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Quasibases of p-Groups.

OTTO MUTZBAUER (*) - ELIAS TOUBASSI (**) (*)

ABSTRACT - The concept of a quasibasis is reduced to that of an inductive quasiba-
sis and abelian p-groups are explicitly described by the corresponding diago-
nal relation arrays. For a basic subgroup B we determine B) in
terms of diagonal relation arrays. Independent diagonal relation arrays are
shown to correspond uniquely to reduced, separable groups.

1. Introduction.

This paper (1) deals with abelian p-groups which are considered
as extensions of a basic subgroup by a divisible group. We describe
them by generators and relations as given by the concept of a

quasibasis [3, 33.5] and the methods established in [6]. We define
the concept of an inductive quasibasis and obtain results similar to

those of Boyer and Mader [2] and Griffith [4] on the embedding of
p-groups in their completions. We then give explicit examples by
generators and relations. We introduce diagonal relation arrays and
show that smallness is equivalent to splitting, cf. [6]. For a basic

subgroup B we determine B) in terms of diagonal relation
arrays. Finally we show that independent diagonal relation arrays

correspond uniquely to reduced, separable groups. Moreover, we
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determine whether a group is a direct sum of cyclics and show that
it depends on the cardinality of G/B relative to 

2. Preliminaries.

Let N denote the set of the natural numbers, without 0, and Zp the
localization of the ring of integers at the prime p. Let us quickly recall
the main definitions and conventions. We adapt to Zp-modules the de-
scription by generators and relations used for of mixed modules in [6]. In
particular, we consider p-groups as Zp-modules. Let G be a p-group with
a basic subgroup of isomorphism type A = e

eN) where. and order Later we write
where is homocyclic of exponent pi and rank ~.

Suppose the quotient G /B is a divisible group of rank d and let I be a set
of cardinality d. The subset

is called a quasibasis of G, if

(i) is a basis of the basic subgroup B with

(ii) where and

, for all

(iii) for all 

It is easy to see that

By [3, 33.5] every p-group G has a quasibasis and a quasibasis intrin-
sically defines a series of equations with coefficients in Zp that describe
the relations among the generators, namely

The choice of aik uniquely determines modulo pj Zp. Modeling upon
these relations we introduce the concept of an abstract array a = 
with having entries in Zp and which is row finite in j
and u, i.e. for a fixed pair (1~, i), for almost all pairs ( j , u).
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Such arrays a are called relation arrays. If A = is the iso-

morphism type of the basic subgroup B and d = I I I then we call the rela-
tion array a of format (Â, d).

When (1) holds for a quasibasis Q of a p-group G we say that the rela-
tion array (aT:j) corresponds to the quasibasis Q. A relation array is
called realizabte if there is a p-group with a quasibasis Q and corre-
sponding relation array In such cases we say that a relation array
is realized by a p-group.

REMARK. If (a T: jU) is the relation array corresponding to a quasiba-
sis of a p-group then for i, since by the definition of
a quasibasis and This is a

necessary property for a relation array to be realizable. This property is
also sufficient, but the proof is of computational type and we omit it.

Let be a generating system of a group G and let P be a system
of relations of the elements gi. If all relations between the elements in

{gi follow from P then P is called a system of defining relations. This
is equivalent to the fact that the quotient of the free group H generated
by and the subgroup generated by P is isomorphic to G, i.e. G =
= HI(P). Since a quasibasis induces relations it is natural to ask if these
relations determine the p-group completely, i.e., do they present the
group. This is shown in the following theorem.

THEOREM 1. Let be a quasibasis of
some p-group with corresponding relation array (a i,~~ ). Then

is a system of defining relations.

PROOF. Let G be a p-group with basic subgroup B with the given
quasibasis. Let

be some relation in G. Modifying with elements in P we may assume that
0 ~ /3T  p and 0 ~ /3j  p’ for all i, j e h, k e I. Now we consider
this relation modulo B. Since G/B = fl3 + B lie N), all /3 T = 0. Fur-

kEI

thermore, since the elements xj’ form a basis of B, we also obtain /3j = 0
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for all j eN, u e Ij. Hence the given relation was generated by the ele-
ments in P, as desired.

In view of Theorem 1 a quasibasis of a p-group with corresponding
relation array is a presentation of this p-group. We consider two exam-
ples one using the standard-B group and the

other the generalized Prffer group of length w + n.

EXAMPLE ([3, 35.1]). The standard-B group ~3 has quasibases with
corresponding relation arrays a = and {3 = (~3 i, ~ ) of the form

To see this we proceed as in the proof of [3, 35.1 ] and define x2 = 
- pai + 1 for all i e N. The subgroup is basic in lB with quotient

Z(p 00) and is a quasibasis. The induced relations are
pai + 1= ai - x2 , hence the corresponding relation array is a.

To realize ~3 as a relation array let

It is straightforward to verify that (rj is a p-independent set.
This proves that the group B = E is a direct sum of cyclics and

i E N

pure in 83. Moreover, B/B is divisible, namely

Thus 83 I B = Z(p °° ), B is a basic N} is a quasibasis
of ~3 and ~3 is the corresponding relation array.

REMARK. The argument that ~3 has the relation array P can be
modified to show that ~3 allows all 0 and 1 sequences on the diagonal
as long as there are infinitely many entries equal to 1. We will
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prove this fact later without any calculation, cf. the note after Corollary 16.

EXAMPLE 3. ([3, Section 35, Example]) The generalized Prufer group
of length to + n, has a quasibasis with corresponding rela-

tion array a = of the form

This can be seen as follows. In the example in [3, Section 35] is

generated by the set ~ bo , bl , b2 , ... ~ with the relations = 0, p i bi =
= bo for all i E N. Clearly o( bi ) _ ~ n + for all i ; 0. Define xi = 1

and ai = p ’ bi for all i E N. It is routine to show that the set ~1~ is
p-independent. Moreover, is a basic subgroup and

is a quasibasis since

Thus we have the corresponding rela-
tion array a as indicated.

3. Inductive Quasibases.

We begin by recalling the Baer-Boyer decomposition, [3, 32.4], which
simplifies the relations (1).

Let B be a basic subgroup of the p-group G with a homogeneous de-
compositions For let the subgroup Gm be defined by

Then

A quasibasis is called an inductive quasi-
basis if the corresponding relations are with

the condition that

THEOREM 4. If B is a basic subgroup of a with correspond-
ing quasibasis
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then there are at = and aik e + B for all i &#x3E; 1 and k e I , such that
aik an inductive quasibasis.

In particular, every p-group has an inductive quasibasis.

PROOF. Let be a quasibasis of the p-
group G. We continue in three steps. First, we define a new quasibasis
by changing the elements to e Gi _ 1. By the Baer-Boyer decompo-
sition we have for each pair ( i , k):

Let c1 = aík and = g k i _ 1 if i &#x3E; 1; then the Ii, j e

is also a quasibasis of G.
Second, we show certain properties of the elements e Bn occur-

ring in the relations

namely

(ii) i for all n ; i; in particular, p divides for
n&#x3E;i.

Since E B there is an Jn e N such that = 0 for all n &#x3E; m. With

i and we get Using
the decomposition

and the fact that we obtain (i).

Write for some m. Since
we get for all n, because

In particular, we immediately have that p divides since

The third step will be to define an inductive quasibasis
starting with the special quasibasis

already obtained. For this let where
and we induct on i. If and then I

The induction hypothesis is that the set
is a quasibasis of G, where
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with bjk E Bj for all j  i and al , ci E 1 for all 1, respectively. We may
assume that the elements have the Properties (i) and (ii). This re-
sults in the following equation

where the sum is divisible by p, i.e. there is some

c Gi such that Let Then

Hence since and But

and, by (5),
since Thus and this concludes the

proof.

A relation array a = is called diagonaL if = 0 for i ~ j. We
denote a diagonal relation array as a = 

COROLLARY 5. Every p-group has a diagonal relation array. In
particular a reflation array corresponding to an inductive quasibasis
is diagonale

PROOF. By Theorem 4 every p-group has an inductive quasibasis and
a relation array corresponding to a inductive quasibasis is always
diagonal.

4. A presentation of p-groups.

First we need some notation.

NOTATION. Let A = Å2, ...) be a sequence of cardinal numbers
and let d be a cardinal number. Recall that

where for all Furthermore, let 1 - 
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and for all where Let the

p-groups

and

where is torsion-complete, cf. [3, Section 68]. The

elements are infinite sequences of the form h = ... )
where

In particular, BA is embedded in as a basic subgroup, cf. [3, Section
33] where we identify xj’ with and c k with

Let

Then D is the maximal divisible subgroup of H.4, d, which is also the first
Ulm subgroup of and its set of elements of infinite height, cf. [3,
Section 37]. Note that Bi = GZ, o 

= and that Bi is a
basic subgroup of Rz.

For a diagonal relation array a = (a T’ u ) of format (A, d) we define a
subgroup G( a ) of as

where

and
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Observe that by the row finiteness of a relation array the sum above is fi-
nite, i. e. the elements and are well defined.

PROPOSITION 6. Let a = (aT’ U) be a diagonal relation array of for-
mat (A, d). Then B). is a basic subgroup of G(a) i , j E
e N , u e Ij, k E I I is an inductive quasibasis of G(a) with a as its corre-
sponding relation array.

In particular, all diagonal relation arrays are realizable.

PROOF. First we show that BA is a basic subgroup of G( a ). Since BA is
already a basic subgroup of Hz, d it suffices to show that G(a) is divi-

sible. This is implied by the identity

Furthermore, . Thus the

set has the Properties (i) and (ii) of a
quasibasis. It remains to show Property (iii) of a quasibasis, i.e. that

=pB This follows from the fact that all components of the se-
quence a k ( a ) _ (a k o ( a ), a k 1 ( a ), a k 2 ( a ), ... ) have order less than or

equal to p~ and the first entry = c k has precisely order pB By (6)
the relation array a corresponds to this quasibasis and since a is diago-
nal this quasibasis is inductive.

The following corollary allows us to say that a p-group G is presented
by G(a) or presented by a.

COROLLARY 7. Each G with basic subgroup B of isomor-
phism type A and quotient can be embedded in

More precisely, is an inductive

quasibasis of G with corresponding diagonal relation array a, then the
mapping

extends to an isomor~phism of G with G(a) in HA, d, identifying B with
BA.

PROOF. By Theorem 4, a p-group G with basic subgroup B of isomor-
phism type A, quotient has an inductive quasibasis. By
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Corollary 5, the corresponding relation array a is diagonal and of format
(A, d).

More precisely, the indicated mapping is an isomorphism, since the
inductive quasibasis I xj, i , j e h , k e 7} of G is mapped to the
inductive quasibasis I xj, of G(a) and the
corresponding diagonal relation arrays are for both quasibases equal to
a. By Theorem 1, the relation arrays induce a system of defining rela-
tions, thus G and G(a) must be isomorphic.

Corollary 7 is in the spirit of the Boyer and Mader result in [2] and
provides another proof of the well known embedding of a p-group G in

cf. Griffith [4, Theorem 25], where D(p " G) is the injective
hull of p " G and B is a basic subgroup of G. Furthermore, this embed-
ding is a pure embedding.

If the standard-B group lB is presented by the diagonal relation ar-
ray a given in (2) then A = (1, 1, ... ), d = 1, and the embedding in

is given by

If the generalized Prufer group H~, + 1 is presented by the diagonal
relation array a as in (3) then again ~, _ ( 1, 1, ... ), d =1, and the embed-
ding Hw + 1 ( a ) in is given by

We now prove a useful technical lemma.

LEMMA 8. For each element z E G(a) there is a natural number l
such that

Furthermore, for each element z E D n G(a) B{ 0 } there is a natural
number 1 such that for all integers m ~ 0
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In particular, if D f1 G(a) ~ 0 then the set

is dependent, where ;r: H~,, d-~ 13). is the projection with kernel D.

PROOF. A general element Z E G(a) has the form

+ b E G( a ), where p t E Zp, b E B. By the relation (6) in G( a ) there is a natu-
ral number 1 such that

where Moreover, since the relation array is diagonal we

may assume that

Furthermore, again by (6) we have for all m E N

where ~’ Now let . Using the

form of the tuples and the fact that bl + m = 0 for all m we obtain the
desired formula.

If z E D n G( a ) B{ 0 } then we apply the projection a to (8) with m = 0,
i.e.

Thus the elements are dependent since not allf-l k are 0 since
z # 0. This implies by (6) that the elements are dependent mo-
dulo B, as desired.

We close this section by describing the first Ulm subgroup and the
zeroth Ulm factor of G(a).

LEMMA 9. The first Ulm subgroup of G(a) is pWG(a)=DnG(a)
and the zeroth Ulm factor is n G(a)) = ~(G(a)). In particular,
G(a) is reduced if and only if D f1 G(a) is reduced.

PROOF. It is clear that elements of infinite height in G(a) have infi-
nite height in hence they are in D fl G(a). Conversely, by (8) in
Lemma 8 all elements in D fl G(a) have infinite height.

The divisible part of a group is contained in its first Ulm subgroup.
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Thus a group is reduced if and only if its first Ulm subgroup is

reduced.

5. Small diagonal relation arrays.

We follow the usual convention to define a sequence in 

be a p-adic zero sequence if there is for all meN some N E 1~T such that
a for all i ; N. Let Ii be sets for all i E N and let a i E Zp for all

u E Ii . We extend this to say that the sequence ((a§/ of

tuples of group elements is called a p-adic zero sequence if there is for all
some such that for all u E Ii . A relation

array not necessarily diagonal, is called small, cf. [6], if

is also a relation array. The last array is in general

not a relation array since the row finiteness in j and u is not guaranteed.
If the relation array is diagonal, i.e. a = ( a k ~ u ), then smallness amounts
to the simple fact that the sequence E Ii ) )ieN is a p-adic zero se-
quence for all k E I. We call a diagonal relation array almost equal to 0 if
for each k e I, = 0 for almost all pairs ( i , u). In particular, if a diago-
nal relation array is almost equal to 0, then it is small.

We note that the prototype of a small relation array is given by a =
= (a j ) of the form

If a p-group G is presented by this diagonal relation array a then A =

=(1, 1, ...), d = l, and G(a) is given by

where = 0 for l ~ i.

LEMMA 10. Let a and {3 be diagonal relation arrays. If the diffe-
rence is small then G(a) = G(/3).
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PROOF. By Proposition is small then

and Thus

PROPOSITION 11. A basic subgroup B of a p-group G with corre-
sponding diagonal relation array a is a direct summand of G if and
onLy if a is small.

In particular, G = if the isomorphism type of B is A, GIB is of
rank d and a is small.

PROOF. Since a group G is isomorphic to its presentation G(a) we
may consider G(a) instead. If a is small then the generating elements

of G( a ) are in D Q9 B, hence B is a direct summand of G(a). Other-
wise, if a is not small, then these elements are not in D fl3 B, i.e. B
is not a direct summand.

6. The module Pext.

The module BÀ) is the first Ulm subgroup of

Ext (Z(p (0), B À)’ cf. [3, 53.3], and since in general Ext (C , A) is a bimod-
ule over the endomorphism rings of A and C, cf. [3, Section 52],
Pext (Z(p 00 ), is a p-adic module. Let Zp denote the ring of p-adic in-
tegers. In this section we fix the isomorphism type A = (À i i E N) where
À i = I Ii 1. . Let A~ be the torsion-free p-adic module

which is the product of the free p-adic modules A dia-

gonal relation array a = (a f) of format (A, 1) can be considered an ele-
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ment of A~ by identifying

This is the usual way to consider the set of matrices over some ring R
and of the same format as an R-module with respect to addition and mul-
tiplication by scalars. Let Asmall denote the subset of all small diagonal
relation arrays.

LEMMA 12. A,mall is a pure submodule of Aw such that the quotient
module

is a reduced torsion-free = 0.

PROOF. Let Ao be the submodule of A~ consisting of all diagonal re-
lation arrays a = ( a i ) of format (~, , 1 ) where almost all a i are 0. The
submodules Ao and Asmall are obviously pure and Ao is contained in Asman.
Moreover, AsmanlAo is a divisible submodule ofA~/Ao. It is even the maxi-
mal divisible submodule since a diagonal relation array a = ( a u ) of for-
mat (~, , 1 ) is small if and only if «ai is a p-adic zero se-
quence, cf. Section 5; hence a + Ao is an element of the divisible part of
AwlAo if and only if a is small. 
is a reduced torsion-free Zp-module, = 0.

Next we will show that Pext(Z(p "), B).) z lll  . Let

be pure exact, i.e. a short exact sequence in Pext (~(~ °° ), B~, ). We follow
the notation in [3, Section 49]. Define g : ~(~ °° ) = (cj such

that g(u) is a representative of the coset of u, and in particular g(ci ) = ai,
where we may choose the element ai such that since the exact

sequence was pure, cf. [3, Section 33]. is a

quasibasis of G with corresponding relation array a of format (A, 1),
which is not necessarily diagonal. We can associate g with a, i.e. a = a(g).
Moreover, the function 9 also determines a factor set f = f(g) by

Suppose g ’ : Z(p °° ) - G is another function inducing the same factor
set, f(g) = f(g’ ) with g’ (ci) = bi, o(bi) _ pi. Then I xil, bi lie ~T, u E Ii I is
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another quasibasis with corresponding relation array B. By the defini-
tion of the functions g , g ’ we have ai - bi E This implies that a - p is
small by [7, Proposition 7]. By Theorem 4 there is a diagonal relation ar-
ray p such that P - a(g) is small and is a corre-

sponding inductive quasibasis of G. It is straightforward to show that
the condition o( bi ) =p~ forces the exact sequence

to be pure exact. Let Faetp (Z(p ’ ), denote the factor sets corre-

sponding to pure exact sequences. Then a mapping is defined

Let Transp (Z(p °° ), B~, ) = B~, ) n Factp (Z(p 00), B~, ), cf. [3,
Section 49]. Next we show that this mappingu induces an isomorphism
between Pext °° ), and W ,,.

THEOREM 13. The given above is an epimorphism with
kernel Transp °° ), B~, ). Thus

PROOF. Let a be a diagonal relation array of format (A, 1). Then a is
realized by a p-group G with corresponding 
EN, U E cf. Corollary 5. Define g : Z(p 00) z e N) - G by 
= ai and extend the definition of g arbitrarily such that g maps elements to
their cosets. We thus obtain that the image of the factor set f(g) under p
is a + Armall, i.e.,u(f) = a + Asmall. Hence p is epic.

The kernel of u is the set Transp (~(~ro °° ), of transformation sets,
since the transformation sets are the factor sets of the splitting exten-
sion. By Proposition 11 these correspond to the diagonal relation arrays
which are small. Thus

Next we show thatu is a homomorphism. For this we write down pre-
cisely how the factor set f can be determined by a. Let u, v E (di liE
EN) == Zp and presented in the form u = r(u) di~u~, where 
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and Thus

It is straightforward to determine i(u + v) and r(u + v). We know that
f(u, v) hence the sum representation of f on the right-hand side of
the equation above must be of the form and by (1) we
obtain

where r E Zp. In particular, r and the indices 1, h depend only on u , v.
Now let f = f (g ), f ’ = f ’ (g ’ ) be two factor sets = a + Agmaii and
,u( f ’ ) = ~3 + Asman. The sum of f and f ’ is given by

Writing this in terms of a and ~3 and observing that the parameters r
and the indices h, 1 depend only on u , v, we get

This shows that the mappingu is additive. The proof of fl( rf) = for
r E Zp is analogous. Hence p is a homomorphism and induces an isomor-
phism between Pext (Z(p 00), and W,,,.

7. Independent diagonal relation arrays.

A diagonal relation array called independent. if the tu-
ple (ak + E I ) forms an independent set of W , 

Recall that in Lemma 8 we proved that under certain conditions
cosets of the projection map i: are dependent. In the next
lemma we discuss when these cosets are independent.

LEMMA 14. Let G be a p-group presented by the diagonal, relation
array a and the group G(a), respectively. Then a is independent if and
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only if

is independent.

PROOF. The general element of (RAIB)[p] is

where Define the mapping by

The elementary abelian p-groups (Bi /B)[p] are vector

spaces over Z/pZ. It is easy to verify that 99 is a vector space isomor-

phism. Since

cf. Section 4, we obtain that

since cp is a vector space isomorphism the lemma is shown.

PROPOSITION 15. For a G presented by a diagonal relation
array a the following are equivalent:

(i) a is independent;
(ii) ~ro ~’ G = 0;
(iii) G is reduced and separable;
(iv) G is embeddable in B, where B is a basic subgroup of G.

PROOF. (i) - (ii): Let G(a) be the presentation of the diagonal rela-
tion array a. By Lemma 9 we have that p " G(a) = D f1 G( a ). Hence, if a
is independent, Lemma 14 and (8) in Lemma 8 imply that DnG(a)=0.

(ii) ~ (i): if a is dependent then there are finitely many ¡t k E Z.,, not
all 0, such that Then But this



94

is an element in D n G( a ), which is not 0, since not all are 0. However

by Lemma 9 this implies that the first Ulm subgroup of G( a ), hence of G,
is not 0 and we are done.

(ii) ~ (iii): This is shown by [3, 65.1].
(iii) ==&#x3E;(iv): This is shown by a result of Kulikov [3, 68.2].
(iv) ~ (ii): This is trivial.

In view of Proposition 15 the following Corollary is a reformulation of
[3, 68.3].

COROLLARY 16. A p-group G with independent diagonal relation
array of format (A, d) is a direct sum of cyclics if d ~ No. Consequently
G == B;.-

Moreover, if in addition I  d then G is not a direct sum of
cyclics.

PROOF. Since G is presented by a, the format of a tells us that there
is basic subgroup B = Bi with quotient G~B of rank d. Since the relation
array is independent, G is separable by Proposition 15. Thus if d ~ No, i.e.
GIB is countable, then by a result of Prilfer [3, 68.3] the group G is a di-
rect sum of cyclics hence G == B;..

However, if I  d and if we assume G to be a direct sum of cyclics
then and I BA (  d ~ ~ G ~ I yields a contradiction.

Corollary 16 shows in particular that each relation array a =

= diag ( a i , a 2 , ... ) with a proper 0-1-sequence ( a i.e. with infinitely
many a i = 1, is a relation array of the standard-B group. This is what we
meant by the remark following Example 2. Moreover, with the notation
in Section 6, a diagonal relation array of format ( , 1 ) of m-type is the
presentation of a direct sum of cyclics.

COROLLARY 17. A G with a diagonal relation array of for-
mat (A, d) is not reduced if d &#x3E; 21BÀ L

PROOF. There are only 21BÀ different diagonal relation arrays of for-
mat ( , 1). Let a be a diagonal relation array of format ( , d). Then by
the pigeon hole principle there are k, 1 E I such that (a T) = (a ~) for all i.
Thus using a presentation G(a) of G, there correspond generating ele-
ments aik(a), al(a) such that al(a) - al(a) = cl- cl for all i. Hence
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the subgroup of G(a) generated by ali(a)|i E N} is qua-

sicyclic.

REMARK. We want to point out what a diagonal relation array may
look like when it corresponds to the p-group 11;.. Let a be a diagonal rela-
tion array of format (A, d) where d = 2|BA |. Then is a Z/pZ-
vector space of uncountable dimension. For a diagonal relation array a
to present 11;. = G(a) it is necessary for

to generate the socle of RA IB. Since RA is reduced and separa-
ble it is also necessary that M is independent, i.e. M is a basis of the so-
cle. It then follows that G(a) = Bz. As is known in such cases there is no
explicit description of a basis for the socle.
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