pi^2$ for $x\in[1,+\infty)$. Operators $A,\,B_s$ and B_a are:

$$Au = u''$$

$$B_s u = \frac{1}{2} U'(x) u = \begin{cases} \pi^2 u & \text{for } x \in [0, 1), \\ 0 & \text{for } x \in (1, +\infty), \end{cases}$$

$$B_a u = U(s) u' + \frac{1}{2} U'(x) u = \begin{cases} 2\pi^2 x u' + \pi^2 u & \text{for } x \in [0, 1), \\ 2\pi^2 u' & \text{for } x \in (1, +\infty). \end{cases}$$

The validity of conditions (i), (ii) is obvious. We are going to show that operator L is not dissipative and conditions (iii) and (iv) are fulfilled, too.

The spectrum of the operator $L_s=A+B_s$ is a subset of the real axis. It is not difficult to verify that the interval $(-\infty,0]$ represents a continuous part of $\sigma(L_s)$ and it contains no eigenvalues of L_s . By standard calculation, we can find out that L_s has the unique eigenvalue $\lambda_0=4.516239$

(exactly, $\lambda_0 = \pi^2 - s^2$, where s is the positive solution of the equation $s \cdot \cot s = -\sqrt{\pi^2 - s^2}$). The algebraic multiplicity of λ_0 is equal to one and the corresponding eigenfunction is

$$u_0(x) = \begin{cases} c_{31} \sin(\sqrt{\pi^2 - \lambda_0} x) & \text{for } x \in [0, 1], \\ c_{32} e^{-\sqrt{\lambda_0} x} & \text{for } x \in (1, +\infty) \end{cases}$$

where $c_{31}=1.166203$ and $c_{32}=7.192440$. (Exactly, the constants c_{31} and c_{32} are chosen so that $c_{31}\sin\sqrt{\pi^2-\lambda_0}=c_{32}\,\mathrm{e}^{-\sqrt{\lambda_0}}$ and $\int\limits_0^+u_0^2(x)\,\mathrm{d}x=1$.)

Hence subspace H' is one-dimensional and it is generated by function u_0 . H'' is the orthogonal complement to H' in H.

Let us now turn our attention to condition (iii). Due to Lemma 2, we can investigate the spectrum of the operator $A+B_s+\varepsilon P''B_s$ in space H''. Since $\sigma((A+B_s)|_{H''})=(-\infty,0]$ and $\varepsilon P''B_s$ is $(A+B_s)$ -compact, $\sigma((A+B_s)|_{H''})$ and $\sigma((A+B_s+\varepsilon P''B_s)|_{H''})$ can differ at most in a countable number of isolated eigenvalues. Hence, if the intersection $\sigma((A+B_s+\varepsilon P''B_s)|_{H''})\cap(0,+\infty)$ is nonempty, then it contains only some eigenvalues of $(A+B_s+\varepsilon P''B_s)|_{H''}$. Thus, to verify (iii), it is sufficient to show that for $\varepsilon>0$ small enough no such eigenvalues exist. Suppose the opposite, i.e. that there exist sequences ε_n , ζ_n and u_n such that ε_n is monotonically decreasing and tends to zero, ζ_n is a positive eigenvalue of the operator $A+B_s+\varepsilon_n P''B_s$ and $u_n\in H''$ is a corresponding eigenfunction. The functions u_n can be chosen so that $||u_n||_0=1$.

The boundedness of ζ_n is obvious. Multiplying the equation $Au_n + B_s u_n + \varepsilon_n P'' B_s u_n = \zeta_n u_n$ by u_n and using condition (i), we obtain: $\zeta_n \le (1 + \varepsilon_n) c_1 ||u_n||_1 - ||u_n||_1^2$, which implies: $\zeta_n \le (1/4)(1 + \varepsilon_1)^2 c_1^2$.

Let ζ_0 be a cluster point of the sequence ζ_n . Then $\zeta_0 \ge 0$. In order not to complicate the notation, a subsequence of ζ_n which tends to ζ_0 as $n \to +\infty$ will also be denoted by ζ_n in the following. The equation $Au_n + B_s u_n + \varepsilon_n P'' B_s u_n = \zeta_n u_n$ can be rewritten as $(A + B_s - \zeta_0 I) u_n = (\zeta_n - \zeta_0) u_n + \varepsilon_n P'' B_s u_n$. As the right hand side tends to the zero element of H'' if $n \to +\infty$, ζ_0 belongs to $\sigma((A + B_s)|_{H''})$. However, this spectrum coincides with the interval $(-\infty, 0]$ and so $\zeta_0 = 0$.

Because $A+B_s+\varepsilon P''B_s=A+(1+\varepsilon)\,B_s-\varepsilon P'B_s$ and $P'B_s\,u_n=(B_s\,u_n,\,u_0)_0\,u_0$, the equation $(A+B_s+\varepsilon P''B_s)\,u_n=\zeta_n\,u_n$ can be rewritten as

(31)
$$Au_n + (1 + \varepsilon_n) B_s u_n - \zeta_n u_n = \varepsilon_n (B_s u_n, u_0)_0 u_0.$$

Since u_n is orthogonal to u_0 , the integral $\int_0^\infty u_n(s) u_0(s) ds$ is equal to zero.

Suppose that $(B_s u_n,\ u_0)_0=\pi^2\int\limits_0^1u_n(s)\ u_0(s)\ \mathrm{d} s=0$ at first. Then the integral $\int\limits_1^+u_n(s)\ u_0(s)\ \mathrm{d} s$ also equals zero. Equation (31) implies that $u_n(x)=c_{33}\,\mathrm{e}^{-\sqrt{\zeta n}x}$ for $x\in(1,\ +\infty)$ and it can easily be verified that $c_{33}\neq0$. Therefore

$$\int_{1}^{+\infty} u_n(s) \ u_0(s) \ ds = \frac{c_{33} c_{32}}{\sqrt{\zeta_n} + \sqrt{\lambda_0}} e^{-\sqrt{\zeta_n} - \sqrt{\lambda_0}}$$

and this is obviously different from zero. Hence the equality $(B_s u_n, u_0)_0 = 0$ can be excluded.

Put $v_n = u_n/(B_s u_n, u_0)_0$. Then $(B_s v_n, u_0)_0 = 1$. Substituting this to (31) and using also the concrete forms of u_0 on the intervals (0, 1) and $(1, +\infty)$, we can rewrite (31) in the form

(32)
$$\begin{cases} v_n'' + (1 + \varepsilon_n) \pi^2 v_n - \zeta_n v_n = \varepsilon_n c_{31} \sin(\sqrt{\pi^2 - \lambda_0} x) & \text{on } (0, 1), \\ v_n'' - \zeta_n u = \varepsilon_n c_{32} e^{-\sqrt{\lambda_0} x} & \text{on } (1, +\infty). \end{cases}$$

The solution v_n of this problem can be explicitly expressed. However, the integration of $v_n(x) \cdot u_0(x)$ shows that

$$\int_{0}^{+\infty} v_n(x) u_0(x) dx = \frac{\varepsilon_n}{\lambda_0} \int_{0}^{+\infty} u_0^2(x) dx + o(\varepsilon_n + \zeta_n) \quad \text{for } n \to +\infty,$$

which means that the integral on the left hand side is positive for n large enough and so $v_n \notin H^n$ and $u_n \notin H^n$. Thus, condition (iii) is fulfilled.

We shall now verify condition (iv). Elementary estimates show that $\sigma(L)$ is a subset of the parabolic region $\{z \equiv \zeta + i\eta \in \mathbb{C}; \zeta \leq a/2 - -\eta^2/a^2\}$. If $\lambda \equiv \zeta + i\eta \in \mathbb{C}$, $\zeta < -\eta^2/a^2$ then λ is an eigenvalue of operator L.

Suppose that $\delta \in (0, \lambda_0)$. Let us work with $\lambda \in G \cap \varrho(\underline{L})$ where $G = \{z \equiv \zeta + i\eta \in \mathbb{C}; \ \zeta \in (-\delta, a/2 + 1), \ |\eta| < a\sqrt{(1/2) \ a + \delta + 1} \}$ firstly. The function $y_{\lambda} \equiv R_{\lambda}(L) \ u_0$ is the solution of the equation $(L - \lambda I) \ y_{\lambda} = u_0$, i.e.

(33)
$$(y_{\lambda})_{xx} + U(x)(y_{\lambda})_{x} + [U_{x}(x) - \lambda] y_{\lambda} = u_{0}(x)$$

and $y_{\lambda}(0) = 0$. Denote by y_{λ}^{I} , y_{λ}^{II} a fundamental system of solutions of the corresponding homogeneous equation. Then y_{λ} can be expressed in the form

$$y_{\lambda}(x) = y_{\lambda}^{I}(x) \left[C^{I} - \int\limits_{0}^{x} \frac{y_{\lambda}^{II}(s) \; u_{0}(s)}{\varDelta_{\lambda}(s)} \, \mathrm{d}s \right] + y_{\lambda}^{II}(x) \left[C^{II} + \int\limits_{0}^{x} \frac{y_{\lambda}^{I}(s) \; u_{0}(s)}{\varDelta_{\lambda}(s)} \, \mathrm{d}s \right]$$

where $\Delta_{\lambda} = y_{\lambda}^{I} \cdot (y_{\lambda}^{II})_{x} - y_{\lambda}^{II} \cdot (y_{\lambda}^{I})_{x}$. (Δ_{λ} is the Wronski determinant of system y_{λ}^{I} , y_{λ}^{II} .) It can be derived that

$$\Delta_{\lambda}(s) = \Delta_{\lambda}(1) \cdot \exp \left[-\int_{1}^{s} U(\tau) \, d\tau \right] = \begin{cases} \Delta_{\lambda}(1) e^{a/2(1-s^{2})} & \text{for } x \in [0, 1], \\ \Delta_{\lambda}(1) e^{-a(s-1)} & \text{for } x \in (1, +\infty). \end{cases}$$

The homogeneous equation which corresponds to (33) is the equation with constant coefficients in the interval $[1, +\infty)$, so its fundamental system y_{λ}^{I} , y_{λ}^{II} can easily be expressed here. We can choose y_{λ}^{I} , y_{λ}^{II} so that

$$y_{\lambda}^{I}(x) = \exp\left[\left(-\frac{1}{2}a + \sqrt{\frac{1}{4}a^2 + \lambda}\right)x\right], \quad y_{\lambda}^{II}(x) = \exp\left[\left(-\frac{1}{2}a - \sqrt{\frac{1}{4}a^2 + \lambda}\right)x\right]$$

for $x \in [1, +\infty)$. (We use the symbol $\sqrt{}$ for the square root in the complex domain in such a sense that $\sqrt{z} = \sqrt{|z|} \cdot \exp\left((1/2) i \arg z\right)$ if $z \neq 0$, $\sqrt{z} = 0$ if z = 0.) We can express $\Delta_{\lambda}(1)$ now: $\Delta_{\lambda}(1) = -2 \mathrm{e}^{-a} \sqrt{(1/4) a^2 + \lambda}$. Since $\mathrm{Re} \sqrt{(1/4) a^2 + \lambda} > \sqrt{(1/4) a^2 - \lambda_0} > \sqrt{(1/4) a^2 - (1/2) a + \sigma_0^2} > (1/2) \pi$ for all $\lambda \in G$, $1/\Delta_{\lambda}(1)$ is the analytic function of λ in G. Let us choose

$$\begin{split} C^{I} &= \int\limits_{0}^{+\infty} \frac{y_{\lambda}^{II}(s) \; u_{0}(s)}{\varDelta_{\lambda}(s)} \, \mathrm{d}s = \int\limits_{0}^{1} \frac{\mathrm{e}^{-a/2(1-s^{2})}}{\varDelta_{\lambda}(1)} \, y_{\lambda}^{II}(s) \cdot c_{31} \sin\left(\sqrt{\frac{1}{2} \, a - \lambda_{0}} \, s\right) \, \mathrm{d}s \; + \\ &+ \int\limits_{1}^{+\infty} \frac{\mathrm{e}^{-a}}{\varDelta_{\lambda}(1)} \exp\left[\left(\frac{1}{2} \, a - \sqrt{\frac{1}{4} \, a^{2} + \lambda} - \sqrt{\lambda_{0}}\right) s\right] \, \mathrm{d}s \; . \end{split}$$

Since Re [(1/2) $a - \sqrt{(1/4)} a^2 + \lambda - \sqrt{\lambda_0}$] < (1/2) $a - \sqrt{(1/4)} a^2 - \delta - \sqrt{\lambda_0}$ < $\sqrt{\delta} - \sqrt{\lambda_0}$ < 0, the last integral is finite and so $|C^I| < + \infty$.

Thus, we have

$$(34) y_{\lambda}(x) = y_{\lambda}^{I}(x) \int_{x}^{+\infty} \frac{y_{\lambda}^{II}(s) u_{0}(s)}{\Delta_{\lambda}(s)} ds + y_{\lambda}^{II}(x) \left[C^{II} + \int_{0}^{x} \frac{y_{\lambda}^{I}(s) u_{0}(s)}{\Delta_{\lambda}(s)} ds \right].$$

Let us choose C^{II} so that $y_{\lambda}(0) = 0$:

$$C^{II} = -\frac{y_{\lambda}^{I}(0)}{y_{\lambda}^{II}(0)} \int_{0}^{+\infty} \frac{y_{\lambda}^{II}(s) u_{0}(s)}{\Delta_{\lambda}(s)} ds.$$

 $y_{\lambda}^{I}(0), y_{\lambda}^{II}(0)$ and $\int_{0}^{+\infty} y_{\lambda}^{II}(s) u_{0}(s)/\Delta_{\lambda}(s)$ ds are analytic functions of λ not only in $G \cap \rho(L)$, but in the whole set G. It can be shown by standard numerical methods that

$$|y_{\lambda}^{II}(0)| \ge 11.791 \left| \exp \left[-\frac{1}{2}a - \sqrt{\frac{1}{4}a^2 + \lambda} \right] \right|$$

for all $a \in ((1/4) \pi^2, (9/4) \pi^2)$ and $\lambda \in G$. So C^{II} is an analytic function of λ in G. To emphasize its dependence on λ , we shall denote it by C_{λ}^{II} in the following.

following. It is not difficult to show that $\int_0^1 u_\lambda(x) \cdot u_0(x) \, dx$ is the analytic function of λ in G. If x > 1 then we can decompose $\int_0^x \ln (34) \, \cot \int_0^1 + \int_1^x \int_0^x \ln (34) \, dx$ where $\int_0^1 \ln (34) \, dx$ is the analytic function of λ in A then we can decompose $\int_0^1 \ln (34) \, dx$ is the analytic function of λ in A then we can substitute the concrete forms of y_{λ}^{I} , y_{λ}^{II} , Δ_{λ} and u_{0} to the integrals $\int_{-\infty}^{+\infty}$ and $\int_{-\infty}^{x}$ we can evaluate these integrals and we obtain the expression:

$$y_{\lambda}(x) =$$

$$\begin{split} &= \frac{\mathrm{e}^{-\sqrt{\lambda_0}x}}{2\sqrt{(1/4)a^2 + \lambda}} \left[\frac{1}{(1/2)a - \sqrt{(1/4)a^2 + \lambda} - \sqrt{\lambda_0}} - \frac{1}{(1/2)a + \sqrt{(1/4)a^2 + \lambda} - \sqrt{\lambda_0}} \right] + \\ &\quad + (C_{\lambda}^{II} + M_{\lambda}) \exp \left[\left(-\frac{1}{2}a - \sqrt{(1/4)a^2 + \lambda} \right)x \right] + \\ &\quad + \frac{\exp \left[\left(-(1/2)a - \sqrt{(1/4)a^2 + \lambda} \right)(x - 1) + \sqrt{\lambda_0} \right]}{2\sqrt{(1/4)a^2 + \lambda} \left[1/2a + \sqrt{(1/4)a^2 + \lambda} - \sqrt{\lambda_0} \right]} \right] \end{split}$$

where

$$M_{\lambda} = -rac{{
m e}^{a/2}}{2\,\sqrt{(1/4)\,a^2+\lambda}}\int\limits_0^1 {
m e}^{-as^2/2}\,y_{\lambda}^{\,I}(s)\,c_{31}\sin\left(\sqrt{rac{1}{2}\,a-\lambda_{\,0}}s
ight){
m d}s\;.$$

It can be derived from the conditions $0 < \delta < \lambda_0$ and $\text{Re } \lambda > -\delta$ that

$$\operatorname{Re}\left(-\frac{1}{2}a - \sqrt{\frac{1}{4}a^2 + \lambda}\right) < -\frac{1}{2}\pi^2, \quad \operatorname{Re}\left(\frac{1}{2}a + \sqrt{\frac{1}{4}a^2 + \lambda} - \sqrt{\lambda_0}\right) > \frac{1}{2}\pi(\pi - 1),$$

$$\operatorname{Re}\left(\frac{1}{2}a - \sqrt{\frac{1}{4}a^2 + \lambda} - \sqrt{\lambda_0}\right) < \sqrt{\delta} - \sqrt{\lambda_0} < 0.$$

Hence $\int\limits_{1}^{\infty}y_{\lambda}(x)\cdot u_{0}(x)\;\mathrm{d}x$ is the analytic function of λ in G. This means

that $(y_{\lambda}, u_0)_0$ also depends analytically on λ in G and $(y_{\lambda}, u_0)_0 \cdot u_0$ is the analytic continuation of $P'R_{\lambda}(L) u_0$ from $\varrho(L)$ to G. Since $C_+(-\delta) = \varrho(L) \cup G$, condition (iv) is satisfied.

REFERENCES

- K. I. Babenko, Spectrum of the Linearized Problem of Flow of a Viscous Incompressible Liquid round a Body, Sov. Phys. Dikl., 27 (1) (1982), pp. 25-27.
- [2] W. BORCHERS T. MIYAKAWA, L²-Decay for Navier-Stokes Flows in Unbounded Domains, with Application to Exterior Stationary Flows, Arch. for Rat. Mech. and Anal., 118 (1992), pp. 273-295.
- [3] G. P. GALDI M. PADULA, A New Approach to Energy Theory in the Stability of Fluid Motion, Arch. for Rat. Mech. and Anal., 110 (1990), pp. 187-286.
- [4] G. P. GALDI S. RIONERO, Weighted Energy Methods in Fluid Dynamics and Elasticity, Lecture Notes in Mathematics, 1134, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1985).
- [5] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-Heidelberg-New York (1981).
- [6] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York (1966).
- [7] H. Kielhöfer, Existenz und Regularität von Lösungen semilinearer parabolisher Anfangs-Randwertprobleme, Math. Z., 142 (1975), pp. 131-160.

- [8] H. Kielhöfer, On the Lyapunov Stability of stationary Solutions of Semilinear Parabolic Differential Equations, J. of Diff. Equations, 22 (1976), pp. 193-208.
- [9] H. KOZONO M. YAMAZAKI, Navier-Stokes Equations in Exterior Donains, preprint 1995.
- [10] O. A. LADYZHENSKAYA, Mathematical Problems of Dynamics of Viscous Incompressible Fluid, Nauka, Moscow 1970 (Russian).
- [11] J. L. LIONS E. MAGENES, Nonhomogeneous Boundary Value Problems and Applications I, Springer-Verlag, New York (1972).
- [12] P. MAREMONTI, Asymptotic Stability Theorems for Viscous Fluid Motions in Exterior Domains, Rend. Sem. Mat. Univ. Padova, 71 (1984), pp. 35-72.
- [13] K. MASUDA, On the Stability of Incompressible Viscous Fluid Motions past Objects, J. of the Math. Soc. Japan, 27, 2 (1975), pp. 294-327.
- [14] J. NEUSTUPA, Stability of Solutions of Parabolic Equations by a Combination of the Semigroup Theory and the Energy Method, Proceedings of the Conference Navier-Stokes Equations and Related Nonlinear Problems held in Funchal, Madeira in May (1994). Editor A. Sequeira, Plenum Press, New York 1995, pp. 11-22.
- [15] G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, Rend. Sem. Mat. Univ. Padova, 32 (1962), pp. 374-397.
- [16] D. H. SATTINGER, The Mathematical Problem of Hydrodynamic Stability, J. of Math. and Mech., 19 (1970), pp. 797-817.

Manoscritto pervenuto in redazione il 21 settembre 1997.