
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

MARTA LEWICKA
On the well posedness of a system of balance
laws with L∞ data
Rendiconti del Seminario Matematico della Università di Padova,
tome 102 (1999), p. 319-340
<http://www.numdam.org/item?id=RSMUP_1999__102__319_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1999, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1999__102__319_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On the Well Posedness of a System
of Balance Laws with L~ data.

MARTA LEWICKA (*)

1. Introduction.

In their paper [3], Bressan and Shen consider a class of (strictly hy-
perbolic) 2 x 2 systems of the form:

where f e C2 is strictly convex (that is f" (x) &#x3E; 0 for any x is Lips-
chitz continuous, u E L1 n L °°, and -6 e Co.

As proved in a classical paper of Kruzkov [7], there exists exactly one
weak entropy admissible solution of (1), which depends in a Lipschitz
continuous way on u. Namely:

where ul and U2 are solutions of (1) with the initial data Ul and U2,
respectively.

As soon as the function u is determined from (1), a solution of (2) can
be constructed by the standard method of characteristics. Indeed, the
function 0 must be constant along the integral curves of the ODE

Uniqueness and continuous dependence of solutions of (2) can thus be
derived from the well-posedness of the Cauchy problem for (3).

We remark that the genuine nonlinearity of (1) implies that the total

(*) Indirizzo dell’A.: SISSA - ISAS International School for Advanced
Studies, Via Beirut 2-4, 34014 Trieste, Italy.
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variation of u(to, .) is locally bounded, for each to &#x3E; 0. Hence the well
posedness of the Cauchy problem (3) with initial data x(to ) = xo follows
from [2].

It is worth noting that in [3] the well posedness of (3) follows from a
more general result on the well posedness of ODE’s of the form

where F : [ o , T ] x R -R is measurable and such that:

(Al) For every point (t, x) e (0, T ] x R, there exists a slope such
that the function F is constant along the segment

Moreover, ( t , im-

plies that ~, ~t, x~ _ ~, ~t, x~ and hence I(t, x~ c (I, x) .

(A2) There exist disjoint intervals [a, b] and [ c , d] such that F(t, x ) e
and for all (t, x) E (o, T] x R.

It is clear that since u is constant along the backward characteristics
of (1), which are the straight lines with corresponding slopes f’ (u), the
composite function h o u satisfies (Al), (A2).
A natural question is whether a similar result holds for the perturbed

system

We will assume that g E=- e’ and g ’ is bounded. It is known [5], that (5) has
then the unique weak entropy admissible solution, acquiring (after pos-
sibly a modification on a set of measure zero) the following properties.
For each fixed (t, x) e (0, oo) x R the one-sided limits ± ) exist and
u(t, x - ) ~ + ) = u(t, x). Moreover, the minimal and maximal back-
ward characteristics y _ ( ~ ; t, x) and ~+(’;~~) through (t, x) are deter-
mined by solving

with initial data (y6), v6))=(X, u6, X -)) and (y6), v6)) = (X, u(t, X +)),
respectively. Along those characteristics u coincides with the corre-

sponding function v ; that is u(t , y( t ) ) = v( t ) for any t e (0, t).
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Consequently, the composite function F = h o u satisfies:

(Al’) For every point (t, x) E ( o, T ] x R, there exists a e2 curve

y(l, 3!): (0, t) -R along which the function F is Lipschitz continu-
ous. Moreover, = x, then = on ( o, t). Finally,
the first and the second derivatives of the curves are uni-

formly bounded.

The purpose of this paper is to discuss the following two questions:

(I) Let F : [ o , T ] x R -R be measurable and satisfy (Al’) and
(A2) (where the slope À (t, x) is replaced by the derivative y~t, x~ ). Is the
problem (4) well posed?

(II) Assuming that the system (5)(2) is strictly hyperbolic, that is
the ranges of the two functions f ’ and h are disjoint, is this system well
posed?

The answer to the first question is negative, as is shown in the first
section. Nevertheless, the answer to (II) is positive. This is shown by the
main theorem of the paper, in section 2. In the third section we present
another example, showing that if f is not convex, the problem (1)(2) may
not be well posed. Indeed, in this case the corresponding ODE (3) may
have multiple solutions. The last section contains the technical details of
the proof of our main theorem.

2. A counterexample.

We give an example of a measurable function F : [ o , 1 ] x R ~ R , sati-
sfying (Al’) and (A2) (with the slope replaced by the derivative

x)), such that there exist two solutions xl , x2 : [0, 1 ] -R of the

Cauchy problem

Let y : [ o , 11 - R be a smooth function such that

0 y is decreasing, convex and

Define a sequence of functions Y n: [0, tn ] -~ R in the following way.
For and The graph
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of yn is constructed by shifting the graph of yon - 1 in a way that:

F is then described by:

F is thus constant along appropriate smooth curves y(t, x) whose first
derivatives are uniformly bounded and negative, while the values of F
belong to the interval [ 1 /3 , 2 ]. However, = t/3 and x2 ( t ) = 2 t are
two different solutions of the given Cauchy problem.
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3. The main result.

THEOREM 1. Let with g ’
bounded, and define the constants

for some fixed Let h: R-R be Lipschitzian on an open
neighbourhood of [ -C2, C2] and assume that there exist two disjoint
intervals [ a , b] and [ c , d] such that h(x) E [ a , b] and f ’ ( x ) E [ c , d] for
any x E [ - C2, C2].

Then the system (5)(2) has a unique admissible solution, that is the
weak entropy admissible solution of (5) and the broad solution of (2)
(which is in fact continuous), defined on [ 0 , T] x R , that depends con-
tinuously on the initial data. More precisely: if un ii in Ll , ~

~ K, for each n , and 8 uniformly, then un(t, .) -~ u( t , · ) in Ll, for
any t E [ 0, T] and 0 n 0 uniformly on compact subsets of [ 0, T] x R
(here (un, 0 n) stands for the solution of (5)(2) with the initial data
(un, On))-

PROOF. For the convenience of the reader we divided the proof into
five steps, containing several lemmas, whose proofs will be given in the
last section. Also, for future considerations we assume that d  a, the

other case beeing treated similarily. By L &#x3E; 0 we denote the Lipschitz
constant of h on a neighbourhood of [ - C2, C2 ].

STEP 1. Note first, that the unique weak entropy admissible solu-
tion of (5) satisfies

LEMMA 1. Let v : [ 0 , T ] --~ R be Lipschitzian, with b] for
a. a. [ 0 , T]. Then the composition t - u(t, v( t ) ) is measurable.

Consider the equation (3) with the initial data = xo . Lemma 1

guarantees that the Picard operator T for this problem



324

is well defined.
Our first goal will be to show that P is continuous and has a unique

fixed point. To do this, we will approximate 0 with the Picard operator of
an another ODE, whose right hand side will be the composition of h and
a suitable approximation of the discontinuous function u .

STEP 2. Fix to e [ 0, T ]. Let y E L1 be a piecewise constant function
with finite number of jumps located at points xi, and assume that

Cl . For each xi , let ~ i : [ to , T] -R be the unique forward charac-
teristic of (5), originating from ( to , xi ). Without loss of generality we may
assume that each xi is a continuity point of the function u(to, ~), so each ~ i
can be prolonged along the unique backward characteristic emanating
from (to , xi ). Thus the functions ~ are defined on [0, T] (note that each
~ i is differentiable at all but a countable number of points and there
holds [ c , d ] ) and divide the stripe [0, T] x R into finite number of
regions lilj. lllj is the (open) region with the property: lilj x) : x E

x (xi -1, xi ). We also have two unbounded %i’s, defined in an
obvious way.

Let a i : [ 0 , T ] -~ R be the solution of

Define a measurable function w : [ o , T] x R -R , by

Note that Cl , r) ~ C2 for all (t, x ) e UiBti. More-
over, in each lllj the function w is e2 and Lipschitzian with the
constant

LEMMA 2. Fix E &#x3E; 0 , then there exist to e ( 0 , T) acnd ac number 6 &#x3E;

&#x3E; 0 such that if then for any v e U
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STEP 3. We will discuss the ODE

(where the piecewise continuous function w is constructed as in step 2).
Since the slopes of discontinuities and the values of the composite func-
tion h o w belong to disjoint intervals, (8) is well posed.

Let x be any solution of (8), which crosses the curves ~ only at their
differentiability points. Define V : [ o , T ] -~ R

where xE is the solution of

V is well defined and continuous in the intervals where x remains in the
same region 1Jlj. The standard computations [6] show also that there
holds

On the other hand, at every point t in which x( t ) _ ~ i ( t ), V has a jump de-
scribed by the formula

Define the functions z , cp , ~, : [ 0 , T ] -~ R

The function À will be defined separately on each interval [ti - 1, ti ]
and ~ i ( ti ) = x( ti ) ) and have the following

properties:
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(P3) A is piecewise C’ and has only downward jumps,

(P4) for a.a. t E [0, T] one has

where the constants Q -&#x3E; 0 and /!e[0,(&#x26;2013 d) I(b - a ) ) are uniform, that
is they do not depend on a particular approximation w or a solution x of (8).

LEMMA 3. There exists a , function ~, : ( o , T) -~ R with the proper-
ties (Pl)-(P4).

Compute the derivative of cp in the regularity intervals of 1
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Thus

where the constants y e (0, 1) and C3 &#x3E; 0 depend only on the system
(5)(2).

Compute now the derivative of z in the regularity intervals of 1

Hence

and finally, for any tl , t2 which are in the same regularity interval of ~,
and tl ~ t2

Note that z is continuous at the points t where x( t ) _ ~ i ( t ), as

Moreover, z has only downward jumps, since the same is true for cp (in
each interval (ti - 1, ti ) ).

Concluding, the formula (9) holds for all tl , t2 E [ o , T] such that tl ~
~ t2 and that V( tl ), are defined. This yields

for all tl, t2 as above, where the constant M &#x3E; 0 depends only on the sy-
stem (5)(2). Later on, by integrating the formula (10) one will be able to
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obtain an estimate on continuous dependence of solutions to (8) on initial
data.

STEP 4. Now we conclude the proof of the well posedness of (3). By
step 2, the Picard operator 0 of (3) with initial data x( o ) = x° is a uniform
limit of the corresponding Picard operators written for (8) with the
approximating function w constructed according to Lemma 2, and initial
data = x° . Hence 0 is continuous. 0 has also the relatively compact
image, contained in ‘l,l, (note that is a closed, convex subset of the Ba-
nach space C°([0, T ], R ) ). By Schauder flxed point theorem, 0 must
thus have a f°lxed point, which is a solution of (3) with the initial data
x(o) = xo.

To prove the uniqueness of solutions of (3) and the continuous depen-
dence on xo, we first note

LEMMA 4. Let e : [ o , T] -R be measurabte and bounded by b - a.
If v is a solutions of the problem

(here is the projection of R onto [a, b]), then for any

(x here stands for the unique fixed point of 0).

Having once the estimate (10) established, one can see that Lemma 4
is proved in the same way as Lemma 1 in [3].

Let be two solutions of (3). For i = 1, 2 set ei (t) _
= h(w (t, (where w is constructed as in step 3). Note
that xi is a solution of (11) with initial data = By Lemma 4 we
can thus estimate the differences Ilxi - where y2 is the solution of
(8) with = On the other hand, the difference I lYl - is es-
timated by means of the formula (10)

Since by Lemma dr can be arbitrarily small, provided that the
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approximating function w is choosen suitably, we obtain

which proves the well posedness of (3). (For the details, see the proof of
Theorem 1 in [3].) 0

STEP 5. The uniqueness and existence of the admissible solution of
(5)(2) is clear in view of step 4. To justify the continuous dependence on
the initial data, note that by [4] un (t , ~ ) -~ u(t , ~ ) in for any t e [ o , T]
(we use the notation introduced in the statement of the theorem).

The convergence 8 n -~ 8 is proved exactly as in [3].

4. The case of nonconvex flux.

In this section we show that the convexity of the flux function f in (1)
is crucial for the well posedness of (3) and thus also for the well posed-
ness of (1)(2). To do this, we shall define two smooth functions f, h: R -~
--~ R such that f ’ ( x ) e [ -1 /2 , 1 ] and h(x) e [ 3 , 5 ] for all x E R, h beeing
Lipschitzian, and a piecewise constant function u E L1 n L°° , with u(x) e
e [ o , 2 ] for all x e R, such that there exist two solutions x2 : [ o , 2 /9 ] -
- R of (3) with the initial data = 0 . Note that in view of Theorem 1 or
Theorem 2 in [3], f " must change sign in the interval [0, 2].

Define ~==0,~’==1, u m = 2. The function f shaped as in fig. 3
should have the following features:

. f is smooth and/’(.r)e[-l/2, 1 ] for all 

~ the upper concave envelope of f on [u + , is a straight line
with the slope 1/2,

. the lower convex envelope of f on [u ’, u - I is a straight line
with the slope ~.1 on [u + , and coincides with f on [ul, u - 1, for some
point ul e (u + , u - ), which is close to u - ,

. the upper concave envelope of f on [u ’, u - I coincides with f on
[u + , u ° ] and is a straight line with the slope A 0 on [uo , u - ], where
uo E (u + , ul ).

The function h, as in fig. 3 should satisfy:



330

. h is smooth and h(x) E [ 3, 5 ] for all xeR,

. h(x) = 9/2 for x e [ul, U lu + 1,

. h(x)  9/2 in (u + , ul ).
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The initial data u is uniquely defined by:

The solution of (1) is shown in fig. 3 below.
Note that the initial data U yields two shocks (of opposite signs),

whose interaction gives in turn a centered rarefaction wave. This pattern
is reapeated in a self-similar way, namely u(t, x) = u(t/2, x/2) for x E
e [ o , 1 ] and t E [ 0 , 2/9 ]. Consider now the ODE (3) with = 0 . Cer-

tainly = 9 ~2 t is a solution of this problem. Defining h appropriately
on [u + , uo ], one can find another solution X2, such that xl ( t ) - x2 ( t ) =
= 2 (x1 ( t/2 ) - x2 ( t/2 ) ) for all t E [ o , 2 /9 ]. The distance between and

x2 (t) increases rapidly when x2 (t) lies inside the rarefaction waves.
Note that the above result gives rise to the ill-posedness of (2) with
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B( ~ ) = 0. In fact, for any a E R the function

defined on [ o, 2/9 ] x R is then a solution of (2).

5. The details of the proofs.

PROOF OF LEMMA 1. Fix any to E ( o , T). We will show that the func-
tion t v( t ) ) is measurable on [ to , T ]. Let yt : [ o , t ] - R be the maxi-
mal backward characteristic for (5), emanating from (t, v( t ) ) ,

For t e [to, T] define Z(t) = yt ( to ). Since u(t , v( t ) ) = it is enough to
prove that the counterimage of any measurable set, under the function
Z, remains measurable. To do this, we will show that there exists a con-
stant &#x3E; 0 such that

Fix s , t as above. For re [ to , s ] define We have

We need to estimate 

and thus
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CASE 2. in [ to , s ]. In this case, for any there

holds

Since

we obtain

Note that

Finally

Combining the above estimates with (14), one can see that (13) holds
with

PROOF OF LEMMA 2. We will use the notions of the functions Z, wt
and constants Cto, introduced in the proof of Lemma 1.



334

We will show that the estimate of Lemma 2 is true if to E (o, T), 3 &#x3E; 0
and

Estimate:

where I By the Gronwall inequality

Finally

PROOF OF LEMMA 3. Fix the interval [ti _ 1, The function A will
be constructed in two different ways, according to if ti  Tl Tl .
The constant T1 E ( o , T), sufficiently small and depending only on the
equation (5) will be determined later (in CASE 1B below).

Let Yi - 1: [ o , ti _ 1 ] ~ R be the maximal backward characteristic, ema-
nating from the point (ti-l, and let be the mini-
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mal backward characteristic, emanating from 

Note that the condition (PI) can be replaced by another condition

as any function A with the properties (Pll’ (P2) (P3) (P4) (on [ti -1, 
can be modified in a way that it satisfies (PI) - (P4).

CASE 1A. Assume additionally that vi ( o ) ~ vi _ 1 ( o ). Then
also Define

The conditions (PI)’, (P2) and (P3) are fulfilled. We check (P4):

provided that B &#x3E; 0 and Q *

Before we consider the case vi _ 1 ( o )  vi ( o ) we need some more com-
putations. Denote vo = and yo For E &#x3E; 0 define

y E, v ~: [0, T ] --~ R to be the solutions of
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For a fixed E &#x3E; 0 let E ’ be such that It is

clear that the function E’ - E is strictly increasing and continuous in its
domain [0, Eo). Define

We will compute the derivative of A at ti _ 1. This will give us also the for-
mula for A(t), with t E [ ti _ 1, ti -1 + ~ o ).

Note that

Hence
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where

Consequently

Finally

CASE 1B. ti  T, and Vi - I (0)  vi ( o ). Define A by formula (15). By
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(16) we have

If then

for i Note that

and the convergence is uniform in E . Thus (P4) is satisfied, for some {3 E
if Tl is small enough. In this way A is defined on

some interval
In the similar way (taking one can de-

fine I on some interval [ ti - 
If , then for some

- ë i, ti), our function A, defined as above separately on [ti - 1, t ’ ) and

( t ’ , must have a downward jump at t ’ , since for t E

e(0, ti -1]. Such jumps are allowed by (P3).
On the other hand, if ~ i _ 1 + ~ i  ti - ti _ 1, then in the «missing» in-

terval [ti _ 1 + i ] we define A linearly (as in Case 1A). The esti-
mates similar to those of Case lA are valid because for the correspond-
ing numbers Ei - 1, Ei there holds ..
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CASE 2. ti _ 1; T 1. Let Â 1, ~, 2 : [ ti -1, ti ~ - R be the solutions of the
following problems:

More explicitely:

We will show that if Q is large enough then ~,1 ( t ) ; ~, 2 ( t ) for some t E
E (ti - 1, ti ). This will j ustify the definition of the function A as A = ~,1 on
(ti - 1, t) and A = A2 on (t, ti).

Note that ; ~, 2 ( t ) if and only if

We have

and since
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Hence

where C &#x3E; 0 is a constant depending only on the equation (5). By Oleinik
inequality ([8]), the last estimate yields the desired
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