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Existence of Semi-Periodic Solutions of Steady
Navier-Stokes Equations in a Half Space
with an Exponential Decay at Infinity.

YOUCEF AMIRAT - DIDIER BRESCH
JÉRÔME LEMOINE - JACQUES SIMON (*)

ABSTRACT - We prove the existence of a solution of steady Navier-Stokes equa-
tions in a half-space which is periodic in the directions parallel to the boun-
dary and which decays exponentially fast with respect to the distance to the
boundary. In fact, the decay holds as soon as the energy over a period is
finite.

1. Introduction.

Our objective is to prove the existence of a solution ( u , ~ ) of the
steady Navier-Stokes equations

in the half space RE which is periodic with respect to x, and x2, and which
decay exponentially fast as well as all its derivatives as X3 ~ 00.

This study has been motivated by the analysis of the asymptotic be-
haviour of hydrodynamic drag of a plate covered by periodic asperities,
when their size goes to 0. We refer to [3], [4] in the case of Stokes
flow.

In a first part, we will prove the existence of a solution whose

(*) Indirizzo degli AA.: Laboratoire de Math6matiques Appliqu6es, CNRS
UMR 6620, Blaise Pascal University (Clermont-Ferrand 2), 63177 Aubi6re cedex,
France.
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energy is finite by a contradiction method due to J. Leray [10],
see also C. Amick [2], W. Borchers and K. Pileckas [5].

In a second part, we will prove the exponential decay of every such
solution by a technique similar to the one in K. A. Ames, L. E. Payne [1],
G. P. Galdi [6], C. 0. Horgan, L. T. Wheeler [8], 0. A. Ladyshenskaya, V.
A. Solonnikov [9] for Navier-Stokes equations in a semi-infinite channel
with Dirichlet condition on the lateral boundary. There is an additional
difficulty here, which is that we can no longer use the Poincard inequali-
ty to bound the integral f|u|2 over any cross section of the channel,

I t
since u does no longer cancel on the boundary when the Dirichlet condi-
tion is replaced by periodicity. We will overcome this difficulty by esta-
blishing (Lemma 5) a convenient estimate of the mean value of u over 2 t,
which allows us to use the Poincare-Wirtinger inequality instead of the
Poinear6 one.

2. Functional spaces and notations.

In all the paper long, for vector valued functions
we denote

the vector and scalar valued functions

respectively defined by

We denote and,

For any subset of W, we denote 6D(Q) the space of eoo functions
with compact support in S~ and (J)’ (Q) the space of distributions on Q.
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For 1 - r - ~o, we denote r(S~) _ Iv w E (Lr(S~))3 ~,

H1(S~) = W1~ 2(S~) 
We define the space of functions which are periodic with respect to x,

and x2 with periods L1 and l2 by

equipped respectively with the norm of and 
We define similar spaces and by replacing in the

above definitions RE e R : 0  X3  ~}, and we define Wper 1/r, 
as the trace spaces of 

Finally, we denote

3. Main results.

All this paper long, we assume that the prescribed velocity y on the
boundary 2: is periodic and that its flux across E cancels. More

precisely

Our first result gives the existence of a periodic solution in the whole
space with a finite enstrophy over the «period» O.

THEOREM 1. There exists a soLution of (1) satisfying

Our second main result gives the exponential decay of such a solution
and of all its derivatives.
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THEOREM 2. Let (u, p) satisfy (1), (2) and (3). there exist

ERg and P. E R such that

for alt x such that x3 ~ 1 and for all I a I ~ 0 , zvhere c and a are positive
numbers depending only on l, y , v , a and on any arbitrary bound E of

.1 
This means that, given E, (4) is satisfied for all (u, p) such that

~ 

It follows from (4) that u, p and all their derivatives are uniformly
continuous in O t for any t &#x3E; 0. The uniform continuity up to the boun-
dary E, that is the case t = 0, requires, in addition, y to be smooth.

Moreover, by integration (4) gives, for all m ~ 0, 1 ~ and

t &#x3E; 0,

with a norm bounded for all where

In addition, and
since the enstrophy is finite (for fluids, the energy is
is named the enstrophy). 

- -

Finally, let us remark that (u., p.) is obviously unique for a given
(u, p). It satisfies, c, f. (32),

4. Proof of Theorem 1.

We will use the following two lemmas, on the existence of a solenoidal
extension of y and on Euler equation, which are proved at the end of this
section.

LEMMA 3. There exists such that
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LEMMA 4. (i) Let b E Vm satisfy, for all v E V~,

Then there exists such that

Moreover q is constant on Z and 

(ii) Let b E (Hper, loc (e»3 satisfy V. b = 0, b 11: = 0 and, for all m and
for all v E Vm ,

Then there exists such that

Moreover q is constant on E. 0

FIRST STEP: WEAK SOLUTION. First of all, let us remark, setting w =
= u - h where h is defined by Lemma 3, that the equation (1) is equivalent
to

We will find a weak solution w of these equations, which means that it
satisfies (6),

and, denoting ~ the extension by 0 for for all v E Vm , for all
m,

At first, given an integer number m ~ 1, we will prove the existence of an
approached solution wm E Vm defined on the bounded set ll m such that,
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for all ve Vm,

Then, we will see that remains bounded. Finally, we will get a

solution w of (6)-(8) by passing to the limit on the solutions wm .

Existence of a weak solution wm of (9). To prove it, we argue as in J.
Leray [10] (see also C. Amick [2], W. Borchers and K. Pileckas [5]). The
space V m being equipped with the inner product

a compact operator Nm from Vm into itself and a function Fm E Vm are de-
fined by

Then, by the Riesz representation theorem, the variational equation (9)
is equivalent to the following equation in Vm :

To prove the existence of a solution wm of (10), we use the Leray-
Schauder principle, that is we have to prove that the set of all possible
solutions of the equation

is bounded in V~ . In order to conclude by contradiction, let us suppose
that there exists a sequence 1 in [ o , v -1 ] converging to 
e[0, and such that
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Denoting we get, since for all s, the existence
of a subsequence, still denoted ( b s ), converging weakly in Vm to some b.
Let us check that b satisfies the two contradictory equations

The equation (11) for A gives, for all 

Moreover, for all v, w and z in Vm, since V.w = 0 = 0,

and then

Thus, choosing we get

Therefore, letting s - m and using in (L6(Am»3, we obtain (12).
On the other hand, dividing (14) by and passing to the limit

with respect to s, we obtain

By Lemma 4, we deduce that there exists q E W~r ~2 (~l m ) such that ( b , q)
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is solution of the Euler equation (5). Therefore, multiplying (5) by h and
integrating over At’ we get

Since q is constant on Z and on and we have

Reminding that for all and we have

where 8latA m = a~ m ~(~ U ~ m ) is the lateral boundary. Thus the right-
hand side of (17) vanishes, which proves (13).

Thus, since (12) and (13) are contradictory, the set of all possible solu-
tions w ~ of (11) is bounded in Vm and we obtain, by Leray-Schauder prin-
ciple, the existence of a solution Wm e Vm of (9).

Uniform bound for We proceed, as previously, by a con-

tradiction argument. Let us suppose that there exists m such that

Defining b ’ = llw,,, 11 -’w,,,, we have = 1 for all m -&#x3E; 1. There-

fore, denoting the extension of by 0 for ~3 ~ m, we deduce the exi-
stence of a subsequence denoted again such that

Let us check that b satisfies the two contradictory equations
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and

Since Wm satisfies, for all v e V m,

choosing we obtain, using (16) and (15),

and therefore,

Passing to the limit in this equation, since h has a compact support, we
obtain (18).

Now, dividing (20) by extending it on O and passing to the
limit with respect to rrz, we obtain

Using Lemma 4 and arguing as previously, we deduce (19). Thus,
is uniformly bounded with respect to m.

Existence of a solutions w of (6)-(8). Let wm be the extension of wm by
0 for m. Its gradient remains bounded in (L 2 ( O ) )9, then there exist

and a subsequence still denoted (wm) such that

as m - oo. The equation V.wm = 0 gives V. w = 0, and the periodicity of
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ium gives the one of w, and thus w E (H I,, loc ( 0 ) )3· The equation (9) is sa-
tisfied for any v e V~ provided that mo  m, then we get (8) by passing to
the limit, mo remaining fixed.

SECOND STEP: STRONG SOLUTION. Existence of p. Setting u = w + h,
and choosing v E ( ~( O ) )3 such the equation (8) yields

Then, by de Rham Theorem, see for instance [12], there exists p E 6D’(i9)
such that

Since u E (Hper, loc(H))3, this equation gives Vp e (H-1(At))3 for every fi-
nite t, which implies (see for example [13] or [14]) that since
~l t is a Lipschitz bounded domain.

Extension of p. By definition of Hper, the function u is defined in the
whole set RE , but p is only defined in the set 0. Its gradient has a perio-
dic extension due to equation (1), but this does not ensure the existence
of a periodic extension of p itself. By (8), u satisfies, for all v E V~ and for
all m ~ 1,

The factions and v being periodic, is perio-
dic. Its integral over the period 0 being null by (21), so does its integral
over any translation of 0, and in particular over

Choosing now such that V. v = 0, the equation

gives the existence of such that
in e’. In O n O ’, the gradient of p - p ’ cancels, therefore p - p’ is con-
stant. By addition of this constant to p ’, we obtain an extension of p
which satisfies the equation in e U O ’ . By repeated extensions, we ob-
tain an which satisfies equation (1) in the whole
set 

Periodicity of p. We denote Ph the translated function of p by II in the
direction Since u is periodic, (21) gives now p) = 0, hence PZ1 -
- 

p is constant, say c1. Moreover, the regularity results for Navier-Stokes
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equation (see [7] or [15] for instance) show that u and p are smooth. Let
us multiply the equation (1) by a function v such that

where 0  r  t  oo. Integrating by parts over 8, we get

where n is the outer normal. The integral over 0 cancels due to the varia-
tional equation (21). In the integral over 3e, the integral over the lower
boundary E vanishes since v cancels, and the integral of au I an. v over
two opposite lateral boundaries cancels since au I an. v is antiperiodic. Fi-
nally, the equation reduces to

where Now, we choose where

Then, this reduces to

This proves that the constant value of is 0 and therefore that p is
periodic with respect to xl . Similarly, it is periodic with respect to X2, and
the proof of Theorem 1 is complete.

PROOF OF LEMMA 3. Let be such that 77 = y =

= 0 on E1. Since is a Lipschitz domain, there exists (see

for instance [6] Theorem 3.1 p. 127) v E (Ho (~l 1 ) )3 such that

Let us denote vper the periodic extension of v over the horizontal direc-
tions. the desired properties are satisfied by
choosing
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PROOF OF LEMMA 4. Part (i). Let b e Vm satisfy

By de Rham Theorem (see for example [12]), there exists 
such that

This equation gives which implies (see for example
[13]), since As is a Lipschitz bounded domain, that q E Wl, 3/2 (A m).
Using the same arguments than in the proof of Theorem 1, we deduce
the existence of a periodic extension which satisfies (22)
in the whole 0  ~3  ~}.

Let us now prove that q is constant on X and on Zm (the constants can
be differents). This property has been observed by J. Leray [10]. Here,
we adapt the proof given by Ch. J. Amick [2] in the two dimensional case.
We have, for all 0  E  m,

Since b = 0 on Z, we have

then, using Hardy’s inequality (see for instance Lemma 5.1 p. 94 in [11]),
we get

Therefore, since x3  E, we obtain

By the Poinear6-Wirtinger inequality the mean value 4(t) over Z satis-
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fies, for almost all t,

and therefore

By (22) and (23), the right hand side goes to 0 as E - 0 and therefore
the trace satisfies I q - Q( 0 ) = 0 which proves that q is constant on E.

I

Similarly, q is constant on since b vanishes on it.

Part (ii). Now, b is defined in the whole set and it vanishes on X

then, using the same method, we get a periodic function q in which is
constant on Z..

5. Proof of Theorem 2.

We will prove (Lemmas 5 and 6) that and therefore u(t) go to a
limit Then we will prove (Lemma 7) an identity which implies (Lem-
ma 8) the exponential decay of Finally, the pointwise decay will

e
be deduced from regularity properties for Stokes equations given at
Lemma 9.

In all the sequel, (u, p), being a solution of Navier-Stokes equations,
is smooth and therefore any of its derivatives is pointwise defined and
integrable over every bounded domain or surface. For t2 ~ tl, we denote

that is

We will use the mean values over I and over the cross section t
which are defined by
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The Poinear6-Wirtinger inequality gives, for any r ~ 6,

At first, let us that 11 goes to a limit 

LEMMA 5. Let (u, p) satisfy (1), (2) and (3). Then, for all t,

and there exists a unique uoo eRg such that, for all t &#x3E; 0,

PROOF. Proof of (26). Since u is periodic with respect to Xl and x2, for
all positive t we have Therefore, V . u = 0
implies

which may be written as Then,

which proves (26).

Proof of (27). Since V - u = 0, the nonlinear term in (1) may be written
as Then, integrating the first and
second components of equation (1) and using the periodicity of u and p
with respect to x, and X2, we obtain, for i =1 or 2,



355

Thus, there exist real numbers Cl and c2 such that, for all t &#x3E; 0,

Thanks to (26), thus, by (25),

and therefore

Integrating from 0 to t and using we

get, for all t &#x3E; 0,

which implies ci = 0. Now, according to (28), we may write

Using (29), we obtain, for all t &#x3E; 0,

Therefore Tij possesses a limit which satisfies

Since u3 = 0, this give (27).
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LEMMA 6. Let (u, p) satisfy (1), (2) and (3). Theny , for all t &#x3E; 0,

PROOF. The inequality (27) implies

Therefore, by the Poinear6-Wirtinger inequality (24),

which proves (30). On the other hand, (27) for t = 0 gives

from which we obtain (31).

From now, we will denote c various positive numbers depending at
most on l, v, y and E. Let us prove the following identity.

PROOF. We remark that (u, p) is a solution of

Multiplying by u - integrating over ~ and using the identities
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for all smooth vectors fields and w such = 0, we get

Since ( u , ~ ) is periodic in the directions x, and x2 and = 0, it follows
that

Then, integrating from T to i’, we get, for 0 ~ T i’,

where

Due to the hypothesis (3), it follows from (35) that F( t ) has a limit F ~ as
which satisfies, for all i &#x3E; 0,

To get the lemma, it remains to prove that F ~ = 0. For this, let us inte-
grate the both sides of (36) from t to t + 1. We obtain, for t ~ 0,



358

Let us prove now that each term of the right-hand side of (37) goes to
0 as t -~ ~ . At first, by assumption (3), thus

For the second term, using (30), we bound

For the third term, we remark that Ug = 0 since ~3=0, thus, using
the Poincaré-Wirtinger inequality (24) and (30), we bound

To estimate the last term in (37), we will use the Poincaré- Wirtinger
inequality

Using again Û3 = 0 and (24), we bound

Let us now give an estimate for
being equipped with the norm
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from the equation we deduce that

By the Sobolev and H61der inequalities, we bound

Thus, using (41), (42) and (31), we get

From (3), therefore (38), (39), (40) and (43) im-
ply that each term in the right-hand side of (37) goes to 0 as t --~ ~ . Con-
sequently F ~ = 0 and (33) holds.

Before going further, let us improve (40) for a later use, as

follows:

Indeed

therefore

since is constant on and Thus,

Integrating (27) we bound thus, by (32),
Then, using (31), we get
Therefore, (44) follows by the Poinear6-Wirtinger inequality (24) for r =
= 2 and 4.
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LEMMA 8. Let (u, p) satisfy (1), (2) and (3). for all t &#x3E; 0,

where c and a 1 are positive numbers depending only on l , y , v and
E. o

PROOF. Integrating the both sides of the identity (33) we get, for
t ~ 0 and 

Using the Poinear6-Wirtinger inequality on 2t t (25) and (27), we
obtain

Using respectively (43) and (44) on and summing over n from 0
to m -1, we get

Then (46) gives, as m --~ ~ ,
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Setting

this gives, since for all t &#x3E; 0:

This inequality and y(t) ---&#x3E; 0 as imply, by a lemma of [8], see [6]
Lemma 2.2 p. 315,

that is (45).

Let us now focus on a regularity property of periodic solutions of
Stokes equations.

LEMMA 9.

a solution of

and let 0  d ~ 1 and s ~ d. Then, for all m ~ 0 and 1  q  oo ,

From now, the numbers c may depend on m, in addition to l , v , y and E.

PROOF. We will deduce this property from a similar one for Dirichlet
boundary condition, see [6], by localization. We first note that it suffices
to prove (48) for s = 1 since the general result follows by the translation
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Given a positive integer k, we denote

We consider a localization function such that in

with supple Vk and we denote vk = ~ k v, ~ k = ~ k ~ . Then

where
Since (vk, ~ k) satisifies the Dirichlet boundary conditions for any

smooth domain Q, such that supp yk c Q c Vk, the Theorem IV.6.1 of [6]
gives

The definitions of fk and gk imply

Since the statement of the lemma is unchanged if an arbitrary constant
is added to 0, we can assume

and therefore the equation (47) gives

Since f and v are periodic with respect to x, and xz,

Finally, using (49) gives

By a repeated use, this equation gives

which proves (48) for s = 1 since and, m + 1 /b,



363

We are now in a position to prove our second, and last, main
result.

PROOF OF THEOREM 2. Bound on u in (H 2 (ll t + 1 ) )3, At first, let us
check that

The inequality (48) for m = 0, q = 3/2 and 6 = 1/2 gives

By H61der inequality, for all t ~ 0,

which is bounded by (3) and (31), thus the right-hand side of (51) is

bounded for all t ~ 1 /2. Therefore, by Sobolev theorem,
and thus I Using now (48) for m = 0, q = 2 and 6 = 1/2,
we get (50).

Bound on u in (H m (~l t + 1 ) )3 Due to the equation (34), Lemma 9
gives

For m ~ 2, H’n (~l t ± a + a ) is a multiplicative algebra, thus

Since I is bounded by (32), we get, for 0 ~ s ~ 1,

By m repeated use of this inequality with 6 =1 /m, we deduce from (50)
that

Exponential decacy of u - ~oo Now, the previous inequality yields, for
m &#x3E; 2,
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This inequality also holds for m = 0 and 1 since, by Sobolev theorem,
c which gives a convenient bound for the nonlinear term

in the right-hand side of (52). Then, by m + 1 repeated use with now 3 =
=1 /( m + 1), we get

By (30) the right-hand side is bounded by and by (45) it is

bounded by c exp ( - cr 1 t/2 ). Thus, by Sobolev theorem,

Exponential decay By Lemma 9, the pressure term

be added to the left-hand side of (52), and therefore
of (53). Thus,

This inequality for m=0 implies the existence of poo E R such that
which ends the proof of Theorem 2.
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