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Prime Rings with Hypercommuting Derivations
on a Lie Ideal.

V. DE FILIPPIS (*) - O. M. DI VINCENZO (**)(***)

ABSTRACT - Let R be a prime ring with no non-zero nil right ideals, d a non-zero
derivation of R , L a non-central Lie ideal of R. If d satisfies [ d(u m ), = 0
for all u E L, m = m(u) ~ 1, k = k(u) ~ 1, then R is an order in a simple alge-
bra of dimension at most 4 over its center.

1. Introduction.

The classical hypercenter theorem, proved by I. N. Herstein [10], as-
serts that for a ring R not containing non-zero nil two-sided ideals, an in-
ner derivation da , induced by a E R , satisfying = 0 , 
~1, for all x e R, must vanish identically on the whole ring R , i.e.

a E Z(R ).
Moreover in [4, theorem 4] Chuang and Lin proved that for a ring R

not containing non-zero nil right ideals, the inner derivation da, induced
by a E R , satisfying for

all x e R , must vanish identically on the whole ring R.
Later Chuang generalized the results above to arbitrary derivation

d, defined in a prime ring R not containing non-zero nil right ideals.
He proved in [3, corollary 2] that if ~]~=0, 
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k = k(x) ~ 1, for all x E R, then either d vanishes identically on the
whole ring R or R is commutative.

The starting point of this paper is the following result, obtained in [5]:
Let R be a prime ring, with no non-zero nil right ideals, L a non-cen-

tral Lie ideal of R , da an inner derivation induced by a E R. If

[da(um), = 0, for all u E L, m = m(~c) ~ 1, k = k(u) &#x3E; 1, then either
da vanishes identically on the whole ring R , that is or R satis-

fies x2 , X3, x4 ), the standard identity of degree 4.
The last conclusion is well known to be equivalent, by Posner’s theo-

rem, to saying that R is an order in a simple algebra at most 4-dimen-
sional over its center.

Moreover we remark that if R = M2 ( C), the ring of all 2 x 2 matrices
over a commutative ring C, then for any [R , R ] one has 
(see example (3) page’12 in [12]), and so our condition = 0

holds for m = 2 and k = 1.
The purpose of this note is to generalize the result obtained in [5] to

arbitrary derivation d. We will prove the following:

THEOREM. Let R be a prime ring with no non-zero nil. right idea4 L
a non-central Lie ideal of R, d a non-zero derivation of R satisfying
[d(um), = 0, for all u E L, m = m(u) ~ 1, k = k(u) ~ 1. Then R sat-
isfies S4 (Xl, X2, X3, X4), the standard identity of degree 4.

2. Preliminares.

The proof of our theorem is based upon two results obtained respec-
tively in [3] and [5].

The first one is a result of Chuang [3, proposition 2] concerning a
careful analysis of derivations satisfying a particulary property on
semiprime rings.

The related objects we need to mention are the left Utumi quotient
ring U, and also the two-sided Utumi quotient ring Q of a ring R (some-
times, as in [1], U and Q are called the maximal left ring of quotients and
the symmetric ring of quotients respectively).

The definitions, the axiomatic formulations and the properties of
these quotient rings can be found in [15], [8], [1].

For istance U, the left Utumi quotient ring of R , exists if and only if
R is right faithful, that is for any a E R , Ra = 0 implies a = 0.
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In the same way we can define Q if R is both right and left
faithful.

In any case, when R is a prime ring, all that we need here about these
objects is that

2) U and Q are prime rings [8, page 74].

3) For all q e Q there exists a dense left ideal M of R such that
Mq c R , moreover if Mq = 0 , for some dense left ideal M of R , then
q=0.

4) The center of U, denoted by C, coincides with the center of Q.

C is a field which is called the extended centroid of R [1, pages
68-70].

Moreover if R is a prime P.I. ring then, by Posner’s theorem [9, theo-
rem 1.4.3 page 40], C is the quotient field of Z(R ) and

is a simple algebra finite dimensional over its center.
In this case it is easy to see that RC = Q = U.
Finally we recall that a map d : R -~ R is a derivation if, for any x , y E

E R, d(x + y) = d(x) + d(y) and d(xy) = d(x) y + xd(y). Each derivation of
a prime ring R can be uniquely extended to a derivation of its Utumi quo-
tient ring U and thus all derivations of R will be implicitly assumed to be
defined on the whole U (see [15, page 101] or [16, lemma 2]).

Now we are ready to state the result of Chuang ([3, proposition 1,
page 46]) for prime rings. In this case as we said above U and Q are
prime too and so any central idempotent is trivial.

Hence, for any a E U - ~ 0 ~, the norm Ilall of a, defined in [3, page 39,
(7)], is always 1 and of course 110 11 = 0.

PROPOSITION 2.1. Let R be a prime ring with extended centroid C.
Let d a derivation of U, the left Utumi quotient of R , satisfying
d(a)( 1 + a) -1 E C, for any a E R , with a 2 = 0. Let Q be the two-sided Utu-
mi quotient ring of R. Then

either the ring Q is reduced, that is Q does not have any non-zero
nilpotente element

or Q = U = M2 (C), the ring of all two by two matrices over C
or the derivation d is the inner derivation induced by a square-zero
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etement c e U, satisfying the property that, for any x, y E Q with

xy = 0 , we also have xc = cy = 0.

The second result concerns the generalized hypercentralizer of a
non-central Lie ideal of R.

More precisely the generalized hypercentralizer of an arbitrary sub-
set S of R is the following subring of R:

In [5] we proved that if L is a non-central Lie ideal of a prime ring R
with no non-zero nil right ideal, then either HR (L ) = Z(R) or R satisfies
"S4 (Xl, X2, X3, X4).

Finally we remark that an important tool in our proof will be the
theory of differential identities initiated by Kharchenko [13].

3. Proof of the theorem.

Throught this paper we will use the following notation:
R will always be an associative prime ring, with no non-zero nil right

ideal, L will be a non-central Lie ideal of R and d will be a derivation of R
satisfying [d(u m ), = 0, for any u E L , m = m(u) ~ 1, k = k(u) ~ 1.
U will be the left Utumi quotient ring of R , and Q will be the two-sided
Utumi quotient ring of R.
We start with an easy remark:

REMARK 1. If R has then for all there
exists n = n( u ) ~ 1 such that d( u n ) = 0.

PROOF. Let u E L be arbitrarily given. There exist m = m(u) ~ 1,
k = k(u) ~ 1 such that Pick an integer t ;1 such
that p t ~ k. Then

Since R is of characteristic p &#x3E; 0, we have
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and this implies immediately We
obtain [d(a), a] = 0.

Using the commutativity we have = 0, that is

and so we have shown that for all u E L there exists 1 = t(u) ~ 1 such that
d(ui) = 0.

Notice that in this case, if p # 2, then our result follows immediately
by theorem 2 of [7].

Now we make some other reductions.
It is well known that if L is a non-central Lie ideal of a prime ring R

then either R satisfies S4 (Xl’ x2 , X3, X4) or there exists a non-zero two-
sided ideal I of R such that [I , R ] c L and [I , R ] ~Z(R).

Therefore we will assume, in all that follows, that L = [I , R] for some
non-zero two-sided ideal I of R (see for istance Lemma 2 and Proposition
1 in [6]).

In this case L is invariant under any inner automorphism induced by
an invertible (or quasi-invertible) element of R.

Moreover, if Z(R) ~ 0, then we can consider

which are the localizations at Z(R) of R and L respectively. Since L =
= [I, R] is a Z(R)-submodule of R, we have

REMARK 2.

1) L is a non-central Lie ideal of the prime ring R

2) the derivation d extends uniquely to a derivation on R as
follows

3) the derivation d, defined on R, satisfies our assumptions on L,
that is for any U E L, there exist n = n(u) ~ 1, k = k(u) ; 1 such that

V’lk = 0.

LEMMA 3.1. Let a E R. If a is invertible then d(a) a -1 E HR(L), if a
is quasi-invertible then d(a)( 1 + a)-1 E HR (L).
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PROOF. First we assume that a is invertible, then, as we said above,
aLa -1= L , hence for any u E L there exist m, k, n , h ;1 such that

and

Hence for s = nm and t = max f h, k} we also have:

It follows that:

Hence [d(a)c~,~~+i=0 that is d(a) a -1 E HR (L).
A similar proof holds if a is a quasi-invertible element of R.

We remark that any square-zero element a of R is quasi-invertible
with quasi-inverse - a.

Therefore, by [5], either R satisfies x4 ) and we are done
or that is the derivation d satisfies the hypothesis of
Chuang’s result. In this case one of the three conclusions of the Proposi-
tion 2.1 must hold.

Now we treat each case separately.
Of course if U = M2 (C), the ring of all 2 x 2 matrices over C, then it

satisfies the standard identity x2 , x4 ) and we are done again,
since R c U.

In the second case we have:

PROPOSITION 3.1. If the derivation d is the inner derivation de-
fined by a square-zero element c in U, satisfying xc = cy = 0 for any
x , Y E Q, urith xy = 0 , then d vanishes identically on R.
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PROOF. Since c is an element of the left Utumi quotient ring of R ,
there exists a left dense ideal M of R such that Mc c R (see proposition
2.1.7 in [1]).

Moreover, since R is a prime ring, IM is again a left dense ideal of R
and, of course, IMc c IR c I.

In other words we can assume that there exists M left dense ideal of
1~ such that Mc c I and so [Mc , Mc ] c L. Therefore for any x , y E M there
exist m = m( c , x , y) a 1, k =1~( c , x , y) * 1 such that

Moreover ( Therefore

Thus [ xc , yc ]m~k + 1 ~ = 0, that is [xc , yc ] is a nilpotent quasi-in-
vertible element. By lemma 3.1 and the main theorem in [5], either R sat-
isfies X2, x4 ) or d([xc, yc]) = a(l + [ xc , yc]), where a E

E Z(R ).
In the first case R is a prime PI ring and so, by Posner’s theorem,

RC = S = Q = U is a central simple algebra finite dimensional over its
center C.

Since U satisfies x4 ), if c is a non-zero square-zero ele-
ment, then we have U = M2 ( C), the ring of 2 x 2 matrices over C.

Since xc = cy = 0 , for any x , y E Q = U such that xy = 0 , then el l c =
that is M2 ( C) c = 0 and so c = 0 , a contradic-

tion.

In the second case we know that

Since [ xc , yc] is quasi-invertible, then a = 0. Thus 0 = d([xc, yc]) =
= c[xc, yc]. Hence, for any x, y in M, c[xc, yc] = 0.

Let x , y , z be in R , t in M. Since M is a left dense ideal of R , we have
that xt, yt, zt fall in M and so ztc[xtc, ytc] = 0, that is R is GPI [2].

In this case, by Martindale’s result the central closure S = RC is a
primitive ring, containing a minimal right ideal eS , such that eSe is a di-
vision algebra finite dimensional over C, for any minimal idempotent e of
S [9, theorem 1.3.2].



312

If e = 1 then S is a finite dimensional division algebra over C. There-
fore S is PI and so R is PI too. As we said above in this case S = Q = U
and so c E S which is a division ring. Hence c = 0 and consequentely
d = dc = 0.

Now we may suppose e # 1. We known that xc = cy = 0, for any x, y
in Q, with xy = 0.

Let X2 = 0. Since xc = cx = 0 then d(x) = [c, x] = 0, that is c com-
mutes with every square-zero element x in Q.

Let A be the subring generated by the elements of square zero. A is
invariant under all automorphisms of Q. By our assumption there are
non-trivial idempotent in the prime ring Q and so A contains a non-zero
ideal J of Q by [11].

Now, since 0 = d(A) J d(J) 2 d(JQ) = Jd(Q), by the primeness of Q we
obtain d(Q) = 0, that is d = 0 in Q and so in R too.

REMARK. The last case is the one in which Q is a reduced ring. Since
Q is also a prime ring then it must be a domain. In fact, let x, y E Q be
such that xy = 0 and y ~ 0. Then, for any we have =

= yzxyzx = 0 and so yzx = 0 , that is yQx = 0 and x = 0 because Q is
prime.

DEFINITION. For a E R let

H(a) = a]m = 0 for some integer 

Of course H(a) is a subring of R.
We also have:

LEMMA 3.2. Let R be a domain of characteristic zero and let d be
the derivation satisfying our assumption. If a is an element of I such
that

then H(a) is invariant under the derivation d and moreover d(a) is in
the center of H( a).

PROOF. By localizing at non-zero integers we may assume that R is
an algebra over the field of the rational numbers.

By [3, assertion 2] it follows that H(a) is invariant under d. Now, we
put 6 = da , the inner derivation induced by a.

Of course the derivation 6 restricted to H(a), which we also denote d,
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is nil and hence for any integer ~, , the derivation £6 is also nil on

H(a).
Since H(a) is an algebra over the field of the rational numbers, the

map exp (A) is an automorphism of H(a) (see [3, proposition 2]), hence
the map di = d exp ( - A6) is a derivation of H(a).

Obviously I n H(a) is a two-sided ideal of H(a) which is invariant un-
der the action of 

Hence L1= [I n H(a), H(a)] c [I, R] = L is a Lie ideal of H(a), more-
over, for any u E there exist some integers n = n(u) ~ 1, k = k(u) 1
such that = 0.

Now, given u ELI, there exist integers n = n(u) ~ 1, m = m(u) ~ 1,
k = k(u) ~ 1, h = h(u) ~ 1 such that

hence, as in the proof of lemma 3.1, for s = nm and t = max (h, k ~ we
also have

that is [ (d,1 - d)( US), u’lt = 0.
By [3, proposition 2, (3)] the derivation di - d is the inner derivation

induced by the element bi = E ([~(~,a), and so bi is in the
i

generalized hypercentralizer of LI in H(a).
If I n H(a) is the zero ideal of H(a), then a = 0 since it is in I n H(a)

and of course d(a) = 0 E Z(H(a)).
If I n H(a) is non-zero then, by [5, proposition 4.1], either

= Z(H(a) ) or H(a) satisfies S4 (Xl, X2, X3, x4 ).
In the first case we may conclude, by a Vandermonde determinant

argument, d( a) E Z(H( a ) ).
In the other case, by localizing at the center of H(a), we may assume

that H(a) is a division algebra of dimension at most 4 over its center
Z(H(a) ). It follows that there exists 1 such that óm(r) = 0, for any

that is 6 is a nil of bounded index on H(a).
By [9, lemma 1.1.9] there exists z E Z(H(a) ) such that a - z is nilpo-

tent and so a - z = 0, because H(a) is a division ring. Hence a E Z(H(a) ).
Therefore, for any r E H(a), 0 = d([r, a]) = d(ra - ar) = [r, d(a)], that is
d(a) E Z(H(a)). D
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LEMMA 3.3. Let R be a domain. For any x, there exists
such that is invari-

ant under derivation d, that is (

PROOF. If char . R ~ 0 then, as we said in Remark 1, our assumption
about the derivation d implies that for any x , y E R there exists m =
= m(x, y) ~ 1 such that d([x, y]m) = 0. For any r E CR([x, y]m) we
have

that is

Now let char. R = 0. For any one has

Since by previous lemma (
that is 

The last step in our proof is the following:

PROPOSITION 3.2. Let Q be a domain, then R satisfies ,S4 (xl , x2 , x3 , x4 ).

PROOF. First we show that for all x , y E I one has:

In fact given x, y E I , by previous lemma there exists an integer m =
= m(x , y ) ~ 1 such that d(CR ( [x , and of course we can
assume [ x , y] # 0. We denote A = CR([x, y ]m ), therefore [ x , y ]m is a
non-zero element of Z(A) and I n A is a non-zero two-sided ideal of A.
By localizing A at Z(A ) we obtain a domain D whose center is a field con-
taining [ x , y ]m , moreover D = ~ rz -1: r E A , z E Z(A ) - ~ 0 ~ ~ . As we said
in Remark 2 d extends uniquely to a derivation on D , which we will also
denote d and moreover d satisfies our assumption on D with respect to
the Lie ideal L which is the localization of [I n A , A] c [I , R] = L.

Of course [x, y ] is invertible in D , therefore by lemma 3.1 and main
result in [5], either d( [ x , y]) = a[x, y ], for some a e Z(A) or D satisfies

X2, x4 ).
In the first case [[x, y], d([x, y])] = 0 and a fortiori
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In the second case D is a division algebra of dimension at most 4 over its
center. Moreover we know that in this case, for any a, b E D , [a, 
E Z(D).

This implies [[x, y], d([x, y])]2 E Z(A), because and

d([x, y]) E A C D.
In particular the following holds

Therefore, in any case, we have

for all x, y E I.
In other words

is a differential identity for I.
Because any non-zero two-sided ideal of a prime ring R is also a

dense (or rational, see [8] page 50) R-submodule of U, then, by [16, theo-
rem 2], ~(~i, X2, d(x2» is a differential identity for U.

By theorem 1 of [16] (or theorem 2 in [14]) it follows that either d is
an inner derivation of U or U satisfies the polynomial identity

If d is an inner derivation induced by some q E U then

for all x , y E U.

In particular this one holds in R and so R is a GPI-ring [2], its central
closure S = RC is a primitive ring having minimal right ideal, moreover,
for any minimal idempotent e = e 2 ~ 0 , eSe is a division algebra finite di-
mensional over its center eCe = C [9, theorem 1.3.2].

Because S = and Q is a domain then S is a domain and so any
idempotent element e of ,S is trivial.

This implies that ,S is a division algebra finite dimensional over C,
that is R is a PI-ring and C is the quotient field of Z(R).

It follows that RC = ,S = Q = U.
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Moreover by Posner’s
theorem and so, for any there

exist integers m, k such that [d(u’~ ), = 0 (see Remark 2).
Because d is the inner derivation in U induced by q e U, we obtain

that that is either q E Z( U) or U satisfies x4 ). In
this last case we are done because R c U. If q e Z( U) then d = 0 in U, and
this is a contradiction. Now we have to analize the only case in which
O(Zl, z2 , z3 , z4 ) is a polynomial identity of U. In this case R c U satisfies
the blended component ll[Zl, z2 ], IZ3, Z2 ]]2 , [Zl, z2 ]~ of the polynomial
identity O(ZI, z2, z3, z4).

Since R is prime there exists - a field F such that R and Mk (F), the
ring of all k x k matrices over F, satisfy the same polynomial identities
(see [12]).

Suppose k ~ 3. Let eij the matrix unit with 1 in (i, j ) entry and 0
elsewhere.

Let By calculation we ob-
tain

and this is a contradiction. So k ~ 2 and R satisfies

At this point the proof of our theorem is complete and we state it here
again for sake of clearness:

THEOREM 3.1. Let R be a prime ring with no non-zero nil right ide-
als, d a non-zero derivation of R , L a non-central Lie ideal of R. If d
satisfies = 0 for all u e L , m = m( ~c ) ~ 1, k = k( ~ ) ;1, then
R satisfies x2 , X3, x4 ).
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