RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

FRANCESCO UGUZZONI

Asymptotic behavior of solutions of Schrödinger inequalities on unbounded domains of nilpotent Lie groups

Rendiconti del Seminario Matematico della Università di Padova, tome 102 (1999), p. 51-65

http://www.numdam.org/item?id=RSMUP_1999__102__51_0

© Rendiconti del Seminario Matematico della Università di Padova, 1999, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Asymptotic Behavior of Solutions of Schrödinger Inequalities on Unbounded Domains of Nilpotent Lie Groups.

Francesco Uguzzoni (*)

1. Introduction.

The aim of this note is to present a technique which allows to find asymptotic behavior at infinity, for solutions of a wide class of equations.

Let $\mathcal{G} = \bigoplus_{j=1}^m \mathcal{G}_j$ be a stratified nilpotent Lie algebra of vector fields and $H = (\mathbb{R}^N, \circ)$ be its associated homogeneous Lie group. Let $\{X_1, \ldots, X_n\}$ be a basis of \mathcal{G}_1 and \mathcal{L} be the differential operator

$$\mathcal{L} = \sum_{j=1}^{n} X_j^2.$$

Moreover we denote by S_{loc} the \mathcal{L} -natural local Sobolev space. We shall assume that H has homogeneous dimension $Q \geq 3$. We work in this setting since we need the existence of a fundamental solution of $-\mathcal{L}$ of the type $\Gamma \sim cd^{2-Q}$, where d is the natural "distance" on H. We refer to section 2 for more precise definitions and additional notation.

The simplest example of this kind of operators is the classical Laplacian $\mathcal{L} = \Delta$ on $H = (\mathbb{R}^N, +)$, for $N = Q \ge 3$. The simplest non-abelian example is the Kohn Laplacian $\mathcal{L} = \Delta_{H^k}$ on the Heisenberg group $H = \mathbb{H}^k = (\mathbb{R}^{2k+1}, \circ)$, with homogeneous dimension Q = 2k + 2.

We consider a nonnegative weak solution $u \in S_{loc}(\Omega)$ of the Schrödinger-type inequality

$$(1.1) - \mathcal{L}u \leq Vu$$

(*) Indirizzo dell'A.: Dipartimento di Matematica, Università di Bologna, P.za di Porta S. Donato 5, 40127 Bologna (Italy). E-mail: uguzzoni@dm.unibo.it

in an unbounded domain Ω and we obtain an asymptotic behavior of u at infinity, starting from its L^p properties. The potential V will be supposed to belong to the space $L^q(\Omega)$ for all q in a neighborhood of Q/2, i.e. to the set

$$(1.2) \qquad L^{\,]Q/2[}(\varOmega) \coloneqq \big\{ v \in L^{\,Q/2}(\varOmega) \, \big| \, \exists q_1, \ q_2 \colon q_1 < \frac{Q}{2} < q_2, \quad v \in L^{\,q_1}(\varOmega) \cap L^{\,q_2}(\varOmega) \big\} \, .$$

Our technique relies on the use of some remarkable representation formulas on the *d*-balls and is inspired to a work of Simader [S] and one of Citti-Garofalo-Lanconelli [CGL].

We first consider inequality (1.1) in an exterior domain Ω (i.e. $\Omega = H \setminus F$ with F a compact subset of H). The following theorem is the main result of this note.

Theorem 1.1. Let Ω be an exterior domain of H and let $V \in L^{1Q/2}(\Omega)$. If $u \in S_{loc}(\Omega)$ is a nonnegative weak solution of

$$- \mathcal{L}u \leq Vu \quad in \ \Omega$$

such that $u \in L^p(\Omega)$ for a $p \in [Q/(Q-2), +\infty[$, then

$$u(\xi) = O\left(\frac{1}{d(\xi)^{Q/p}}\right), \quad as \ d(\xi) \to +\infty.$$

If moreover there exists $p_1 \in [1, Q/(Q-2)[$ such that $u \in L^{p_1}(\Omega) \cap L^{Q/(Q-2)}(\Omega)$, then

$$u(\xi) = O\left(\frac{1}{d(\xi)^{Q/p_1}}\right), \quad as \ d(\xi) \to +\infty.$$

REMARK 1.2. Theorem 1.1 holds true also removing the hypothesis on the nonnegativity of u if we replace the inequality $-\mathcal{L}u \leq Vu$ with $|\mathcal{L}u| \leq |Vu|$. In particular the Theorem holds for the equations $-\mathcal{L}u = Vu$, with u that may change sign.

We emphasize that in Theorem 1.1 no assumption is made about the boundary values of u. We also remark that $1/d^{Q/p} \in L^p_{\text{weak}}(H)$; hence our result can be considered optimal.

In Theorem 1.1 we deal with exterior domains since we need to write representation formulas on d-balls and allow to go to infinity both the center and the radius of the balls. This limitation can be overcome if we

are able to find an auxiliary function $w \ge u$ in Ω of the type $w = \Gamma * f$, with $f \le |V|u$ in H. This idea allows to get asymptotic behavior for solutions of Dirichlet problems related to (1.1) on arbitrary unbounded domains. In particular we derive the following theorem.

THEOREM 1.3. Let Ω be an (arbitrary) unbounded open subset of H and let $V \in L^{[Q/2]}(\Omega)$. If u is a nonnegative classical solution of

$$\begin{cases} -\mathcal{L}u \leq Vu & in \ \varOmega \\ u = 0 & in \ \partial \Omega \\ u(\xi) \to 0 & as \ d(\xi) \to +\infty \end{cases}$$

then

$$u(\xi) = O\left(\frac{1}{d(\xi)^s}\right)$$
 as $d(\xi) \to +\infty$, $\forall s < Q-2$.

REMARK 1.4. Theorem 1.3 holds true also removing the hypothesis on the nonnegativity of u if we replace the inequality $-\mathcal{L}u \leq Vu$ with $|\mathcal{L}u| \leq |Vu|$. In particular the Theorem holds for the equations $-\mathcal{L}u = Vu$, with u that may change sign.

We remark that in Theorem 1.3 we do not assume any a priori summability of u. We also remark that the «limit» behavior $O(1/d(\xi)^{Q-2})$ is the one of the fundamental solution of $-\mathcal{L}$.

The results of this note can be applied to semilinear equations of the type $-\mathcal{L}u=u^q$, whenever we know that u belongs to the suitable L^p spaces. Indeed if u is a weak solution in a (global) Sobolev space, say $u\in \mathcal{L}^p$ for every $p\in [2,2Q/(Q-2)]$), both the condition on u and on the potential $V=u^{q-1}$ could be automatically satisfied. For example, if 1+4/Q< q<(Q+2)/(Q-2), then we immediately obtain that $V=u^{q-1}$ belongs to the class $L^{1Q/2}$.

Moreover our results can be used as a starting point in order to obtain nonexistence theorems in unbounded domains. An example of application is given in [LU1] where we find asymptotic behavior of nonnegative weak solutions to the critical semilinear Dirichlet problem

$$\begin{cases} -\Delta_{H^k} u = u^{(Q+2)/(Q-2)} & \text{in } \Omega \\ u \in S_0^1(\Omega) \end{cases}$$

and we also prove some related nonexistence results (see also [U1]). We stress that the Sobolev space S_0^1 considered in [LU1]-[U1] is not embedded in L^2 ; hence a solution u of (1.3) belongs a priori to L^p only for p=2Q/(Q-2). Actually in [LU1] we prove that such a solution belongs to L^p for every $p\in Q/(Q-2)$, $+\infty$ (and so $V=u^{(Q+2)/(Q-2)-1}\in L^{Q/2}$) but this result is highly nontrivial, in particular for Q/(Q-2)< p< 2Q/(Q-2).

Other examples of application to nonexistence results for semilinear equations on the Heisenberg group will be given in the forthcoming papers [LU2] and [U2]. In this respect we point out that Liouville-type theorems for semilinear Δ_{H^k} -inequalities on some unbounded domains have been recently proved by Birindelli-Capuzzo Dolcetta-Cutrì [BCC]. Finally we quote that asymptotic behavior for capacitary problems on exterior domains of groups of Heisenberg type has been treated by Danielli-Garofalo [DG].

Acknowledgment. We would like to thank Prof. E. Lanconelli for his interest in this work and useful suggestions. We also thank the referee for having drawn our attention to the references [BCC] and [DG] and for some constructive comments.

2. Notation and definitions.

Let $(\mathcal{G}, [.])$ be a stratified nilpotent real Lie algebra and let (H, \circ) be its simply connected associated Lie group. We can identify H with \mathbb{R}^N , for a suitable $N \in \mathbb{N}$, and $(\mathcal{G}, [.])$ with the Lie algebra of \circ -left-invariant vector fields on \mathbb{R}^N , with the usual Lie bracket law [X, Y] = XY - YX. We denote by $\{\delta_\lambda\}_{\lambda>0}$ the group of dilations naturally associated to H and by Q the homogeneous dimension of H. Let $\mathcal{G} = \bigoplus_{j=1}^m \mathcal{G}_j$ be the stratification of \mathcal{G} and let $\{X_1, \ldots, X_n\}$ be a basis of \mathcal{G}_1 . We shall deal with the differential operator

$$\mathcal{L} = \sum_{j=1}^{n} X_j^2.$$

We recall that $X_1, ..., X_n$ generate the whole \mathcal{G} by the assumption \mathcal{G} stratified. Moreover, if we set

$$\nabla_{\mathcal{L}} = (X_1, \ldots, X_n)$$

then $\nabla_{\mathcal{L}}$ and \mathcal{L} are homogeneous, w.r.t. the dilations δ_{λ} , of degree one and of degree two respectively.

Throughout the paper we will make the assumption

$$Q \ge 3$$

on the homogeneous dimension of H. We remark that, if $Q \leq 3$, then it is necessarily $\mathcal{G} = \mathcal{G}_1$, (H, \circ) is simply $(\mathbb{R}^Q, +)$ and \mathcal{L} is the Laplace operator Δ on \mathbb{R}^Q . If $Q \geq 3$, there exists a homogeneous norm $|\cdot|_{\mathcal{L}}$ on H such that, setting

$$d_{\xi}(\eta) = |\eta^{-1} \circ \xi|_{\mathcal{L}},$$

a fundamental solution of $-\mathcal{L}$ with pole at ξ is given by

(2.1)
$$\Gamma_{\xi} = \frac{c_Q}{d_{\xi}^{Q-2}}$$

where c_Q is a suitable positive constant depending only on Q (see [G]). We set

$$d(\xi, \eta) = d_{\xi}(\eta), \qquad \Gamma(\xi, \eta) = \Gamma_{\xi}(\eta).$$

Moreover we will often write $d(\eta)$ instead of $d_0(\eta)$ and $\Gamma(\eta)$ instead of $\Gamma_0(\eta)$. We recall that a homogeneous norm on H is a function $|\cdot|: H \to [0, +\infty[$ such that $|\cdot| \in C^{\infty}(H \setminus \{0\}) \cap C(H), |\xi| = 0$ iff $\xi = 0, |\xi| = |\xi^{-1}| (= |-\xi|)$ and

$$(2.2) |\delta_{\lambda}\xi| = \lambda |\xi|.$$

Moreover any homogeneous norm satisfies the following triangle inequality

$$|\xi \circ \eta| \le c(|\xi| + |\eta|)$$

for a suitable $c \ge 1$. Hence there exists $\beta \ge 1$ such that

(2.3)
$$d(\xi, \eta) \leq \beta(d(\xi, \zeta) + d(\zeta, \eta))$$

for every ξ , η , $\zeta \in H$. Moreover, since $|\xi|_{\mathcal{L}} = |\xi^{-1}|_{\mathcal{L}}$, it is also

$$d(\xi, \eta) = d(\eta, \xi).$$

We denote the d-balls on H by

$$B_d(\xi, r) = \{ \eta \in H \mid d(\xi, \eta) < r \}.$$

Since the Lebesgue measure is a Haar measure on H we have

$$|B_d(\xi, r)| = |B_d(0, r)| = r^Q |B_d(0, 1)|.$$

Moreover on H the following polar coordinates formula holds:

$$\int_{H} f(d(\xi)) d\xi = Q |B_{d}(0, 1)| \int_{0}^{+\infty} f(\varrho) \varrho^{Q-1} d\varrho.$$

In particular it follows that, for every $s \in]0, Q[$,

$$(2.4) \qquad \frac{1}{d_{\xi}^{s}} \in L^{p}(B_{d}(\xi,1)) \cap L^{q}(H \setminus B_{d}(\xi,1)), \quad \text{for } 1 \leq p < \frac{Q}{s} < q \leq +\infty.$$

We also remark that

$$(2.5) |\nabla_{\mathcal{L}} d_0| \in L^{\infty}(H)$$

since $abla_{\mathcal{L}} d_0$ is homogeneous of degree zero w.r.t. the dilations δ_{λ} and then

$$\sup_{\xi \neq 0} \left| (\nabla_{\mathcal{L}} d_0)(\xi) \right| = \sup_{\xi \neq 0} \left| (\nabla_{\mathcal{L}} d_0)(\delta_{1/d_0(\xi)} \xi) \right| = \max_{d_0(\eta) = 1} \left| (\nabla_{\mathcal{L}} d_0)(\eta) \right|.$$

More details on nilpotent Lie algebras and homogeneous groups can be found, for example, in [FH], [F] and [RS].

If Ω is an open subset of H, we denote by $S(\Omega)$ the Sobolev space of the functions $u \in L^2(\Omega)$ such that $\nabla_{\mathcal{L}} u \in L^2(\Omega)$. The norm in $S(\Omega)$ is given by

$$||u||_{S(\Omega)} = \left(\int_{\Omega} |\nabla_{\mathcal{L}} u|^2 + u^2\right)^{1/2}.$$

Moreover we denote by $S_{\mathrm{loc}}(\Omega)$ the set of those $u \in L^2_{\mathrm{loc}}(\Omega)$ such that $\varphi u \in S(\Omega)$ for every $\varphi \in C_0^{\infty}(\Omega)$. Let $V \in L^{|Q/2|}(\Omega)$; a function $u \in S_{\mathrm{loc}}(\Omega)$ is called a weak solution of

$$-\mathcal{L}u \leq Vu$$
 in Ω

if

$$\int\limits_{\Omega} \langle \nabla_{\mathcal{L}} u \,,\, \nabla_{\mathcal{L}} \varphi \rangle \leq \int\limits_{\Omega} V u \varphi \qquad \forall \varphi \in C_0^{\infty}(\Omega), \quad \varphi \geq 0 \;.$$

We remark that in the definition above $Vu \in L^1_{loc}$ since $u \in S_{loc} \subseteq L^{Q/(Q-2)}_{loc}$ and $V \in L^{Q/2}$. We also remark that every classical solution of $-\mathcal{L}u \leq Vu$ is a weak solution in our definition, since $X_j^* = -X_j$ for $j = 1, \ldots, n$.

3. Proof of the main theorems.

The following representation formula plays a basic role in the proof of Theorem 1.1. Let Ω be an open subset of H and $u \in S_{loc}(\Omega)$; then for a.e. $\xi \in \Omega$ and every r > 0 such that $\overline{B_d(\xi, r)} \subseteq \Omega$, we have

$$(3.1) u(\xi) = (M_r u)(\xi) + \frac{Q}{r^Q} \int_0^r \varrho^{Q-1} \left(\int_{B_d(\xi, \varrho)} \langle \nabla_{\mathcal{L}} \Gamma_{\xi}, \nabla_{\mathcal{L}} u \rangle \right) d\varrho$$

where M_r is the mean value operator defined by

$$(3.2) (M_r u)(\xi) = \frac{c}{r^Q} \int_{B_s(\xi, r)} |\nabla_{\mathcal{L}} d_{\xi}|^2 u$$

and c is a suitable positive constant. This formula has been proved in [CGL], Proposition 2.3. We have only replaced the \mathcal{L} -balls $\Omega_r(\xi) = \{\Gamma_{\xi} > 1/r\}$ of [CGL] with our d-balls and used the «explicit» expression of $\Gamma(2.1)$. We remark that the integral in the right-hand side of (3.1) is finite since (using (2.5))

$$\left|\left\langle \nabla_{\mathcal{L}} \Gamma_{\xi}, \, \nabla_{\mathcal{L}} u \right\rangle (\eta) \right| \leq \left| \nabla_{\mathcal{L}} \Gamma_{\xi} \right\| \nabla_{\mathcal{L}} u \left| (\eta) \right| \leq c d(\xi, \, \eta)^{1 - Q} \left| \nabla_{\mathcal{L}} u (\eta) \right| \in L^{1}_{\text{loc}, \, \eta}$$

for a.e. $\xi \in \Omega$ by Tonelli's Theorem, since $d(\xi, \eta)^{1-Q} \in L^1_{\text{loc}, \xi}$ (see (2.4)) and $|\nabla_{\mathcal{L}} u(\eta)| \in L^1_{\text{loc}, \eta}$.

We define $r: H \to [0, +\infty[$

$$(3.3) r(\xi) = \frac{d(\xi)}{4\beta^3}$$

where β has been introduced in (2.3).

Lemma 3.1. Let Ω be an exterior domain of H, let $V \in L^{\lceil Q/2 \rceil}(\Omega)$ and let $u \in S_{loc}(\Omega)$ be a nonnegative weak solution of

$$- \mathcal{L}u \leq Vu \quad in \ \Omega$$

such that $u \in L^p(\Omega)$ for $a p \in [1, +\infty[$. If there exist $s \in]0, Q/p]$ and two

positive constant R, M such that

(3.4)
$$\int_{B_d(\xi, 2\beta r(\xi))\setminus B_d(\xi, r(\xi))} \Gamma_{\xi} |V| u \leq \frac{M}{r(\xi)^s}, \quad \text{for } d(\xi) > R,$$

then

$$u(\xi) = O\left(\frac{1}{d(\xi)^s}\right), \quad as \ d(\xi) \to +\infty.$$

PROOF. For every exponent $t \in]1$, $+\infty[$ we shall denote by t' = t/(t-1) the conjugate exponent of t. Since $V \in L^{\lceil Q/2 \rceil}(\Omega)$ there exist q_1, q_2 such that $1 < q_1 < Q/2 < q_2 < +\infty$ and

$$(3.5) V \in L^{q_1}(\Omega) \cap L^{q_2}(\Omega).$$

Moreover $q_2' < (Q/2)' = Q/(Q-2) < q_1'$ and then

(3.6)
$$\Gamma \in L^{q'_2}(B_d(0,1)) \cap L^{q'_1}(H \setminus B_d(0,1))$$

by means of (2.1) and (2.4).

For every $\xi \in H$ and r > 0 such that $\overline{B_d(\xi, r)} \subseteq \Omega$, we define (see (3.2))

$$M_r(\xi) = (M_r u)(\xi),$$

$$N_r(\xi) = \int\limits_{B_d(\xi, r)} \Gamma_{\xi} |V|$$

and

$$I_r(\xi) = \int\limits_{B_d(\xi, r)} \Gamma_{\xi} |V| u = \int\limits_{B_d(\xi, r)} \Gamma(\xi, \eta) |V| (\eta) u(\eta) d\eta.$$

We remark that $I_r(\xi) < +\infty$ a.e. by Tonelli's Theorem, since $\Gamma(\xi, \eta) \in L^1_{\text{loc}, \xi}$ and $(Vu)(\eta) \in L^1_{\text{loc}, \eta}$ because $u \in S_{\text{loc}} \subseteq L^{Q/(Q-2)}_{\text{loc}}$ and $V \in L^{Q/2}$. Moreover

$$(3.7) N_{r}(\xi) \leq \|\Gamma_{\xi}\|_{L^{q_{2}}(B_{d}(\xi, 1))} \|V\|_{L^{q_{2}}(B_{d}(\xi, r))} + \|\Gamma_{\xi}\|_{L^{q_{1}}(H \setminus B_{d}(\xi, 1))} \|V\|_{L^{q_{1}}(B_{d}(\xi, r))}$$

$$\leq c(\|V\|_{L^{q_{2}}(B_{d}(\xi, r))} + \|V\|_{L^{q_{1}}(B_{d}(\xi, r))})$$

by (3.6). In particular (3.5) and (3.7) give

$$\sup_{\{\xi,\,r\mid\overline{B_d(\xi,\,r)}\subseteq\Omega\}} N_r(\xi) \leq c\;.$$

By (2.5), (3.2) and the assumption $u \in L^p(\Omega)$ we can estimate also M_r and get

$$(3.9) M_r(\xi) \leqslant \frac{c}{r^Q} \int_{B_d(\xi, r)} u \leqslant \frac{c}{r^Q} ||u||_p ||1||_{L^{p'}(B_d(\xi, r))} = \frac{c}{r^Q} r^{Q/p'} = \frac{c}{r^{Q/p}}.$$

Let us now recall the representation formula (3.1) for u. Since $-\mathcal{L}u \le Vu$ weakly in Ω , it is not difficult to see that

$$\int\limits_{B_d(\xi,\,\varrho)} \left\langle \nabla_{\mathcal{L}} \Gamma_{\xi},\, \nabla_{\mathcal{L}} u \right\rangle \leqslant \int\limits_{B_d(\xi,\,\varrho)} \left(\Gamma_{\xi} - \frac{c_Q}{\varrho^{\,Q-2}} \right) |V| u$$

(one only needs to approximate $(\Gamma_{\xi} - c_Q/\varrho^{Q-2})$ with a suitable sequence of functions $C_0^{\infty}(\Omega)$). Then we get

$$(3.10) \quad u(\xi) \leq M_r(\xi) + \frac{Q}{r^Q} \int_0^r \varrho^{Q-1} \left(\int_{B_d(\xi, \varrho)} \left(\Gamma_{\xi} - \frac{c_Q}{\varrho^{Q-2}} \right) |V| u \right) d\varrho$$

$$\leq M_r(\xi) + \frac{Q}{r^Q} \int_0^r \varrho^{Q-1} \left(\int_{B_d(\xi, r)} \Gamma_{\xi} |V| u \right) d\varrho$$

$$= M_r(\xi) + I_r(\xi) \leq \frac{c}{r^{Q/p}} + I_r(\xi)$$

(by (3.9)). Hence, if $\overline{B_d(\xi, 2\beta r)} \subseteq \Omega$ (see (2.3)), we have

$$(3.11) I_{r}(\xi) \leq \int\limits_{B_{d}(\xi, r)} \Gamma_{\xi}(\eta) \left| V \right| (\eta) \left(\frac{c}{r^{Q/p}} + I_{r}(\eta) \right) d\eta$$

$$\leq \frac{c}{r^{Q/p}} N_{r}(\xi) + \int\limits_{B_{d}(\xi, r)} \Gamma_{\xi} \left| V \right| I_{r} \leq \frac{c}{r^{Q/p}} + \int\limits_{B_{d}(\xi, r)} \Gamma_{\xi} \left| V \right| I_{r}$$

(by (3.8)). Moreover, if $\overline{B_d(\xi, 3\beta^2 r)} \subseteq \Omega$, then

$$(3.12) \int_{B_{d}(\xi,r)} \Gamma_{\xi} |V| I_{r} = \int_{B_{d}(\xi,r)} \Gamma(\xi,\eta) |V|(\eta) \left(\int_{B_{d}(\eta,r)} \Gamma(\eta,\zeta) |V|(\zeta) u(\zeta) d\zeta \right) d\eta$$

$$= \int_{B_{d}(\xi,2\beta r)} |V|(\zeta) u(\zeta) \left(\int_{B_{d}(\xi,r) \cap B_{d}(\zeta,r)} \Gamma(\xi,\eta) \Gamma(\eta,\zeta) |V|(\eta) d\eta \right) d\zeta$$

$$\leq c \sup_{\xi \in B_{d}(\xi,2\beta r)} N_{r}(\xi) \int_{B_{d}(\xi,2\beta r)} \Gamma_{\xi} |V| u$$

since, setting $A = B_d(\xi, r) \cap B_d(\xi, r)$, $A_1 = \{ \eta \in A \mid d(\eta, \xi) \leq \leq d(\xi, \xi) / (2\beta) \}$ and $A_2 = A \setminus A_1$, we have (note that $d(\xi, \eta) \geq d(\xi, \xi) / (2\beta)$ for every $\eta \in A_1$)

$$\int_{A} \Gamma_{\xi} \Gamma_{\zeta} |V| = \int_{A_{1}} \Gamma_{\xi} \Gamma_{\zeta} |V| + \int_{A_{2}} \Gamma_{\xi} \Gamma_{\zeta} |V|$$

$$\leq c\Gamma(\xi, \zeta) \left(\int_{A_{1}} \Gamma_{\zeta} |V| + \int_{A_{2}} \Gamma_{\xi} |V| \right)$$

$$\leq c\Gamma(\xi, \zeta) \left(N_{r}(\zeta) + N_{r}(\xi) \right).$$

From now on we will take $r = r(\xi)$ (see (3.3)); in this way $B_d(\xi, 3\beta^2 r) \subseteq H \setminus B_d(0, r) \subseteq \Omega$, for large $d(\xi)$. Using this fact we obtain

$$\sup_{\zeta\in B_d(\xi,\,2\beta r(\xi))} N_{r(\xi)}(\zeta) \leq c(\|V\|_{L^{q_2}(H\backslash B_d(0,\,r(\xi)))} + \|V\|_{L^{q_1}(H\backslash B_d(0,\,r(\xi)))}) \stackrel{d(\xi)\to +\infty}{\Longrightarrow} 0$$

by means of (3.7) and (3.5). Hence there exists $R_0 > R$ such that, for $d(\xi) > R_0$, we have (see (3.12))

$$(3.13) \int_{B_{d}(\xi, r(\xi))} \Gamma_{\xi} |V| I_{r(\xi)} \leq \frac{1}{2} \int_{B_{d}(\xi, 2\beta r(\xi))} \Gamma_{\xi} |V| u$$

$$= \frac{1}{2} I_{r(\xi)}(\xi) + \frac{1}{2} \int_{B_{d}(\xi, 2\beta r(\xi)) \setminus B_{d}(\xi, r(\xi))} \Gamma_{\xi} |V| u$$

$$\leq \frac{1}{2} I_{r(\xi)}(\xi) + \frac{M}{2r(\xi)^{s}}$$

by assumption (3.4). From (3.11) and (3.13) we finally get, for $d(\xi) > R_0$,

$$\frac{1}{2}I_{r(\xi)}(\xi) \leqslant \frac{c}{r(\xi)^{Q/p}} + \frac{c}{r(\xi)^s}.$$

This estimate and (3.10) allow us to conclude that

$$u(\xi) = O\left(\frac{1}{d(\xi)^s}\right), \quad \text{as } d(\xi) \to +\infty$$

since $r(\xi) = d(\xi)/(4\beta^3)$ and $s \le Q/p$.

PROOF OF THEOREM 1.1. To prove the first part of the statement we only need to obtain (3.4) for s = Q/p and then use Lemma 3.1. If p = Q/(Q-2) we have (for large $d(\xi)$)

$$\int_{B_{d}(\xi,2\beta r(\xi))\backslash B_{d}(\xi,r(\xi))} \Gamma_{\xi} |V| u = \int_{B_{d}(\xi,2\beta r(\xi))\backslash B_{d}(\xi,r(\xi))} \frac{c_{Q}}{d_{\xi}^{Q-2}} |V| u \leq \frac{c}{r(\xi)^{Q-2}} \int_{H} |V| u$$

$$\leq \frac{c}{r(\xi)^s} ||V||_{Q/2} ||u||_{Q/(Q-2)}$$

and then (3.4) holds.

We now suppose p > Q/(Q-2). For every exponent $t \in]1, +\infty[$ we shall denote by t' = t/(t-1) the conjugate exponent of t. Since $V \in L^{1Q/2[}(\Omega)$ there exists q < Q/2 such that Q/(Q-2) = (Q/2)' < q' < p and $V \in L^q(\Omega)$. Moreover Q-2-s=Q-2-(Q/p)>0. Hence

$$\frac{Q-2-s}{Q}\,q^{\,\prime}>\frac{Q-2-Q/p}{Q-2}=1-\frac{Q/(Q-2)}{p}>1-\frac{q^{\,\prime}}{p}=\frac{1}{(p/q^{\,\prime})^{\,\prime}}$$

and then (see (2.4))

$$\frac{1}{d_0^{(Q-2-s)q'}} \in L^{(p/q')'}(H \setminus B_d(0,1)).$$

We can now obtain (3.4). For large $d(\xi)$ we have

$$\begin{split} \int_{B_{d}(\xi,2\beta r(\xi))\backslash B_{d}(\xi,r(\xi))} \Gamma_{\xi} |V| \, u &\leq \frac{c}{r(\xi)^{s}} \int_{B_{d}(\xi,2\beta r(\xi))\backslash B_{d}(\xi,r(\xi))} |V| \, \frac{u}{d_{\xi}^{Q-2-s}} \\ &\leq \frac{c}{r(\xi)^{s}} \|V\|_{q} (\|u^{q'}\|_{p/q'} \|d_{\xi}^{-(Q-2-s)q'}\|_{L^{(p/q')'}(H\backslash B_{d}(\xi,\,1))})^{1/q'} \\ &\leq \frac{c}{r(\xi)^{s}} \|d_{0}^{-(Q-2-s)q'}\|_{L^{(p/q')'}(H\backslash B_{d}(0,\,1))}^{1/q'} \leq \frac{c}{r(\xi)^{s}} \, . \end{split}$$

Let us now prove the second part of the theorem. We know that $u \in L^{p_1} \cap L^{Q/(Q-2)}$ for a $p_1 \in [1, Q/(Q-2)[$. By means of Lemma 3.1 we only need to prove that (3.4) holds for $s = Q/p_1$. For every $t \in]0, Q/p_1[$ we set

$$\sigma(t) = Q - 2 + t - \frac{p_1 t(Q - 2)}{Q}$$

and we claim that (3.4) holds for $s = \sigma(t)$ if (3.4) holds for s = t. Indeed, by Lemma 3.1, if (3.4) holds for s = t then

(3.14)
$$u(\xi) = O\left(\frac{1}{d(\xi)^t}\right), \quad \text{as } d(\xi) \to +\infty ;$$

therefore, for large $d(\xi)$,

$$\begin{split} \int\limits_{B_{d}(\xi,2\beta r(\xi))\backslash B_{d}(\xi,r(\xi))} \Gamma_{\xi}|V|u &\leq \frac{c}{r(\xi)^{Q-2}} \|V\|_{Q/2} \bigg(\int\limits_{B_{d}(\xi,2\beta r(\xi))} u^{Q/(Q-2)-p_{1}} u^{p_{1}}\bigg)^{(Q-2)/Q} \\ &\leq \frac{c}{r(\xi)^{Q-2}} \|u\|_{L^{\infty}(H\backslash B_{d}(0,r(\xi)))}^{1-(p_{1}(Q-2))/Q} \|u\|_{p_{1}}^{p_{1}(Q-2)/Q} &\leq \frac{c}{r(\xi)^{\sigma(t)}} \end{split}$$

(by means of (3.14) and (3.3)).

Since $u \in L^{Q/(Q-2)}(\Omega)$, (3.4) holds for s=Q-2 (see the beginning of the proof); moreover if we set

$$\begin{cases}
t_1 = Q - 2 \\
t_{k+1} = \sigma(t_k)
\end{cases}$$

it is easy to see that $t_k \nearrow (Q/p_1)$. Henceforth (3.4) holds for every $s \in$

 \in]0, Q/p_1 [. In particular if we choose q < Q/2 such that $V \in L^q(\Omega)$ and we set

$$\tau = \frac{Q/p_1 - Q + 2}{1 - p_1/q'}$$

we have $0 < \tau < Q/p_1$ and then (3.4) holds for $s = \tau$. Hence, by Lemma 3.1,

(3.15)
$$u(\xi) = O\left(\frac{1}{d(\xi)^{\tau}}\right), \quad \text{as } d(\xi) \to +\infty.$$

We are now able to prove (3.4) for $s = Q/p_1$. In fact we have (for large $d(\xi)$)

$$\int_{B_{d}(\xi, 2\beta r(\xi))\setminus B_{d}(\xi, r(\xi))} \Gamma_{\xi} |V| u \leq \frac{c}{r(\xi)^{Q-2}} ||V||_{q} \left(\int_{B_{d}(\xi, 2\beta r(\xi))} u^{q'-p_{1}} u^{p_{1}} \right)^{1/q'}$$

$$\leq \frac{c}{r(\xi)^{Q-2}} ||u||_{L^{\infty}(H\setminus B_{d}(0, r(\xi)))}^{1-p_{1}/q'} ||u||_{p_{1}}^{p_{1}/q'}$$

$$\leq \frac{c}{r(\xi)^{Q-2+\tau(1-p_{1}/q')}} = \frac{c}{r(\xi)^{Q/p_{1}}}$$

(by means of (3.15) and (3.3)).

Proof of Theorem 1.3. We set

$$f = \begin{cases} |V|u & \text{in } \Omega \\ 0 & \text{in } H \setminus \Omega \end{cases}$$

and we define $w: H \to \mathbb{R}$,

$$w(\xi) = (\Gamma * f)(\xi) = \int_H \Gamma(\xi^{-1} \circ \eta) f(\eta) d\eta.$$

Then $w \ge 0$ and $-\mathcal{L}w = f$ weakly in H. In particular $u \le w$ in $\partial \Omega \cup \{\infty\}$ and $-\mathcal{L}u \le |V|u = -\mathcal{L}w$ in Ω . Hence

$$(3.16) 0 \le u \le w in \Omega$$

by the weak maximum principle for \mathcal{L} . Moreover if $t \in]1$, Q/2[and $f \in]1$

 $\in L^t(H)$ then

$$(3.17) w \in L^{(1/t - 2/Q)^{-1}}(H)$$

and

(3.18)
$$\nabla_{\mathcal{E}} w \in L^{(1/t - 1/Q)^{-1}}(H)$$

(see [RS], Proposition B, p. 264).

Since $V \in L^{[Q/2]}(\Omega)$ there exists $q_1 \in]1$, Q/2[such that $V \in L^{q_1}(\Omega) \cap L^{Q/2}(\Omega)$. We now fix $q \in]q_1$, Q/2[and we set q' = q/(q-1) and

$$\varepsilon = \frac{1}{q} - \frac{2}{Q}.$$

If $p \in]q'$, $+\infty$] and $u \in L^p(\Omega)$ then $f \in L^t(H)$ for $t = (1/q + 1/p)^{-1}$, since

$$\int\limits_{O} |Vu|^{t} \leq ||V|^{t}||_{q/t} ||u^{t}||_{p/t} = ||V||_{q}^{t} ||u||_{p}^{t}.$$

Moreover $t \in]1, q] \subseteq]1, Q/2[$ and then we get $w \in L^{(1/t-2/Q)^{-1}}(H) = L^{(1/p+\varepsilon)^{-1}}(H)$ (see (3.17)) and also $u \in L^{(1/p+\varepsilon)^{-1}}(\Omega)$ (see (3.16)). We know a priori that $u \in L^{\infty}(\Omega)$; hence we can iterate the process above and get $w \in L^{q'}(H)$. Since $q \in]q_1, Q/2[$ is arbitrary, we finally obtain

(3.19)
$$w \in L^p(H) \quad \forall p \in \left[\frac{Q}{Q-2}, +\infty \right[.$$

Moreover, using (3.18) one can easily see that $w \in S_{loc}(H)$. Hence w is a nonnegative weak solution of

$$\begin{cases} -\mathcal{L}w \leq |V|w & \text{in } H \\ w \in S_{\text{loc}}(H) \end{cases}$$

(see (3.16)). It follows that

$$w(\xi) = O\left(\frac{1}{d(\xi)^s}\right)$$
 as $d(\xi) \to +\infty$, $\forall s < Q-2$,

by means of (3.19) and Theorem 1.1. Again by (3.16) we finally get our statement.

REFERENCES

- [BCC] I. BIRINDELLI I. CAPUZZO DOLCETTA A. CUTRÌ, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), pp. 295-308.
- [CGL] G. CITTI N. GAROFALO E. LANCONELLI, Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math., 115 (1993), pp. 699-734.
- [DG] D. DANIELLI N. GAROFALO, Geometric properties of solutions to subelliptic equations in nilpotent Lie groups, Reaction diffusion systems, Lecture Notes in Pure and Appl. Math., 194 (1995), pp. 89-105.
- [F] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), pp. 161-207.
- [FH] W. FULTON J. HARRIS, Representation Theory, Grad. Texts in Math., 129, Springer-Verlag, New York (1991).
- [G] L. GALLARDO, Capacités, mouvement Brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents, Lecture Notes in Math., 928 (1982), pp. 96-120.
- [LU1] E. LANCONELLI F. UGUZZONI, Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group, Boll. Un. Mat. Ital., (8), 1-B (1998), pp. 139-168.
- [LU2] E. LANCONELLI F. UGUZZONI, Non-existence results for semilinear Kohn-Laplace equations in unbounded domains, preprint.
- [RS] L. P. ROTHSCHILD E. M. STEIN, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1977), pp. 247-320.
- [S] C. G. SIMADER, An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z., 203 (1990), pp. 129-152.
- [U1] F. UGUZZONI, A non-existence theorem for a semilinear Dirichlet problem involving critical exponent on halfspaces of the Heisenberg group, NoDEA Nonlinear Differential Equations Appl., 6, n. 2 (1999).
- [U2] F. UGUZZONI, A note on Yamabe-type equations on the Heisenberg group, preprint.

Manoscritto pervenuto in redazione il 16 giugno 1997.