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Stabilizing Influence of a Skew-Symmetric Operator
in Semilinear Parabolic Equation (*).

JI0159Í NEUSTUPA (**)

ABSTRACT - Sufficient conditions for asymptotic stability of the zero solution of a
nonlinear parabolic differential equation in a Hilbert space are formulated by
means of spectral properties of a certain linear operator L . The operator L
need not be dissipative and its spectrum may have a continuous part touching
the imaginary axis. Stability is a consequence of an appropriate influence of a
skew-symmetric part of the operator L.

1. Introduction.

This paper deals with stability of the zero solution of the differential
equation

where L = A + B , A is a nonpositive selfadjoint operator in a real Hilbert
space H which does not have zero as its eigenvalue, B is a linear operator
«of a lower order» than A and N( t , . ) is a nonlinear operator in H . Many
works have studied the same problem on a more or less abstract level
under various conditions on the operators A, B and N.

(*) The research was supported by the Grant Agency of the Czech Republic
(grant No. 201/96/0313).

(**) Indirizzo dell’A.: Czech Technical University, Faculty of Mechanical En-
gineering Department of Technical Mathematics, Karlovo nam. 13, 121 35 Praha
2, Czech Republic.
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The situation when the operator L is essentially dissipative is studied
in detail in the work of G. P. Galdi - M. Padula (1990). Conditions leading
to a similar situation are also used in the papers of K. Masuda (1975), P.
Maremonti (1984), G. P. Galdi - S. Rionero (1985), W. Borchers - T.
Miyakawa (1992) and H. Kozono - M. Yamazaki (1995). All these condi-
tions involve the requirement that operator B is in some sense « suffi-

ciently small- in comparison with A.
If the symmetric part L, of operator L has some eigenvalues on the

positive side of the real axis then operator L is non-dissipative. The zero
solution of equation (1) can be stable even in this case if the skew-sym-
metric ( = antisymmetric) part of L has an appropriate influence on the
behaviour of solutions of equation (1). This influence is involved in the
widely used assumption that Re 1 % - 6 for some 3 &#x3E; 0 and all A e Q(L ),
where Q(L) denotes the spectrum of L (see e.g. G. Prodi (1962), D. H.
Sattinger (1970) and H. Kielhofer (1976)). However, this assumption can-
not be satisfied if the spectrum of L has an essential part which has a
nonempty intersection with the imaginary axis. Such a case is typical for
problems in exterior domains. Sufficient conditions for the stability of
the zero solution of equation (1) which can be fulfilled if L is not dissipa-
tive and the spectrum of L touches the imaginary axis are derived in J.
Neustupa (1994). However, these conditions are not formulated as condi-
tions on the spectrum of L only. Operator L is supposed to have the form

where A is a nonnegative selfadjoint operator which does
not have zero as its eigenvalue, Bl, B2 are certain operators «of the lower
order» and the conditions used in J. Neustupa (1994) also involve certain
boundedness of Bl and B2 with respect to A.

The present paper deals with the case when operator L is not dissipa-
tive and its spectrum has an essential part which has a non-empty inter-
section with the imaginary axis, but sufficient conditions for stability are
expressed mainly by an assumption abount (the resolvent opera-
tor of L). This assumption (see condition (iv) in Section 2) does not re-
quire « sufficient smallness» of operator B relative to A and it can be re-
garded as a generalization of the condition «Re Å  - ð for all Z E
E a(L)-.

This paper has the following structure: Section 2 contains basic as-
sumptions and auxiliary lemmas. The main result on stability at an ab-
stract level is proved in Section 3. A simple example in one space dimen-
sion is given in Section 4. The results from Sections 2 and 3 can also be
applied to a general parabolic system in three space dimensions and to
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the Navier-Stokes equations in an exterior domain. Follow-up papers are
being prepared on these themes.

The author wishes to thank Prof. M. Padula and Prof. G. P. Galdi for
their encouragement to study the stabilizing influence of a skew-sym-
metric operator in parabolic equations.

2. Basic assumptions and auxiliary lemmas.

Let H be a real Hilbert space with a scalar product ( . , . )o and an as-
sociated norm 11. 110. Suppose that

where A is a selfadjoint operator in H which is nonpositive (i.e. its spec-
trum is a subset of the interval ( - 00 , 0]) and it does not have 0 as its
eigenvalue. B, and Ba are linear operators in H such that their domains
D(B~ ) and D(Ba ) contain D(A ), B, is symmetric and Ba is skew-symme-
tric. N( t , . ) is for each t E [ o , + oo ) a nonlinear operator in H with the
domain D(N) which does not depend on t and D(A) c D(N).

Throughout this paper, Q(L) will denote the spectrum of L, Q(L) will
denote the resolvent set of L and will be the resolvent of L (i.e.
R~ (L ) _ (L - ~,I ) -1 ) . We put

Hl will be the completion of D(( -A)1~2 ) in the norm 11.111 and H2 will be
the completion of D(A) in the norm lb. We shall use the following as-
sumptions for operators B, and Ba:

It can be verified (for example by means of the resolution of identity
for the operator ( - A ) and the H61der inequality) that

Hence it follows from condition (ii) that given
and then

for all q5 E D(A).
It can be derived from condition (i) that operator B, is A-bounded
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with an A-bound arbitrarily small. Hence operator A + Bs is selfadjoint
(see T. Kato (1996), p. 287). Let us denote its resolution of identity by
E(~, ). Put

P’ , P" are orthogonal projections in H and H’, H" are closed orthogonal
subspaces of H such that H = H’ fl9 H " . Both projections P’ and P" com-
mute with A + B~ on D(A + Bs ) --- D(A) and so P’ D(A) c D(A) and
P"D(A) c D(A).

LEMMA 1. If condition (i) is satisfied then there exist positive con-
stants c4 , c5 , C6 and C7 so that



101

If E is chosen for example so that then we obtain

the estimate (3). The inequality (4) can be derived in a similar way.
Then next condition we shall need is:

The following lemma shows the case when (iii) is fulfilled.

LEMMA 2. Let there exist E &#x3E; 0 such that a (A + Bs + EP " Bs) I H" )
(i.e. the spectrum of the operatorA+Bs+eP"Bs reduced to H" ) is a
subset of the interval ( - 00 , 0]. Then condition (iii) is satisfied.

PROOF. It follows from the assumption of the lemma that ((A + Bs +
+ ~P " Bs ) ~ , ~ )o ~ 0 for all 0 E H ". This can be rewritten as

Since the above inequality confirms the validity of (iii).
The projection P " is identical with I - P ’ . Since space H ’ can be fi-

nite-dimensional in many practical cases, P ’ can easily be expressed and
there exists a good possibility to verify the assumptions of Lemma 2. We
shall show this verification in a concrete example in Section 4 and we for-
mulate other conditions implying the validity of the assumptions of Lem-
ma 2 in another concrete situation in Section 5.

If z e C, z # 0 then arg z will denote the number cp E jr, a] such
that z = I z I e cpi.

We shall denote by HC a so called complexification of H. It is the
space of all elements of the type 0, + iØ i, i E H . The scalar
product of two elements is defined by

Operators A , B, and Ba can be extended in the usual way to the opera-
tors in He so that, for example, and ~ i E D(A)
then Ao = Aq5, + 

Since operator ( - A ) is selfadj oint and nonnegative in H , it is sectori-
al in H . Using conditions (i), (ii) and applying Theorem 1.3.2 from D.
Henry (1981), p. 19, we can derive that operator ( - L) is sectorial, too.
Thus, there exists cp E (yr/2, 1), a E R (we can assume that a ~ 0 without
loss of generality) and c9 &#x3E; 0 so that
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and

for all A E S and o E H . Moreover, is an analytic He-valued func-
tion of A in for every q5 E H . It follows from D. Henry (1981), p. 20,
that operator L is a generator of an analytic semigroup eLt in H and
there exists CI0 &#x3E; 0 so that

for all 
Denote . The next condition we shall

use is:

(iv) 33 &#x3E; 0 so that if 0 E H ’ then can be extended (in
dependence on A) from e(L) n ~+ ( - 3) to an Hc-valued analytic ficnc-
tion in ~ + ( - d ).

The validity of this condition will be verified in an example in Section 4.

REMARK 1. It is obvious that condition (iv) is satisfied if there exists
6 &#x3E; 0 so that for each 0 E H’ the equation

has a solution such that P’yA(q5) can be extended from Q(L) n
n C+ ( - 3) to an Hc-valued analytic function of A in C+ ( - 3).
We shall denote by 6 1 the number d~2 in the rest of this paper.

LEMMA 3. If conditions (i), (ii) and (iv) are satisfied then there
exists cii &#x3E; 0 so that and 

PROOF. Assume first that t ~ 1. Put p = - 6 1 + i~, where ~ is a posi-
tive real number which is so large Denote y = arg n. It is
clear that y e (1/2 , Let us define the curves ri , T2, rg and r4 in C
by means of their parametrizations - in order not to complicate the no-
tation we denote the parametrizations by the same letters as the
curves:
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Curves T 1, r 4 and T 3 are subsets of ,S , the end point of r = the initial
point of T 4 = ~ and the end point of T 4 = the initial point of T 3 = 17 .

The semigroup eLt can be defined by the formula

Since projector P’ is closed in H, we have

Suppose Denote by y~ ( ~ ) the analytic extension of

to the domain C+ ( - 3). It follows from Cauchy’s theorem
that the integral of e~t y~ ( ~ ) on T 4 is equal to the integral of the same
function on r 2. This means that

Using estimate (5) and the expression of the integral on r1 by means of
parametrization, we get
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Since Re we have

where c13= - We can also derive the same estimate for
the integral over T3. Further, we have

Let L 2 (T 2 ; be the Banach space of mappings h which are de-
fined a.e. in T 2 and their values belong to He . The norm in

. The mapping 13 : can be re-

garded as a linear mapping of H ’ to L 2 (T 2 ; Hc). Let us show that this
mapping is closed:

Assume is a sequence in H’ such in H’ and
in L 2 (r 2 ; He). The behaviour of the functions sin 

- n)/(2Ei)] for AE T2 is the same as the behaviour of the functions sin kÀ
for A E [ o, 1]. Hence the set M of all functions of the type

(where and y~ 1, ... , is dense in L 2 (T 2 ; He)’ This can be
proved by a contradiction: If M is not dense in L 2(F2; Hc) then there
exists cp E L 2 (T 2 ; Hc), ~~0, which is orthogonal to M . In particular,
this means that if V E HC and Vf has the form (10) with 

= 1, ..., n) then 
--

Hence (cp(A), = 0 for a.a. A E r 2. Since V was chosen arbitrarily in Hc,
cp is equal to the zero element Hc). But this is a contradiction.
Suppose now that V is an arbitrary function of type (10). Then V is ana-
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lytic (in dependence on À) in C. Using Cauchy’s theorem and the
convergence

we can write,

So weakly in L 2 (T 2 ; Hc). Since in

L 2 (T 2 ; we Thus, the operator 13 is closed.
The domain of definition of ’6 is the whole space H ’ and hence, due to

the closed graph theorem, 13 is bounded. There exists Ci4 &#x3E; 0 (which does
not depend on Ø) so that

So we obtain the estimate

It follows from (8)-(11) that

We have derived this estimate for t ~ 1 and q5 E H ’ . However, if we also
use inequality (6) for t e [ o , 1 ), we can easily obtain the desired estimate

We shall use the following assumption about nonlinear operator N:
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Under solutions of equation (1) or another analogous equation in a
time interval [ o , T) (where T E ( o , we understand functions u

such that:

a) if J is a compact interval in [0, T) then 

n L 2 (J; H) and H),

b) u satisfies a given equation a.e. in (0, T).

It follows from the theory of interpolation spaces (see J. L. Lions - E.
Magenes (1972)) that if a solution u has the regularity which is required
in condition a) then it is (after a possible change on a subset of [0, T)
whose measure is zero) a continuous mapping from [ o , T) to Hl.

LEMMA 4. Let r &#x3E; 0 r; H). Then there exists a unique
solution v of the equation

with the initial condition v( 0 ) = 0 in the time interval [ 0 , r) and

PROOF. The idea of the proof is the same as that used in the proof of
Theorem IV.1 in 0. A. Ladyzhenskaya (1970). Let us define

is dense in L 2 ( o , r; H). The adjoint operator £* to £ is densely de-
fined in L 2 ( o , r; H) and so £ is closable. Lest 2 be the closure of £.

Let u r=- D(2) and t E [ 0, r] now. Then

It is seen from these equalities that if
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i ; converges in L~(0, T; 
converges in L~(0, i ; H2 ) converges in HI uniformly for t e
E [ o , i]. Thus, we have and 

nC([0, r]; Hl ) for 
_

Let us now show that R(2) = L 2 ( o, r; H). (R(2) is the range of 2. )
Suppose that this is not true. Then there exists ~~L~(0, i ; H ), g ~ 0,
which is orthogonal to R(~) and consequently, also to Since the

element ds belongs to it holds:

So ( - A ) -1 ~2 g( t ) = 0 for a. a. t E [ o , r], which means that g is the zero ele-
ment in L~(0, r; H). This is the desired contradiction. So R(2) =
= L~(0, r; H). This implies the existence of the solution v of equation (12)
with initial condition = 0 in the interval [0, r].

Suppose that v1, v2 are two such solutions. Put w = vl - v2 . Then
dw/dt = Aw and = 0. Hence w(t) = = 0. This proves the

uniqueness of the solution.
Inequality (13) can be obtained if we multiply equation (12) by v in

L2(o, i; H).

LEMMA 5. Let conditions (i), (ii) be fulfilled and let u be a solution
of equation (1) in the intervals [0, T). Then the initial-value problem
given by the equation

and the initial condition v( 0 ) = P " u( 0 ) has a unique solution v in the
interval [ 0 , T) such that v(t) E H " for a. a. t E [ 0 , T).
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PROOF. Let us denote u ’ = P ’ u and u " = P " u . Applying projection
P " to equation (1), we obtain

So if we prove that there exists a solution v, of the equation

with the intial condition vl ( o ) = 0 in the interval [ o , T), we can put v =
= u " + v, and if we add equations (15), (16) and the intial values of func-
tions u" and VI, we can see that v is the desired solution of equation (14)
which satisfies the initial condition = P " u( o ).

Let i  T . It follows from inequalities (3), (4), condition (ii) and the
fact that ~eL~(0,r;~2)~(0,T;~) that P" Bau’ EL2(0, í; H").
Using operator 2 from the proof of Lemma 4, we can write equation (16)
with the initial condition v1 ( o ) = 0 in the equivalent form

Applying inequality (13) and standard but rather laborious estimates, we
can obtain:

for each E &#x3E; 0. Let E &#x3E; 0 and To &#x3E; 0 be chosen so small that
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Assume that i ; ro at first. Then we have

Thus, the operator I - (2) -’(B, + is invertible and equation (17)
is uniquely solvable in [ o , r].

Now let i &#x3E; l’ 0 . We can assume without loss of generality that ro was
chosen so that r = 2 kro for some k ~ N. We have proved the existence of
solution v, of equation (16) with the initial condition vl ( o ) = 0 in the time
interval [0, ro]. Put

Let V3 be the solution of the equation

with the initial condition Vg (0) = 0 in the interval [ o , to]. (Its existence
can be proved in the same way as the existence of solution v, in [ o , To].)

= 0 for t E [0, [r o , 2To]. It can easi-
ly be verified that V2 + v4 is the solution of equation (16) with the in-
itial condition VI ( 0) = 0 in the interval [ o , 2 z o ]. This solution can be ex-
tended in the same way to the time interval [0, r]. Since T can be chosen
arbitrarily near to T (if T  + oo) or arbitrarily large (if T = + ~ ), the
solution exists on the interval [0, T).

Uniqueness of the solution can be proved by the standard procedure:
we suppose that we have two solutions, we subtract them and we
prove that their difference is equal to the zero element of H identically
in [ o , T). To do that, we can use the fact that the operator A + Bs + P " Ba
generates an analytic semigroup in H, which can be shown in the

same way as in the case of operator L. Since equation (14) and
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the initial condition v( o ) = P " u(O) represent the problem in H ", the
values of solution v remain in H ".

LEMMA 6. Let conditions (i), (ii) be ful, filted. Then u is a solution of
equation (1) in the interval [ 0, T) if and only if u = v + w where the
functions v, w are solutions of the equations

in the interval [0, T), satisfying the initial conditions v( o ) = P " u( o ),
w(O) = P’ u(O).

PROOF. Let u be a solution of equation (1) in [0, T). It follows from
Lemma 5 that there exists a solution v of equation (14) in [0, T), satisfy-
ing the condition = P " u( o ). If we put w = u - v , we can see that
equation (14) is identical with equation (18) and subtracting equations
(1), (18), we can see that w is a solution of equation (19) in [0, T). Sub-
tracting also the initial conditions which are satisfied by functions u and
v, we get: w( 0 ) = P ’ u( o ).

On the other hand, if v and w are solutions of equations (18) and (19)
on the interval [ o , T), satisfying the initial conditions v( 0 ) = P " u( o ) and
w( 0 ) = then we can add equations (18), (19) and we can see that
u = v + w is a solution of equation (1) on [0, T).

3. Main theorem about stability.

We shall not treat the question of the existence of solutions of equa-
tion (1) in this section. We are going to derive estimates of each solution
u whose value at time t = 0 is «small enough» and these estimates will be
valid as long as the solution exists, i.e. in a time interval where solution u
is defined. Thus, u cannot finish with a «blow up» in the neighbourhood
of the right end point of its domain of definition. It is natural to expect
that u can be defined in the time interval [0, + oo ). In fact, to prove this,
it would be necessary to use some additional assumptions about the non-
linear operator N (see e.g. D. Henry (1981)) and in order not to compli-
cate this paper, we do not want to do this here.
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THEOREM 1. Let conditions (i), (ii), (iii) [or (iii)’], (iv) and (v) be sat-
isfied. Then to any given E &#x3E; 0 , there exists K &#x3E; 0 so that if u is a sol-
ution of equation (1) in the interval [ 0, T), then

for all Moreover, then

PROOF. Let u be a solution of equation (1) in a time interval [0, T). It
follows from Lemma 6 that u = v + w, where v and w are solutions of

equations (18) and (19) in [0, T), satisfying the initial conditions =

= P " u( o ) and = We are first going to derive estimates which
will be valid a.e. in the interval ( o, T).

If we multiply equation (18) by v, use condition (iii) and the fact ~that
v(t) for a.a. t E [ o , T), we obtain

Multiplying the equation (18) by ( -Av) and using conditions (i), (ii),
we get

If we choose 11- 1 = 1/6 and denote C16 = 3 (ci + ~(1/6)), we obtain

The solution w of equation (19) can be expressed in the form
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where Thus, we have

Using Lemma 3, we obtain

Denote by h(t) the right hand side of this inequality. Then

and moreover, it can be verified that h satisfies the equation

and the initial condition h(0) = Cll I/w( 0) I/o. Multiplying equation (23) by
h, one gets

where c17 = 2c211/81. The number 03BC2 in (24) can be chosen arbitrarily in
the interval ( o , 1 ).

Let us use the notation w ’ = P ’ w , w " = P " w for a while. If we multi-

ply the equation (19) by w, we obtain:
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If we choose U 3 = ( 1 - and use (22), we obtain:

where CIS = cr 1(2 - 2cg) + 2 . ~c 4 can be an arbitrary number in the inte]
val ( 0 , 1 ).

If we multiply equation (19) by ( - Aw ), we obtain:

If we and denote we get:
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and co be positive numbers. (Their concrete values will be
specified later.) Put

It follows from (20), (21), (24), (25), (26) that

Let us and cv so that

This system has a positive solution:

where
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If we substitute these values of ~, ~, n and cv to (27), we obtain

where , Let us denote

Using condition (v), we can derive that there exist c21 &#x3E; 0 and c22 &#x3E; 0 so

that

Substituting this into (28), we obtain

Thus, if

then

for a.a. t E (0, T). This means that

for a.a. t E [0, T). Hence we have
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These estimates complete the proof of the first part of the theorem.
Suppose that T = + 00 and the initial values of v and w are so small

that

now. Then

for a.a. t e (0, + (0) and hence

Put where a, b are such positive con-
stants that Since

~ const. is integrable on (0, + oo). It follows from
(21), (26) and the boundedness of V(v, h, w) (see (29)) that
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Thus, if the initial data are so small that c2g Tl(v( o ), h( o ), w( o ) )2~ + y -1&#x3E; ,1
then the time derivative of W(v, h, w) is bounded above a.e. in (0, + oo ).
This, together with the continuity and integrability of W(v, h, w) on the
interval (0, + oo), implies:

Thus, we have:

4. An example in one space dimension.

This section contains an illustrative example of the operator L == A +
+ Bs + Ba which is not dissipative, and conditions (i)-(iv) are satisfied.
Hilbert space H is L~((0, + 00» here. D(A) is W2,2«O, + oo )) n
nWj~((0, +00)) and

where and for Oper-
ators A , Bs and Ba are:

The validity of conditions (i), (ii) is obvious. We are going to show that
operator L is not dissipative and conditions (iii) and (iv) are fulfilled,
too.

The spectrum of the operator L, = A + Bs is a subset of the real axis.
It is not difficult to verify that the interval ( - m , 0 ] represents a contin-
uous part of and it contains no eigenvalues of Lg. By standard cal-
culation, we can find out that L, has the unique eigenvalue = 4.516239
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(exactly, where s is the positive solution of the equation so
The algebraic multiplicity of l o is equal to one and

the corresponding eigenfunction is

where c31 = 1.166203 and c32 = 7.192440. ( Exactly, the constants c31 and
C32 are chosen so that c31 sin ~

v

Hence subspace H’ is one-dimensional and it is generated by function
uo . H " is the orthogonal complement to H ’ in H .

Let us now turn our attention to condition (iii). Due to Lemma 2, we
can investigate the spectrum of the operator in space
H" . Since and EP" Bs is (A + Bs)-compact,

and can differ at most in a

countable number of isolated eigenvalues. Hence, if the intersection
is nonempty, then it contains only

some eigenvalues of Thus, to verify (iii), it is suffi-
cient to show that for e &#x3E; 0 small enough no such eigenvalues exist. Sup-
pose the opposite, i.e. that there exist and un such that
E n is monotonically decreasing and tends to zero, ~ n is a positive eigen-
value of the operator A + Bs + ê nP" Bs and is a corresponding
eigenfunction. The functions un can be chosen so that 

The boundedness of ~ n is obvious. Multiplying the equation Aun +
by un and using condition (i), we obtain:
which implies:

Let ~ o be a cluster point of the sequence. Then )o a 0 . In order
not to complicate the notation, a subsequence of ) n which tends to ) o as
n ~ + ~ will also be denoted by ~ n in the following. The equation Aun +

can be rewritten as I

As the right hand side tends to the zero element of
H" belongs to However, this spcetrum
coincides with the interval (- 00 , 0] and so Co = 0 .

Because and

, the equation I can be rewrit-
ten as
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Since un is orthogonal to uo , the integral ds is equal to
zero.

Suppose that ds = 0 at first. Then the

integral ds also equals zero. Equation (31) implies that

I and it can easily be verified that 0.

Therefore

and this is obviously different from zero. Hence the equality
(Bs un, uo )o = 0 can be excluded.

Put vn = unl(Bsun, uo )o . Then (B~ vn, uo )o =1. Substituting this to
(31) and using also the concrete forms of uo on the intervals (0, 1) and
(1, + oo), we can rewrite (31) in the form

The solution vn of this problem can be explicitly expressed. However, the
integration of shows that

which means that the integral on the left hand side is positive for n large
enough and so and Thus, condition (iii) is fulfilled.
We shall now verify condition (iv). Elementary estimates show that

Q(L ) is a subset of the parabolic region
then A is an eigenvalue of opera-

tor L.

Suppose that 6 e (0, l o ). Let us work with A E G ~’1 L) where G =

firstly.
The function = uo is the solution of the equation
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and = 0 . Denote by a fundamental system of solutions of
the corresponding homogeneous equation. Then yA can be expressed in
the form

where 4 1 = is the Wronski determinant of sys-
tem It can be derived that

The homogeneous equation which corresponds to (33) is the equation
with constant coefficients in the interval [ 1, + (0), so its fundamental
system y/, can easily be expressed here. We can choose so

that

for x e [ 1, + oo). (We use the symbol y for the square root in the com-
plex domain in such a sense that f = ~ ~ exp (( 1 ~2 ) i arg z) if z ~ 0,
B~=0 if z = 0.) We can express d ,~ ( 1 ) now: 

. Since

R for all A E G 1 /4 1 ( 1 ) is the analytic
function of A in G. Let us choose

Since

the last integral is finite and so
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Thus, we have

Let us choose C" so that yA(0) = 0:

ds are analytic functions of A not

only in G n Q(L), but in the whole set G. It can be shown by standard nu-
merical methods that

for all a e (( 1/4 ) Jl2, ( 9/4 ) and A E G. So CII is an analytic function of
A in G. To emphasize its dependence on ~, , we shall denote it by cll in the
following.

It is not difficult to show that dx is the analytic function
of A in G.

If x &#x3E; 1 then we can decompose in (34) to we can substitute
U U 1

the concrete forms of y f, and uo to the integrals we

can evaluate these integrals and we obtain the expression:
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where

It can be derived from the conditions 03/Lo and Rel &#x3E; - 3 that

Hence dx is the analytic function of A in G. This means

that (yil also depends analytically on A in G and (yA uo)o uo is the
analytic continuation of from to G. Since C+ ( - d ) =

=p(L)UG, condition (iv) is satisfied.
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