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REND. SEM. MAT. UN1v. PADOVA, Vol. 102 (1999)

Existence of Semi-Periodic Solutions of Steady
Navier-Stokes Equations in a Half Space
with an Exponential Decay at Infinity.

YOUCEF AMIRAT - DIDIER BRESCH
JEROME LEMOINE - JACQUES SIMON (¥)

ABSTRACT - We prove the existence of a solution of steady Navier-Stokes equa-
tions in a half-space which is periodic in the directions parallel to the boun-
dary and which decays exponentially fast with respect to the distance to the
boundary. In fact, the decay holds as soon as the energy over a period is
finite.

1. Introduction.

Our objective is to prove the existence of a solution (u, p) of the
steady Navier-Stokes equations

(e8] —vdu+u-Vu+Vp=0, Vu=0, U|,_o=Yy

in the half space R3. which is periodic with respect to «; and «,, and which
decay exponentially fast as well as all its derivatives as x3— .

This study has been motivated by the analysis of the asymptotic be-
haviour of hydrodynamic drag of a plate covered by periodic asperities,
when their size goes to 0. We refer to [3], [4] in the case of Stokes
flow.

In a first part, we will prove the existence of a solution whose

(*) Indirizzo degli AA.: Laboratoire de Mathématiques Appliquées, CNRS
UMR 6620, Blaise Pascal University (Clermont-Ferrand 2), 63177 Aubiére cedex,
France.
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energy is finite by a contradiction method due to J. Leray [10],
see also C. Amick [2], W. Borchers and K. Pileckas [5].

In a second part, we will prove the exponential decay of every such
solution by a technique similar to the one in K. A. Ames, L. E. Payne [1],
G. P. Galdi [6], C. O. Horgan, L. T. Wheeler [8], O. A. Ladyshenskaya, V.
A. Solonnikov [9] for Navier-Stokes equations in a semi-infinite channel
with Dirichlet condition on the lateral boundary. There is an additional
difficulty here, which is that we can no longer use the Poincaré inequali-
ty to bound the integral I |u|? over any cross section =, of the channel,

since % does no longer cgtncel on the boundary when the Dirichlet condi-
tion is replaced by periodicity. We will overcome this difficulty by esta-
blishing (Lemma 5) a convenient estimate of the mean value of % over X',
which allows us to use the Poincaré-Wirtinger inequality instead of the
Poincaré one.

2. Functional spaces and notations.

In all the paper long, for vector valued functions u = (u,, us, u3),
v=(vy, Vg, V), W= (wy, Wy, w3), we denote u-v=2Du;v;, Vu-Vv=

= 218;u;3;v; and u- Vv and v- Va-w the vector and scalar valued functions

i
respectively defined by

(Vo) = 2u; 3;v;,  u-Vo-w= 2u;8;vw.
3 i

We denote R = {xeR3: 23>0}, x' = (2, x), S = (0, [;) X (0, I,) and,
for t =0,

O,={zeR® x' eS8, x3>1},
S, ={zeR® x'eS, x5=t},
©=0,, =3, and 4,= 6\6,, that is
Ay={xeR®2'eS,0<u3<t}.

For any subset 2 of R? we denote ((£2) the space of @* functions
with compact support in 2 and @' () the space of distributions on L.
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For 1 <r< », we denote W""(Q) = {veL"(Q): Vve(L"(2))}},
3
W)= {ve@’(!)):v=vo+ 2 9v;, v;eL™(Q), j=0, ..., 3],
i=1

HY(Q)=W"%(Q) and H }(Q) =W 12(Q).
We define the space of functions which are periodic with respect to ;
and x, with periods [; and [, by

Lier(0) = { fe L. (R%): fe L"(O),

f(@y, a2, €3) = flay + Uy, #, 3) = flay, X+ L, 3)}
Wi (0) = { fe Wi (R%): fe Wh"(6),

Sy, @9, €3) = fl@; + Uy, %, 03) = flay, X2+ b, x3)}

equipped respectively with the norm of L"(@) and W ().

We define similar spaces Lg..(4;) and WI}g,'(At) by replacing in the
above definitions R% by {x e R®: 0 <u3 <t}, and we define Wiy /" "(2)
as the trace spaces of Wy, (O).

Finally, we denote

Vi={veHp(4)): V-v=0,v|545,=0}.

3. Main results.

All this paper long, we assume that the prescribed velocity ¥ on the
boundary X is periodic and that its flux across X cancels. More
precisely

@) yeHE®P,  [ysds=0.
z

Our first result gives the existence of a periodic solution in the whole
space R% with a finite enstrophy over the «period» @.

THEOREM 1. There exists a solution of (1) satisfying

@)  ueH (), pelin(®), [|Vuf’<w. =
e

Our second main result gives the exponential decay of such a solution
and of all its derivatives.
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THEOREM 2. Let (u, p) satisfy (1), (2) and (3). Then, there exist
U €R® and p, eR such that

) | 0% (w() — U )| + | 3% (p(2) ~ po )| < c exp(—on3)

for all x such that x3 =1 and for all |a| =0, where ¢ and o are positive
numbers depending only on 1, y, v, a and on any arbitrary bound E of
f [Vu|Z =

)

This means that, given E, (4) is satisfied for all (u, p) such that
[Ivul?<E.

It follows from (4) that u, p and all their derivatives are uniformly
continuous in @; for any t > 0. The uniform continuity up to the boun-
dary X, that is the case t =0, requires, in addition, y to be smooth.

Moreover, by integration (4) gives, for all m =0, 1<g< o and
t>0,

u_qu(Wm,q(@t))3’ p_pooEWm'q(@t)3

with a norm bounded for all {=1 by c'exp(—ot) where c¢'=
= (aq) V.

In addition, % —u.,e(HY(®)®*N(LSO))? and p-p.,ecH 1(O)
since the enstrophy is finite (for fluids, the energy is I |%|? and f | Ve |?
is named the enstrophy).

Finally, let us remark that (., p.) is obviously unique for a given
(u, p). It satisfies, cf. (32),

|wal < | [7]+ et ») [ |Vul?
z e

4. Proof of Theorem 1.

We will use the following two lemmas, on the existence of a solenoidal
extension of y and on Euler equation, which are proved at the end of this
section.

LEMMA 3. There exists he (Hp(©))® such that
h=y on X, h=0 outside A,, V-h=0. =
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LEMMA 4. (i) Let beV,, satisfy, for all veV,,

[o-vb-v=0.

Am

Then there exists q e Wi?(A,,) such that
®) b-Vb+Vg=0.
Moreover q is constant on 2 and on X ,.

(ii) Let be (Hper, 10e(®))? satisfy V-b =10, b|z = 0 and, for all m and
for all veV,,

j b-Vbv=0.

A
Then there exists q e Wpe'2.(®) such that
b-Vb+Vg=0.
Moreover q is constant on =. =
FIRST STEP: WEAK SOLUTION. First of all, let us remark, setting w =

= u — h where h is defined by Lemma 3, that the equation (1) is equivalent
to

—vAw+w-Vw + h-Vw +w-Vh + Vp =v4h — h-Vh |
(6) Vw=0, w|,-0=0.
We will find a weak solution w of these equations, which means that it
satisfies (6),
@ we (Hi,10e(0), [ |V00]2< o0,
]

and, denoting ~ the extension by 0 for x; = m: for all veV,, for all
m,
®) [vVw-V5 +00-Ve0-5 +h-Voo-§ +w-Vh-p = ijh-va +h-Vh-3.

e [C]

At first, given an integer number m = 1, we will prove the existence of an
approached solution w,, € V,,, defined on the bounded set A,, such that,
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for all veV,,

9) Jvam-Vv+wm-V'wm-v+h'Vwm-v+wm-Vh~v=
Am

- — vah,-Vv+h-Vh-v.
Ay

Then, we will see that I | Vw,, |2 remains bounded. Finally, we will get a

Am
solution w of (6)-(8) by passing to the limit on the solutions w,,.

Existence of a weak solution w,, of (9). To prove it, we argue as in J.
Leray [10] (see also C. Amick [2], W. Borchers and K. Pileckas [5]). The
space V,, being equipped with the inner product

(u, v) = I Vu-Vo,
Am
a compact operator N,, from V,, into itself and a function F,, e V,, are de-

fined by

(Np Wy, v) = — f W, VW, v + h-Vw,,-v+w,,-Vh-v,
A

(F,,v)=— IvVh-Vv+h-Vh-v.
Ay

Then, by the Riesz representation theorem, the variational equation (9)
is equivalent to the following equation in V,,:

(10) YWy — Ny Wy, = F,.

To prove the existence of a solution w,, of (10), we use the Leray-
Schauder principle, that is we have to prove that the set of all possible
solutions of the equation

1) w* = AN, w*=v-1F,  Ael0,v"!]

is bounded in V,,. In order to conclude by contradiction, let us suppose
that there exists a sequence (1,),>; in [0, v~!] converging to A,e
e[0, v~ 1] and w®=w?* such that

otlly,— 0 as 5> .
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Denoting b°® = |lw®|l;! w® we get, since |[b*|ly, =1 for all s, the existence
of a subsequence, still denoted (b°), converging weakly in V,, to some b.
Let us check that b satisfies the two contradictory equations

12) 1-4, j b-Vb-h=0,
Am
and
(13) jb-Vb-h=0.
Am

The equation (11) for A = A, gives, for all veV,,,

(14) Jsz-Vv+/13Iws-sz-v+h-sz-v+ws‘Vh~v=

_ 1
v

I vwWh-Vo+ h-Vh-v.

A

Moreover, for all v, w and 2z in V,,, since V-w=0 and V-z2=0,

15) J’w-Vv-z= - Iw-Vz-v,
Am Am
and then
(16) jw-w-v=0.
Am

Thus, choosing v = |lw*®||;!b*, we get

1
1-4, f b* Vb h= — ——
Am

el LALA LA A )
Ty,

m

Therefore, letting s— o and using b°—b in (L%(A,,)), we obtain (12).
On the other hand, dividing (14) by (|lw*|l, )? and passing to the limit
with respect to s, we obtain

j b-Vbo=0 WoeV,.

A

By Lemma 4, we deduce that there exists g € W2(A,,) such that (b, q)
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is solution of the Euler equation (5). Therefore, multiplying (5) by % and
integrating over A,,, we get

an jb-Vb-h= - qu-h= - j gh-nds.
Am Ay, .
Since g is constant on X and on X,, and [ h-nds =0, we have
SUZ,
I qh-nds=0.

SUZ,
Reminding that for all ge Wk*?(A,,) and h e (Her(A,,))?, we have
I qh-nds=0,
atAm

where 8, A,, =04, \(ZUZX,) is the lateral boundary. Thus the right-
hand side of (17) vanishes, which proves (13).

Thus, since (12) and (13) are contradictory, the set of all possible solu-
tions w* of (11) is bounded in V,, and we obtain, by Leray-Schauder prin-
ciple, the existence of a solution w,, e V,, of (9).

Uniform bound for j | Vw,, |2 We proceed, as previously, by a con-
A
tradiction argument. Let us suppose that there exists m such that

lkornlly,, — 0 as m— co.

Defining b™ = |[wy, |l7,, wm, we have [[b™ |y, =1 for all m > 1. There-
fore, denoting b™ the extension of ™ by 0 for x3 = m, we deduce the exi-
stence of a subsequence denoted again b™ such that

Vb™— Vb in (L2(O))° weak,
b"—b in (L.(0)), Vr<6.
Let us check that b satisfies the two contradictory equations

18) v—jb-Vb-h=o,
2}
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and

(19) jb-Vb-h=o.
]
Since w,, satisfies, for all veV,,,

(20) Ivam~Vv+wm'Vwm-v+h-Vwm-v+wm-Vh-v=
Am

- _ j YWh-Vo + h-Vh-v

A

choosing v = |lw™ |72 6™ we obtain, using (16) and (15),

O [ (i S Ny o/ R T
) TR
and therefore,
v— IE’”-VT)”‘-h= - nlb jvvmvémh-m-l}'n.
6 o™ I, 6

Passing to the limit in this equation, since » has a compact support, we
obtain (18).

Now, dividing (20) by (|[w,, ||y, )%, extending it on @ and passing to the
limit with respect to m, we obtain

jb-Vb-v=0 for all veV,,, for all m=1.
]

Using Lemma 4 and arguing as previously, we deduce (19). Thus,
| Vw,, |? is uniformly bounded with respect to .
Ap

Existence of a solution w of (6)-(8). Let w,, be the extension of w,, by
0 for x3 = m. Its gradient remains bounded in (L%(®))®, then there exist
we (Hi(0))? and a subsequence still denoted (w,,) such that

Vi, — Vw in (L%(O))° weak,
Wy —w in (LL.(©)), Vr<6,

as m— . The equation V-w,, =0 gives V-w =0, and the periodicity of
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by, gives the one of w, and thus w e (Hper, 10.(@))?. The equation (9) is sa-
tisfied for any v e V,,, provided that m, < m, then we get (8) by passing to
the limit, m, remaining fixed.

SECOND STEP: STRONG SOLUTION. Ewistence of p. Setting u =w + h,
and choosing ve (X ®))? such that V-v =0, the equation (8) yields

(—vdu +u-Vu, v)g@)px @y =0.

Then, by de Rham Theorem, see for instance [12], there exists pe @' (@)
such that

—vAu +u-Vu+Vp=0.

Since % € (Hper, 10(@) )?, this equation gives Vp e (H ~'(A,))? for every fi-
nite ¢, which implies (see for example [13] or [14]) that p e L%(A,) since
A, is a Lipschitz bounded domain.

Extension of p. By definition of H}}er, the function u is defined in the
whole set R3, but p is only defined in the set @. Its gradient has a perio-
dic extension due to equation (1), but this does not ensure the existence
of a periodic extension of p itself. By (8), w satisfies, for all v e V,, and for
all m=1,

21) IvVu-Vv+u-Vu-v=0.
6

The functions % and v being periodic, F' = vVu-Vov + (u-V) u-v is perio-
dic. Its integral over the period @ being null by (21), so does its integral
over any translation of @, and in particular over ®' = {xeR3: -1, /2 <
<2< /2, 0<w<lp, 23>0}

Choosing now ve (M(@'))? such that V-» =0, the equation IF =0

gives the existence of p’' € W' (O') such that —vAu + (u-V) u +9Vp’ =0
in ®@'. In ® N @', the gradient of p — p' cancels, therefore p — p' is con-
stant. By addition of this constant to p’, we obtain an extension of p
which satisfies the equation in ® U @'. By repeated extensions, we ob-
tain an extension p e LZ,(R% ) which satisfies equation (1) in the whole
set R% .

Periodicity of p. We denote p,, the translated function of p by [, in the
direction ;. Since u is periodic, (21) gives now V(p, — p) = 0, hence p; —
— p is constant, say c;. Moreover, the regularity results for Navier-Stokes
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equation (see [7] or [15] for instance) show that % and p are smooth. Let
us multiply the equation (1) by a function » such that

ve(Hpe(0))?, V-w=0, support vc {x:r<wy<t},

where 0 <r <t < o, Integrating by parts over @, we get

IS
IvVu-Vv +u-Vu-v+ I(— i v +pv-n) ds=0
L) on

where 7 is the outer normal. The integral over @ cancels due to the varia-
tional equation (21). In the integral over 30, the integral over the lower
boundary X vanishes since v cancels, and the integral of du/on-v over
two opposite lateral boundaries cancels since du/dn-v is antiperiodic. Fi-
nally, the equation reduces to

I pv-nds=0
et @

where 0,0 =90\X. Now, we choose v=(y(x3),0,0) where ype
e M(J0, »[). Then, this reduces to

b w
Ij(pll —p)(()’ La,y x3) W(xg) dxgdxg =0.
0

0

This proves that the constant value of p, — p is 0 and therefore that p is
periodic with respect to ;. Similarly, it is periodic with respect to x,, and
the proof of Theorem 1 is complete.

PROOF OF LEMMA 3. Let 7€ (Hpe(A4,))? be such that y =y on 2, =
=0onZX,. Since J V-n =0and A, is a Lipschitz domain, there exists (see

A
for instance [6] Theorem 3.1 p. 127) ve (H{(A;))? such that
Viwv=-V-nin A;.

Let us denote vy, the periodic extension of v over the horizontal direc-
tions. Since V-vye = (V-v)pe, the desired properties are satisfied by
choosing

hz{nﬂ-vper in A,
0in G\A,. =
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Proor oF LEMMA 4. Part (i). Let beV,, satisfy

Ib-Vb-'v=0 for all veV,.

Am

By de Rham Theorem (see for example [12]), there exists ge D' (A,,)
such that

22) b-Vb+Vg=0.

This equation gives Vqe (L32%(A,,))® which implies (see for example
[18]), since A,, is a Lipschitz bounded domain, that qe W' 32(4,,).
Using the same arguments than in the proof of Theorem 1, we deduce
the existence of a periodic extension g € Wk,3#(A,,) which satisfies (22)
in the whole set {xeR3: 0 <z <m}.

Let us now prove that q is constant on 2 and on %', (the constants can
be differents). This property has been observed by J. Leray [10]. Here,
we adapt the proof given by Ch. J. Amick [2] in the two dimensional case.
We have, for all 0 <& <m,

b-Vb
f LALY <|IVbllgza,pe
3

|3 |

LEA)P-

€

Since b =0 on X, we have

2 €

[zl =]
A, b 0

then, using Hardy’s inequality (see for instance Lemma 5.1 p. 94 in [11]),

we get
]

€

b R 2
2 2| [19s0@", ) |dn | dazs
o3 lx3| 0

L3

2
<4 f |35b2.
A
Therefore, since x3 < ¢, we obtain

1
@3) - j 16-98] < 2(|VB]l 201 5%
A,

By the Poincaré-Wirtinger inequality the mean value g(t) over X'; satis-
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fies, for almost all ¢,
[lg@', v-a0|de" <[ |V, g’ ) |do’
=, ¢

and therefore
1 ’ _ c
: jdtj|q—q(t)|dx's ¢ j |Vq|dz .
80 b>} EAE

By (22) and (23), the right hand side goes to 0 as ¢ —0 and therefore
the trace satisfies J |g —q(0) | =0 which proves that q is constant on .

3
Similarly, ¢ is constant on X, since b vanishes on it.

Part (ii). Now, b is defined in the whole set R% and it vanishes on >
then, using the same method, we get a periodic function ¢ in R% which is
constant on 2. =

5. Proof of Theorem 2.

We will prove (Lemmas 5 and 6) that 7(t) and therefore w(t) go to a
limit %, . Then we will prove (Lemma 7) an identity which implies (Lem-
ma 8) the exponential decay of J |V |2. Finally, the pointwise decay will

be deduced from regularity glfoperties for Stokes equations given at
Lemma 9.

In all the sequel, (u, p), being a solution of Navier-Stokes equations,
is smooth and therefore any of its derivatives is pointwise defined and
integrable over every bounded domain or surface. For %, = t;, we denote
A% =06,\0, that is

At={xeR ' eS8, t,<xs<t,}.

We will use the mean values over A%*! and over the cross section X,
which are defined by

b4 P 1 Y __1_ ’ !
() = Z—l; J v(x)de, ()= 0 Iv(x , ) da'.

AL+L Zy
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The Poincaré-Wirtinger inequality gives, for any » <6,

(24) o = B |z rcag+ry < ElVollz2cass 1y,

(25) lv—w

sy S KV vllwes, .

At first, let us that % goes to a limit %.,.

LeEMMA 5. Let (u, p) satisfy (1), (2) and (3). Then, for all t,
(26) u(t) =0

and there exists a unique ., € R® such that, for all t>0,

@n |B) T | Scll, v) [ [Vuf?.  m
0,

PROOF. Proof of (26). Since  is periodic with respect to x, and «,, for
all positive ¢ we have j dyudx’ = J Soudx’ =0. Therefore, V-u =0
implies b o

0= [v-u(x', t)da’ = fa3u3(x', t) da’
3, Zt

which may be written as % Iusdx' = 0. Then,
Z

jua(x', t)da' = jus(x', 0)da' = jy3(x')dx' =0,
z >0 >

which proves (26).

Proof of (27). Since V-u = 0, the nonlinear term in (1) may be written
as u-Vu = 0y (u;u) + 35 (usu) + 5(usu). Then, integrating the first and
second components of equation (1) and using the periodicity of » and p
with respect to «; and x,, we obtain, for i =1 or 2,

0= [(=vatu+ 2,8 nu) + 8,p)a’, 1) do’ =

2y

= I( —vBu; + 5 (ugu;) )’ , t) doc’ .

P
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Thus, there exist real numbers ¢; and c, such that, for all £> 0,

28) j(—va3u,-+u3ui)(x', t)da' =c;.

P

Thanks to (26), j UgU; = j (ug — 5)(u; — %;) thus, by (25),

Zy Zy

(29)

jugui‘ <k*[|Vul®
T, =,
and therefore

el < [vI85u] + k2| Vul®
z

Integrating from 0 to ¢ and using I |Osu; | < Vilpt ( I | O3 u; |2)1/2, we
get, for all ¢ >0, A,

lei|t< [v|8yu | +k* |Vl < WWOLEL + k*E

At
which implies ¢; = 0. Now, according to (28), we may write

du,

() = —I@su(x’ t) do' =

ugu;dac’.
b, J

'Vll

Using (29), we obtain, for all ¢ >0,

“| dw;
- dr <
{” T () |dt

Therefore 7%; possesses a limit %; ., as ¢— o, which satisfies

2 2

kl I|Vu|2s b B

Vi 2o vl
t

Since %3 =0, this give (27). =
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LEMMA 6. Let (u, p) satisfy (1), @) and (3). Then, for all t>0,
(30) e = T lizsiags e < ey 7, v, E’)( | |Vu|2)”2,
O

(31) lllzsassnyp <el, y, v, E). m

ProoF. The inequality (27) implies
t+1

Ut~ T | = | [ WD)~ TWade
t

<el, v [ |Vul®,
6,

Therefore, by the Poincaré-Wirtinger inequality (24),
e = e lizscagriop < e = o lizocage e + (M) |~ % |

<(k+ (L), v) VE) ( f IVulz)U2

ch

which proves (30). On the other hand, (27) for { =0 gives

32) |7 | < |7 +c(l,v)j|Vu|2
e

from which we obtain (31). =

From now, we will denote ¢ various positive numbers depending at
most on [, v, ¥y and E. Let us prove the following identity.

LEMMA 7. Let (u, p) satisfy (1), (2) and (8). Then, for all t >0,

1
@ v 1var= -7 [a(u-m )+ 2 [ulu-ma 7+ [
6, 4 PR =,

ProOF. We remark that (u, p) is a solution of
(34) —vA(U — o) + U V(U —U) +Vp=0.
Multiplying by % — 4., integrating over X, and using the identities

1
—vAv-v=v|Vv|2——12iA(|v|2), w-Vv-v=§V-(w|v|2),
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for all smooth vectors fields v and w such that V-w =0, we get

leVu|2——;—JA(|u—ﬁw BE
Zy

Zy
+ %EJV-(u|u — U |?) +JV-(p(u —TUs))=0.

Since (u, p) is periodic in the directions x; and x, and (%, )3 = 0, it follows
that

2_ Y - L — 7. |2)—
v [ 19l —2J<9§(|u T 2 zzjag(mu 7 |?) 2[83(pu3).

Zy
Then, integrating from 7 to 7', we get, for 0 s7<7/,
(35) v [ |VulP=F@E) - F@),
AT

where

v — 2 1 — g

F() = Eaa(lu—u,,l )— §u3|u—um| — pug|.
Zy

Due to the hypothesis (3), it follows from (35) that F'(t) has a limit F',, as
t— o which satisfies, for all 7> 0,

(36) Fo=v[|Vu|?+F@).

6,

To get the lemma, it remains to prove that F,, = 0. For this, let us inte-
grate the both sides of (36) from ¢ to ¢ + 1. We obtain, for ¢ =0,

t+1
1
@7 Fm:”f J’|V“|2+ j %%(M—m |2)—5u3|u—‘dw |2 — pus.
¢ e,

t+1
At
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Let us prove now that each term of the right-hand side of (37) goes to
0 as t— o, At first, by assumption (3), f [Vu|2—0 thus

ch
t+1
(38) | j|Vu|2—>o.
t O,

For the second term, using (30), we bound
1 — s _
(39) E | I 33( I’M — U I ) | < ||u U ||(L2(Ai“))3"a3uI|(L2(A5“))3 <
At¢+1
< o[ Vullwecageoyp-

For the third term, we remark that % = 0 since %3 = 0, thus, using
the Poincaré-Wirtinger inequality (24) and (30), we bound

(40)

j ug | % — o |2 | < g — Uz ll2casery (e — B | scags1yp )2

A%+l
< C“Vu”(LZ(A%+ 1yy.
To estimate the last term in (37), we will use the Poincaré-Wirtinger
inequality
o = B l2cag+ry < & VPl -1cag+1y3-

Using again i3 =0 and (24), we bound

(41)

[ p| = | [ @B~ Ta®)

t+1 1
At At

< k' [Vl 2 a1y VDl -1t 18-

Let us now give an estimate for [[Vpll@-1(45+1)5 The space H ~'(A%*1)
being equipped with the norm

42 |Hlg-1agery =

3 1/2 3
=1nf[( I E |Wz |2) Y= ‘I’0+ Zaj’I’J, ’IleL2(Ai+1)’ j=0’ veey 3 ,
i=0 j=1
A%+l
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from the equation Vp = vV-Vy —u-Vu, we deduce that
(42) VPl -1ca3 1y < VIVarllwocagesype + - Varllgr-1ca5 1y
By the Sobolev and Hoélder inequalities, we bound
llow- Vadls -1 g+ 250 < ellee Vallameag 1y < ellullzscars e IVallwecas 1y

Thus, using (41), (42) and (31), we get

(43) s kk ! (V + C)(Hvu”(LZ(A%+1))9 )2,

I pus

t+1
At

From (3), |Vullz245+1y — 0 as t — 0 therefore (38), (39), (40) and (43) im-
ply that each term in the right-hand side of (37) goes to 0 as {— . Con-
sequently F, =0 and (33) holds. =

Before going further, let us improve (40) for a later use, as
follows:

(44) I ug |u—a |2| <cll, v, v, B)([Vull gy

1
At

Indeed

|% =T |2= |u—0t) |2+ 2w — U4®) (1) — e ) + | 0(t) — %s |,

therefore

[ wslu=7aP= [ wslu-® P +2 | usle—T0))-Gil) - %)
A%+1 Atl+l All+1
since | %(t) — %., |? is constant on A{*! and I ug = w(t) = 0. Thus,
A%+1
I Ug | U~ U |2 sH"I‘f?.—a3HL‘"(A5“)”7/v—a(t)"(u‘(/ﬂﬁl)ﬁ'

t¥1
At

(e = %) lwscas+yy + 2118 — T g scag1y) -

Integrating (27) we bound |%(t) —%. | <c thus, by (32), |%(t)| <c.
Then, using (81), we get [lu — %(t) |l scas+1yye + 2[|(t) — U | 4a5+1yp < -
Therefore, (44) follows by the Poincaré-Wirtinger inequality (24) for r =
=2 and 4.
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LEMMA 8. Let (u, p) satisfy (1), (2) and (3). Then, for all t >0,

45) j|Vu|2scexp(—alt),

6,

where ¢ and o, are positive numbers depending only on I, y, v and
E. =

ProoF. Integrating the both sides of the identity (33) we get, for
t=0 and meN,

t+m

(46) vff|Vu|2=—% J’Iu—ﬂw|2+§ J-lu—’t_tm|2+

t 6 D >

1 a7 2
+§ fuglu—uml + fpug

Ag+m At¢+m

Using the Poincaré-Wirtinger inequality on X; (25) and (27), we
obtain

1
§f|u—ﬁw|2skZI|Vu|2+c( j|Vu|2)2.
o N 6,

Using respectively (43) and (44) on A%%7%*! and summing over » from 0
to m —1, we get

Iu@|u—ﬁw|2 Scj | Vu |2,

A%é—m Ai-ﬁ-m

1
2

J-pu3|$cJ. | Vae|2.

t+m t+m
At A%

Then (46) gives, as m — o,

ﬂ |Vu|2sC(j|Vu|2+ | |Vu|2).
t e, N 0,



Existence of semi-periodic solutions ete. 361

Setting

y(@ = [ |Vul?
6.

this gives, since y'(¢) = — J |Vu|? for all t>0:
=

ey’ () + j y(v) dr < cy(t).
t

This inequality and y(f) =0 as t— o imply, by a lemma of [8], see [6]
Lemma 2.2 p. 315,

y() <c'y(0) exp(—ot)

that is (45). =

Let us now focus on a regularity property of periodic solutions of
Stokes equations.

LEMMA 9. Given fe (Cpr(0))?, let (v, ¢) € (Coar(©))? X Cper(O) be
a solution of

@7 vAv=Vp+f, Vw=0 inRS
and let 0 <O0<1 and s=0. Then, for all m=0and 1 <g< o,
@8)  lollwm+2.aaz+1yp + [VBllaym acaz+ 1y <
<c(m, ¢, 6, v, D(|fllwm acasryrops + [ollwr.acasy+oyp) -

From now, the numbers ¢ may depend on m, in addition to [, v, y and E.

Proor. We will deduce this property from a similar one for Dirichlet
boundary condition, see [6], by localization. We first note that it suffices
to prove (48) for s =1 since the general result follows by the translation
xg—>x3— 8+ 1.
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Given a positive integer k, we denote

1 1
Uk=A§f}7,‘c=[xeR3:O<x1<l1,0<x2<l2, 1—Z <wz3<2+ -];},

1 1 1 1 1 1
V= R: — = <ay<h+ =, —= <<+ —,1— = <xz<2+ —|.
"[xe g Sashry Ty sty k3k]
We consider a localization function ;e C*(R®) such that y,=1 in
Vi +1, With supp v ,cV, and we denote v, =y, v, ¢, =y ¢. Then
vAvy=Vo+fi, V=g

where f, =y .f+2vVWy Vo +vwdy, — ¢Vy,, and g, = Vy 0.

Since (v, ¢) satisifies the Dirichlet boundary conditions for any
smooth domain Q, such that supp ¢ c 2c Vy, the Theorem IV.6.1 of [6]
gives

@9 |l 20w, 3 + [IV@llwm o, p <

< el fellowm ae + lgellown 1 ovp) -
The definitions of f; and g, imply
e llwm. aqvipe + g llwm e+ acviy s < €l fllewm: vy + Wollwm e oy + lpllwm. vy ) -

Since the statement of the lemma is unchanged if an arbitrary constant
is added to ¢, we can assume I @ = 0. Then |||l o, < l|[V@llwm 100w,y

Vi
and therefore the equation (47) gives

[ 1w S e fllwm apye + [llowm + 29wy -
Since f and v are periodic with respect to «; and «,,
Il ave < el fllawm sy Wollwm 1.0y < ellollom 1.0 p-
Finally, using Uy +1C Vi 41, (49) gives
[ollwrm+ 2.0, 38 + VBl + 1,00, 2 < €Ul sy + [ollwm 1.0 -
By a repeated use, this equation gives
ol +2. a0, o + IVBllwrm 190, o < el llwm o, e + Wlow. a0, o)

which proves (48) for s=1 since A3cU,; and, for k=m +1/9,
Uk_mC/l%tg. u
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We are now in a position to prove our second, and last, main
result.

PROOF OF THEOREM 2. Bound on w in (H2(A4*1))3 At first, let us
check that

(50) llullzzcasnp<c.
The inequality (48) for m =0, ¢ =3/2 and 6 = 1/2 gives
(61) lellowe. 32 a5+ 1y < ellw Vaullg sz a3 + ”u"(W"m(Aéi%))a'
By Hoélder inequality, for all ¢ =0,
”?//'Vu||(L3/2(Ai+‘))3 s ||u“(L‘*(A5+‘))3||Vu||(L2(A5+1))9

which is bounded by (3) and (81), thus the right-hand side of (51) is
bounded for all ¢ = 1/2. Therefore, by Sobolev theorem, ||Va|zscq1+1y9 < ¢
and thus |ju- V|25 1y < c. Using now (48) for m=0,g=2and 6 = 1/2,
we get (50).

Bound on u in (H™(A%*1))? Due to the equation (34), Lemma 9
gives

(62) =% llggmr2cagr e < el V(0 = T | @meas 368 +
+l = e cageyoy9)-
For m =2, H™(A(*1*°%) is a multiplicative algebra, thus
ll- V(o = T lrmcag e+ oyp < ltllamease yeopp IV = T larmeag 3 6y0-
Since |%. | is bounded by (32), we get, for 0 <¢ <1,
lle — oo ||(H'“2(A5tg+s))3 < c(lu — %o ||(Hm+'(/15tgrg+6))3 ¥+
e = T e ag e 5+0yy8-

By m repeated use of this inequality with 6 = 1/m, we deduce from (50)
that

||u — o "(Hm(Agtéw))a <c.

Exponential decay of u —u., Now, the previous inequality yields, for
m =2,

= T g 2005215y < lltb = Tos lrms 104521250y
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This inequality also holds for 7 =0 and 1 since, by Sobolev theorem,
llullw2. = a5+1y < ¢ which gives a convenient bound for the nonlinear term
in the right-hand side of (52). Then, by m + 1 repeated use with now 6 =
=1/(m+ 1), we get

e = e lltm+2ca 130 < el = B earncaggoe-
By (30) the right-hand side is bounded by cI |Vu|2, and by (45) it is
bounded by cexp (—o,t/2). Thus, by Soboleg ttheorem,
(53) e = Tos lwm. = a3+1y2 < cexp(— 0, 8/2).

Exponential decay of p—DP.. By Lemma 9, the pressure term
[Vollgwm. = a¢+1y may be added to the left-hand side of (52), and therefore
of (63). Thus,

[Vollwm. = a5+ 1y < cexp (—o14/2).

This inequality for m =0 implies the existence of p.eR such that
|p(®) —pw|<cexp(—o,%2), which ends the proof of Theorem 2. m
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