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Rigid Meromorphic Foliations on Complex Surfaces.

E. BALLICO (*)

Introduction.

We are interested in the problem of existence and density of folia-
tions without algebraic leaves. Here we give a construction (see Theorem
1.1) of singular meromorphic foliations without algebraic leaves on every
smooth projective surface. In sections 2 and 3 we consider the related
problem of «rigidity» or «persistency» of a singular meromorphic folia-
tion on a compact complex surface X. We study the case of a foliation
coming from a fibration, i.e. from a morphism X-B with B smooth
curve. In section 2 we study the case of a surface with Kodaira dimension
- 00 , X;e P2 and give (see Theorem 2.1) another proof of the theorem
proved in [15]. In section 3 we consider the case of an elliptic
fibration.

The author want to thank the referees for the remarks to the previ-
ous versions of this paper. The author was partially supported by
MURST and GNSAGA of CNR (Italy).

1. Foliations without algebraic leaves.

Recall that a meromorphic foliation by curves on a smooth complex
manifold M is given by a non zero morphism i : L - TM with L line bun-
dle on M . Of course, if dim (M) = 2 this is a codimension 1 meromorphic
foliation with singularities on M . We will call «foliation» any meromor-
phic foliation with singularities. The singular set Sing (F)rea (or just
Sing (F) ) of the foliation F is the set of points of M where i drops rank.
The foliation is called saturated if i drops rank at most in codimension 2.

(*) Indirizzo dell’A.: Dept. of Mathematics, University of Trento, 38050 Povo
(TN), Italy. E-mail: ballico@science.unitn.it
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If M is a surface and F is saturated we have an exact sequence

with dim (Z) = 0, Z := Sing (F) with its scheme structure (see e.g. [8]); if
dim (M) &#x3E; 2 or one is interested in foliations on singular surfaces, the
best background material on saturated subsheaves is probably contained
in the first section of [12].
We may move the foliation either varying L or fixing L and choosing

a nearby non proportional section of H ° (M, TM ® L -1 ). Note that in
every small deformation of the foliation F the algebraic, numerical and
topological equivalence class of the line bundle L remain constant.

Hence if F c M is a curve, we have deg (Lt I F) = deg (L I F) for all t.

For the theory of deformations of singular foliations, see [7] or [6] or
[16] or [17] or [2]. For the particular case of deformations of foliations by
curves, see [8] and [9]. Hence we will say that a singular meromorphic fo-
liation is rigid if every flat deformation of it parametrized by a reduced
space is trivial.

Let M be a complex projective surface. In this section we give a con-
struction of families of singular meromorphic foliations on M with large
dimension in which the set of foliations without algebraic leaves is dense.
We will prove the following result.

THEOREM 1.1. Let M be a smooth complex projective surface. Fix a
very Line bundLe R on M. Set x : = h ° (M, R). For every integer
r &#x3E; 4 the moduli space of saturated singular meromorphic foliations
associated to a non zero contains a Zariski open sub-
set of a projective space of dimension 3 ), r 2 + 6 r + 8 ~ in
which the set of foliations without any algebraic leaf is dense in the eu-
cLidean topology and a Zariski open non-empty subset of a projective
space of dimension 3(x - 3) formed by foliations without any algebraic
Leaf.

PROOF. Recall that the Grassmannian G( 3 , x) of 3-dimensional sub-
spaces of Cx has dimension 3(x - 3). Consider M embedded by R in the
projective space I R I and let p: be a general projection.
Hence R = ~ * (Op ( 1 ) ) . Call A c M (resp. the ramification locus

(resp. the discriminant divisor). Fix a singular meromorphic saturated
foliation by curves G on p2 of degree r ~ 4. By a form of the Bertini the-
orem (see e.g. [14]) there is such that g(D) is transversal to
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G outside finitely many points. Taking g * (G) instead of G we may as-
sume that the discriminant D is transversal to G outside finitely many
points. Let o be the meromorphic 1-form inducing G and let E be the fo-
liation induced In general E may be non saturated. Let F be
the saturation of E . Note that for every algebraic leaf T of F on M BA ,
the closure of p(T) is an algebraic leaf of G. Hence every algebraic leaf of
F is either contained in the counterimage of an algebraic leaf of G or it is
contained in A . Since the discriminant divisor D is transversal to G out-
side finitely many points, there is no algebraic leaf of F contained in A
and E = F is saturated. By a theorem of Jouanolou ([13], Ch. 4, Th. 1.1)
every euclidean neighborhood of G contains foliations without algebraic
leaves. Fixing the projection p , we obtain a Zariski open subset U of a
projective space of dimension r 2 + 6 r + 8 in which the set of foliations
without any algebraic leaf is dense in the euclidean topology. Viceversa,
fixing any such foliation G of degree r on P 2 and varying the projections
we find a Zariski open dense subset of G( 3 , x) parametryzing one to one
foliations without algebraic leaves. Indeed, to check that the

parametrization is one to one it is sufficient to look at the singularities of
the pull-backs of G arising as counterimages of the singularities of G . By
a theorem of Gomez-Mont and Kempf ([10]) every degree r non-degene-
rate (i.e. such that all its singularities have multiplicity one) foliation on
p2 is uniquely determined by the set of its singularities. By [13], part 2)
of Th. 2.3 at p. 87, a Zariski open non empty subset of U parametrizes
non-degenerate foliations. m

Usually under the assumptions of Theorem 1.1 the integer x is small
with respect to r and hence 3(x - 3) is much smaller than r2 + 6r + 8. A
family of exceptional cases is given taking R = M ®m with M E Pic (X), M
very ample, and very large. This family of examples is interesting only
for the last assertion of Theorem 1.1, because usually M) is much
smaller than mr.

2. Rigid and ruled fibrations.

In this section we will study the meromorphic foliations with singu-
larities on a smooth projective surface X with Kodaira dimension - 00 ,
X ~ P 2. This is the class of all surfaces with a morphism u : X-B , B
smooth curve with general fiber isomorphic to P (a ruling of X). We will
say that such a surface is ruled; we will say that X is geometrically ruled
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if all the fibers of u are smooth (hence isomorphic to P’). Some authors
call birationally ruled our general set up and call ruled surfaces only the
geometrically ruled surfaces. Any such X is obtained from a geometrical-
ly ruled surface, Y, with a finite number of blowing ups; the surface Y
and the morphism R: Z2013&#x3E; Y is uniquely determined if B has genus g &#x3E; 0.

The case of a geometrically ruled surface was considered in [8]. As a con-
sequence of our analysis we will prove Theorem 2.1 below, i.e. we will
give another proof of the theorem proved in [14]. The local analysis of
what happens to a holomorphic foliation making a blowing up (strict
transform of the foliation) was made in [9], § 6. We will fix the following
notations. Let g be the genus of B and t ~ 0 the number of blowing ups
whose composition gives jr. We will identify divisors and line bundles
and often use the additive notation for both. Let v : Y~ B be the ruling
of Y. As a base for the Neron Severi group NS(y) of divisors of Y (i.e. di-
visors modulo numerical equivalence) we will give the classes h and f
with h 2 = 0 , h ~ f =1, f 2 = 0 , f class of a fiber of v , h class of a section, up
to multiples of f (i.e. there may not be any effective curve with numerical
class h and, even if there is one, it may consist of an irreducible section
plus a few fibers). We will denote by - e the minimal self-intersection of
a section of v ; by a theorem of Nagata we have e ~ - g . Call H (resp. F)
the total transform of h (resp. f ) on X ; hence H 2 = 0 , H. F =1 and F 2 =
= 0 ; F will denote also a general fiber of u (hence a general fiber of v). As a
base of the Neron Severi group NS(X) of X we will take H, F and the fol-
lowing divisors Ei , 1 ~ i ~ t , with = = 0 , = E 2 = - 1 for
all t. Decompose Jt into t blowing ups and call X(i) - Y, 0 ~ i ~ t,
the composition of the first i of these blowing ups; assume to have de-
fined i , for some i  t as a class on X(i); as classes E~ on X(i + 1)
takje the total transform of the classes Ea on X(i) for and the class
of the exceptional divisor of the blowing up X(i + 1) ~ (X(i) as class of
Ei + 1. Note that every Ej is effective, but may be reducible.

The case of singular foliations on Y was studied in detail in [8]. Call G
the foliation of fibration type induced by the ruling of X and let L " be the
associated saturated line subsheaf of TX . Note that the ruling (and
hence the foliation) is unique except in the cases g = 0 , e = 0 , t = 0 or 1,
in which there are exactly two rulings. For every smooth fiber F = P 1 we
have ( deg (L " ~ F) = 2 . We claim that the numerical equivalence class of
L " is 2H - 1 Ei . To check the claim, use [8], Lemma 1.4, for the case

1 t

y = X, the local analysis of the behaviour of tangent bundles on surfaces
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by blowing ups made in [9], § 4, and the fact that L " is numeri-

cally equivalent to (2 - 2 g ) F . Consider a small 4

the unit disc of C, of G with X fixed. Note that in any small deformation
of a foliation by curves the numerical equivalence class of the saturated
line subsheaf of TX remains constant. Let Lt’ be the line bundle corre-
sponding to L " for the foliation Gt . Since cl ( TX ) - L " is numerically
equivalent to the pull-back of a line bundle on the curve B (the base of
the ruling) for a general fiber, F, of the ruling u we have deg (Lt’ ~ F) _
= 0 . Since F = P ~, Lt’ IF is trivial. Hence F is a leaf of Gt . Thus G is persi-
stent, giving another proof of the following theorem proved in [14].

THEOREM 2.1. On every smooth projective surface with Kodaira
dimension - 00 except the projective plane there is a singular mero-
morphic foliations (the foliation induced by a ruling) which is

rigid.
There is an inclusion between (saturated) singular foliations by

curves in Y and X ([9], § 6); with the terminology of [9], § 6, the foliation
on X corresponding to a foliation A on Y is called the strict transform of
A . As in [9], Def. 2.5, we will give the following definition of foliation on
X of Riccati type.

DEFINITION 2.2. A saturated foliation on X induced by an inclusion
L -~ TX is called a Riccati foliations if there is Me Pic (B ) with

c1(L) = c1(u*(M)).
Fix a Riccati foliation F on X. Since we have H (X, = 0, the ex-

ponential sequence

shows that numerical equivalence, algebraic equivalence and topological
equivalence of line bundles on X coincide. Furthermore, 
= ~ * (Pic° (B ) ) . Hence in the definition 2.2 of Riccati foliation we may as-
sume L = u * (M). Since u = there is L ’ E Pic (Y) with = L .

Let U c Y be the Zariski open subset of Y with card (YB U) finite and such
that is an isomorphism. The restriction to

of the Riccati foliation F induced a singular holomorphic folia-
tion G on U. However, a priori this singular holomorphic foliation does
not extend to a singular meromorphic foliation on all X. Since it is suffi-
cient to check the integrability condition for a foliation defined by a
meromorphic 1-form on a Zariski open dense subset, to obtain the exten-
sion of G to Y (as singular foliation) it is sufficient to show the existence
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of L " E Pic (Y) and of a map such that i ~ U induces G. Since
codim I for every we have

Hence it is sufficient to find and r :

inducing G . We claim that we may take L ’ as such line bun-
dle L ". Indeed by the definition of U and L ’ the morphism ,
duces an isomorphism of onto U and

Since u = v o Jr we have L ’ e v * (Pic (B) ) . Thus every Riccati
foliation is the strict transform of a Riccati foliation on the geometrically
ruled surface Y. Such foliations on Y are studied in [8], § 2.

3. Rigid and elliptic fibrations.

In this section we consider the meromorphic singular foliation in-
duced by an elliptic fibration Jr : X- B with B smooth curve of genus g ;
~ 0. Hence the general fiber of Jr is a smooth elliptic curve. The main dif-
ference with respect to the case of a ruling considered in section 2 is that
now the general fiber of the fibration is not simply connected. Let T XlB
be the relative tangent sheaf of Jr (see e.g. [18], pages 408-409). We as-
sume that the following exact sequence

with L = TXIB and N -1= defines the foliation F induced by Jr.
Note that the fibration Jr of X is rigid as fibration and that the irre-

ducible component of the Hilbert scheme Hilb (X) of X containing a
smooth fiber F of the fibration is given by the fibers of the fibration jar.
Hence the foliation induced by Jr is rigid if the following two conditions
are satisfied:

( a1 ) Every nearby foliation is induced by the same line bundle L.

(a2) We have

REMARK 3.1. Assume that the elliptic fibration is relatively mini-
mal. Then L = TpB =- a * (A) ® 0(~( 1 - mi ) Fi ) where the sum 27 is over
all multiple fibers Fi’s, Fi has multiplicity mi and A E Pic (B ), deg (A) =
= - X(Ox), N = Jr * (A ’ ) with deg (A’ ) = 2 (1 - g(B) ) ([3], p. 162).
Now consider the restriction of (2) to a smooth fiber F of the fibration

,7r. By the adjunction formula we obtain the following exact se-

quence
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Two cases are possible: either (3) splits or not. We will call the fibration
of indecomposable type if the exact sequence (3) does not split. Assume
that (3) does not split. By Atiyah’s classification of vector bundles on an
elliptic curve ([11), this is equivalent to the fact that is isomorphic
to tyhe unique indecomposable rank 2 vector bundle of F with trivial de-
terminant. This implies /~(F,(7~F)0D)=0 for every D E Pic° (F)
with D ~ OF and = 1. Thus for every nearby foliation Ft in-
duced, say, by st : Lt -~ TX , is uniquely determined, i.e. the

tangent direction of the foliation Ft at any point of F is the same as the
one for F, i.e. F is a leaf of Ft . Thus Ft = F and F is rigid. Hence we have
proved the following result.

PROPOSITION 3.2. The foliations induced by an elliptic fibration of
indecomposable type is rigid.

Here is another case in which F is rigid.

PROPOSITION 3.3. Assume that the elliptic fibration .7r is relatively
minimal Assume Then the folia-
tion F induced by 7r is rigid.

PROOF. Let the unit disk of C, be the family of saturated
rank 1 subsheaves of TX associated to a small deformation of the folia-
tion F. Hence Lt is numerically equivalent to L. We have

h ° (X , Hom (Lt , N) ) = 0 by the numerical assumptions on A and A ’ with
and Thus Lt = L for

all t . Since h ° (X , Hom (L , N) ) = 0 by the numerical assumptions, we
have Thus the foliation F is rigid.

Here we will consider the case of hyperelliptic surfaces (also called
bielliptic surfaces). For the classification of these surfaces, see [5], p. 36-
37, or [3], p. 148 and 189, or [4], pp. 113-114, or [11], pp. 585-590.

THEOREM 3.4. Let X be a surface birational to a hyperelliptic sur-
face. Let F be the foliation induced by the elliptic fibration Jl: X -~ B
given by the Albanese map and G the foliation induced by the unique
elliptic pencil m : X -~ P 1. Then F is rigid. If X is minima4 then G is
rigid.

PROOF. First assume X minimal. By [3], p. 148 and 168, the fibration
Jr has , and Z = 0. By [11], p. 585, R is
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smooth. Hence, taking A , A ’ E Pic (B ) with (A ’ ) and N = Jr * (A),
we have deg (A) = deg (A ’ ) = 0 . Since = 0 we see that also the fi-

bration m induces an exact sequence (2) with Z = 0; the only difference
is that now L is not of theform m * (A ’ ), because there is the contribution
of the multiple fibers (which are the only singular fibers of the fibration
m). Let be the family of saturated rank 1 subsheaves of TX asso-
ciated to a small deformation of the foliation F (or the foliation G). By (2)
we have h ° (X, Hom (Lt, N) ) = 0 if Lt and N are not isomorphic. Since
deg (Lt I F) = = 0 for every fiber F of Jr and for a general fiber
F of m , we obtain that L is constant in such small deformation of F (or
G). We have hO(X, TX ® L -1 ) =1 unless L = N and TX z L fl3 L . Thus
in order to obtain a contradiction we may assume TX = L ED L. Thus Q k
is the direct sum of two isomorphic line bundles. Hence h ° (X , is

even, contradiction. Now we drop the assumption of minimality of X. We
use the notations of section 2 for the exceptional divisors. We use that on
the minimal model the fibration Jr is smooth. As in the case of the Riccati
foliations on ruled surfaces considered at the end of section 2, now L =

_ ,~ * (A ) ® ( - ~Ei ), N = ~ * (A ’ ) with deg (A ) = deg (A ’ ) = 0 . As in the
case of the Riccati foliations we see that every small deformation of F
comes from a small deformation of the foliation of fibration type on the
minimal model of X. Hence we conclude.
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