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Existence of Solutions for Operator Inclusions:
a Unified Approach (*).

DIEGO AVERNA (**) - SALVATORE A. MARANO (***)

ABSTRACT - For a class of operator inclusions with multivalued terms fulfilling
mixed semicontinuity hypotheses, the existence of solutions is established by
chiefly using Bressan and Colombo’s directionally continuous selection theo-
rem as well as Ky Fan’s fixed point principle. An application to the Cauchy
problem is then performed.

Introduction.

Let I be a compact real interval, let F be a closed-valued multifunc-
tion from I x Run into and let ( to , xo ) E I x IRn. A function u : I - Run is
called a solution of the multivalued Cauchy problem
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provided it is absolutely continuous, u ’ ( t ) E F(t , u( t ) ) for almost every
and u(to ) = xo .

The literature concerning (P’) varies considerably in its assumptions
about regularity of F; see [1,18,10] and the references given there. Never-
theless, the main existence theorems essentially are as follows. Sup-
pose the multifunction F satisfies some kind of integrable boundedness
(which may change from one paper to another). Then problem (P’) has a
solution if either 

(ha) F takes convex values, F(., x) is measurable, while F(t , ~ ) is
upper semicontinuous, or

( h2 ) F is measurable in ( t , x ) and lower semicontinuous with re-
spect to x.

A number of attempts have been made to unify these two approaches,
for instance, by introducing mixed semicontinuity conditions

[17,13,12,19]. Himmelberg and Van Vleck’s result [12, Theorem A] ex-
tends the pioneering work by Olech [17] and requires that

(h) F(., x ) is measurable, while F(t, .) has a closed graph. More-
over, for each ( t , x), either F( t , x ) is convex or F( t , ~ ) is lower semicon-
tinuous at x.

The global version of Lojasiewicz’s result [13, Theorem 1] (see also
the paper by Tolstonogov [19]) assumes that

(h4) F is measurable in ( t , x). Furthermore, for almost every t and
all x, either F( t , x ) is convex and F( t , ~ ) has a closed graph at x or F( t , ~ )
is lower semicontinuous on some neighbourhood of x.

Obviously, (h) includes ( h1 ) but is independent of ( h2 ), whereas (h4)
generalizes (h2 ) and is independent of (h1 ). It should then be noted that
the proofs of such results are rather involved.

For autonomous F, another contribution has recently been per-
formed by Deimling [10, Corollary 6.4] through simpler arguments
based on a technique, previously developed by Bressan in [7], which em-
ploys directionally continuous selections from lower semicontinuous
multifunctions. The same author asked [10, Problem 4, p. 75] (see besides
[18, p. 148]) whether it is possible to establish the above-mentioned theo-
rems in the spirit of his easier proof.

The present paper tries to place and solve the question within a more
abstract framework to which Bressan’s idea can still be adapted. Accord-
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ingly, here, we consider a problem of the type

where U is a nonempty set, F now denotes a closed-valued multifunction
from I x X into Y, X and Y being separable real Banach spaces, while 0
and W indicate operators defined on U and taking relevant Bochner inte-
grable functions as values. A point u E U is called a solution of ( PF ) pro-
vided Vf(u)(t) E F(t, 0(u)(t)) for almost every t e I.

Supposing that F fulfils mixed semicontinuity conditions, we first
construct a convex closed-valued integrably bounded multifunction

( t , x ) H G( t , x ) with the following properties: G( ~ , x ) is measurable;
G( t , ~ ) has a closed graph; each solution to the problem

satisfies (PF) as well. From a technical point of view, it probably repre-
sents the most difficult step of the work and is achieved in Theorem 2.1.
Next, assuming the space Y finite-dimensional and using a modified ver-
sion (Theorem 2.2) of a result by Naselli Ricceri and Ricceri [16, Theo-
rem 1], which chiefly goes back to Ky Fan’s fixed point principle, we
solve ( PF ) through ( PG ); see Theorem 2.3.

Since the hypotheses about (P and W are general enough to comprise
in ( PF ) both (P’) and several other known problems, this result mean-
ingfully specializes whenever we make suitable choices of the above op-
erators. Specifically, concerning (P’), Theorem 2.3 yields at once a result
(Theorem 2.4) that improves the global version of [13, Theorem 1] and, in
non-mixed situations, requires either (h1 ) or (h2 ) only. Moreover, from
Theorem 2.3 it is possible to deduce Theorem A in [12] and hence the re-
sult of [17, p. 190]; see Theorem 2.5.

Naturally, Theorem 2.1 could also be used together with other exis-
tence results for specific problems having a right-hand side like G.

The paper is organized into four sections, including the Introduction.
Notations, definitions, and preliminary results are collected in Section 1.
Basic assumptions and statements of the main theorems, as well as some
special cases sufficiently interesting to be explicitly considered, are pre-
sented and discussed in Section 2. Finally, Section 3 contains the proofs
of Theorems 2.1, 2.2, and 2.5.
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1. Preliminaries.

Given a complete metric space (Z, d), the symbol indicates the

Borel a-algebra of Z. A function V) from a real interval I into Z is said to
be Lipschitz continuous at the point t e I when there exist a neighbour-
hood Vt of t and a constant kt &#x3E; 0 such that  kt z - t | for every

Let W be a subset of Z. We denote by W the closure of W. If W is
nonempty, we write 

as well as

When W is bounded, the nonnegative real number

a(W) := inf {8 &#x3E; 0:

W has a finite cover of sets with diameter smaller than 6)
is called Kuratowski’s measure of noncompactness of W. One evidently
has a( W) = 0 if and only if W is relatively compact. Further helpful prop-
erties may for instance be found in [10, Proposition 9.1].

Now, let (Z, 1I.llz) be a Banach space. The symbols co (W) and co (W)
respectively indicate the convex hull and the closed convex hull of the set
W. We denote by M(I , Z) the family of all (equivalence classes of)
strongly Lebesgue measurable functions from I into Z. Given any
p E [ 1, + 00], we write p’ for the conjugate exponent of p besides

Z) for the space Z) satisfying + 00, where

and p is the Lebesgue measure on I. Finally, Rn indicates the real
Euclidean n-space while represents the family of
all such that U(j-l) is absolutely continuous and

u(j) E Lp(I, Rn).
Let X be a nonempty set and let H be a multifunction from X into Z

(briefly, H : ~2013~2~), namely a function which assigns to each point x E X
a nonempty subset H(x) of Z. If we write H(V) : = UxevH(x) and

for the restriction of H to V. The graph of H is the z ) E X x
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x Z : 

If (X, 5fi is a measurable space and H - (W) E F for any open subset W of
Z, we say that H is ~measurable, or simply measurable as soon as no
confusion can arise. When X has a complete a-finite measure defined on
Z is separable, and H(x) is closed for all x E X, the lsmeasurability of

the multifunction H is equivalent to the FXB(Z)-measurability of its
graph; see [11, Theorem 3.5]. Using this we immediately infer the

following

PROPOSITION 1.1. Let E be a nonempty Lebesgue measurable sub-
set of R and let Z be a separable Banach space.

(i) Suppose m : E - Rt is measurable and zo E Z. Then the multi-
function m( t ) ), t E E, is measurable.

(ii) Suppose HI and H2 are closed-valued measurable multifunc-
tions from E into Z complying with HI (t) n H2 (t) ~ 0, t E E. Then the

multifunction t E E, is measurable,.

Let X be a metric space. We say that H is upper semicontinuous at

the point xo E X if to every open set We Z satisfying H(xo ) c W there cor-
responds a neighbourhood vo of xo such that H(VO) c W. The multifunc-
tion H is called upper semicontinuous when it is upper semicontinuous at

each point of X. In such a case its graph is clearly closed in X x Z provid-
ed that H(x) is closed for all x E X. We say that H has a (sequentially)
closed graph at xo if the 

lim zk = e N, imply zo E H( xo ). 
k--

k - oo

The result below is an easy consequence of Ky Fan’s fixed point theo-
rem ; see for instance [6, Theorem 2.1 ].

THEOREM 1.1. Let X be a metrizable locally convex topological vec-
tor space and let V be a weakly compact convex subset of X. Suppose H
is a multifunction from V into itself with convex values and

weakly sequentially closed graph. Then there exists xo E V such that
xo E H(xo).

We say that H is lower semicontinuous at the point xo if to

every open set W c Z fulfilling there corresponds a

neighbourhood vo of xo such that H(x) n W # 0, x E vo . The multifunction
H is called lower semicontinuous when it is lower semicontinuous
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at each point of X. A selection from H is a function h : X --~ Z with

the property h(x) E H(x) for all x E X.
Let M be a positive real number and let be a Banach space.

According to [7,8], we define

If S~ c R x X is nonempty and h : .Q 2013&#x3E;Z, we say that h is TM-continuous
(or simply directionally continuous) at the point when,
given E &#x3E; 0, one may find 6 &#x3E; 0 such that to  t  to + ~,
(t, x) - (to, xo ) imply I lh(t, x) - h(to,  E. The function h is

called TM-continuous if it is TM-continuous at each point of SZ.
A basic fact about lower semicontinuous multifunctions is established

by the next result; see [8, Theorems 1 and 2].

THEOREM 1.2. Let X, Z be two Banach spaces, let Q c R x X be

nonempty, and let M &#x3E; 0. Then any closed-valued lower semicontinu-
ous muLtifunction H into Z admits a Fm-continuous selec-
tion.

Finally, for and we write 

E X : (t0, x) E Q} as well as Qx0 := {t E R : (t, x0) E Q}. Moreover, projX(Q) 
indicates the projection of Q onto X. We say that a multifunction
~: ~ 2013&#x3E;2~ has the lower Scorza Dragoni property if to every e &#x3E; 0 there

corresponds a closed subset 7g of I such that  E and H x z) no

is lower semicontinuous.

2. Basic assumptions and statements of the main results.

From now on, I denotes a compact real interval with the Lebesgue
measure structure (2,,u), (X, and ( Y, are separable real Ba-
nach spaces of zero vectors Ox and Oy respectively, + ~ ],
q  

Let D be a nonempty closed subset of X, let A c I x D, and
let C: = (I x D) BA. We always suppose that the set A complies with

(as) and At is open in D for every t E I.

Moreover, let F be a closed-valued multifunction from I x D into Y,
let m E L ~ (I , and let N E ~ withu (N) = 0. The conditions below will
be assumed in what follows.
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( a2 ) FIA has the lower Scorza Dragoni property.
whenever (t, x) EA n [(IBN) x D].

(a4) The is measurable} is dense in

projx(C)~
(a5) For every (t, x) e C n [(IBN) x D] the set F(t, x) is convex,

F(t, .) has a closed graph at x, and F(t, in(t) ) # 0.

(a) If then there exists such that a (F( t , L ) n
n B(Oy, m(t) )) ~ kt a(L) for any bounded subset L of D.

Finally, let U be a nonempty set and let O: U-M(I, X), Y: U-
be two operators. We will make the hypotheses:

(aq) To each Rt) there corresponds Rt) so
that if u E U and Q(t) a.e. in I, then 0(u) is Lipschitz contin-
uous with constant o * ( t ) at almost all 

( ag ) ~ is bijective and for any Y) and any sequence
~ weakly converging to v in L q (I , ~ there exists a subse-

quence converges a.e. in I to Fur-

thermore, a nondecreasing function ~:[0, + 00 [ ~ [ 0, +00] can be de-
fined in such a way that

REMARK 2.1. The above inequality trivially holds whenever 
= + 00 on [ o , + oo [. Nevertheless, different choices of cp sometimes might
be more convenient.

Significant couples of operators (P, V fulfil conditions ( a7 ) and ( ag ).
Here are three typical situations; for some more general cases we refer
to [5,14].

EXAMPLE 2.1. Pick X:=y:=R~ 
Run): u(to) =xo~. define Ø(u) :=u, W(u) : :=u’. An easy

verification ensures that both (a7 ) and (a8)’ with 
come true.

EXAMPLE 2.2. Let I : _ [ a , b ], 
E=- W2, s (I, u(a) = u(b) = 0 ). Set, for u E U, 0(u) : = (u, u’ ) and

= u ". Elementary computations yield (aq) while, reasoning as in
the proof of [15, Theorem 2.1], we conclude that ( a8 ) holds.
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EXAMPLE 2.3. Put X : = Y : = R, U : = R), and choose ).: I x
x I - R satisfying £(0 , .) E L ~’ (I , R). Suppose there is À 0 E L s’ (I , Rt)
--- -I- 1- - ,

for all t’, t" E I and almost all Te7. If u e U, define 0(u)(t) : =
The operators 0 and W clearly

comply with (a7) and (a).

Next, for H : I x D ~ 2Y consider the problem

The point u E U is called a solution to (PH) provided that E D and
E H(t, 0(,u)(t)) for almost every t E I.

THEOREM 2.1. Assume F, ø, and V satisfy hypotheses (a,2)-(a7).
Then there exists a convex closed-valued multifunction G from I x D
into Y having the properties.:

(i2 ) a(G(t, L) ) ~ kt a(L) whenever t EI BN and LcD is bounded.
The G( ~ , x ) is measurable I is dense in D.

( i4 ) For every the graph of G(t, .) is closed.

(i5 ) Any solutions of (PG ) is also a solutions to (PF).

REMARK 2.2. The proof of the above result (see Section 3) actually
shows that G( ~ , x) is measurable for each x E D as soon as the same holds
regarding Fie ( ., x ), x E projx ( C). So, bearing in mind Example 2.2 and
taking C = 0, we deduce that Theorem 1 in [3] is a special case of Theo-
rem 2.1.

Before establishing the existence of solutions to ( PF ) we state the fol-
lowing result, which remains valid even if Y has not finite dimension but
is only reflexive; see [4]. However, in that setting we have to assume also
(i2 ) whereas, for finite-dimensional Y, (il ) evidently forces (i2 ).

THEOREM 2.2. Let Y have finite dimension, let (P and 1JI be like in
( a8 ), 0 be such that IIMIILP(I, R) ~ r, and let D = B(Ox, rp(r)). Sup-
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pose G is a convex closed-valued multifunction from I x D into Y com-
plying with (il ), (i3 ), and (i4 ) of Theorem 2.1. Then problem (PG ) has at
least one solution.

REMARK 2.3. The preceding result is somewhat similar to [16, The-
orem 1] where, in place of (i1 ), a weaker condition is assumed. Neverthe-
less, during the proof of that result one really reduces to a multifunction
which fulfils (i1 ). Moreover, concerning the operators 0 and ~, an hy-
pothesis stronger than (a) is there adopted.

Finally, combining Theorems 2.1 and 2.2 immediately yields

THEOREM 2.3. Let Y be &#x3E; 0 be such that
and let D = B(OX, cp(r)). Suppose F, 0, W satisfy (a2)-

( a5 ), (a7), and ( a8 ). Then problem ( PF ) has at least one solutions u E U
with

This result has a variety of interesting special cases, as the remarks
below emphasize.

In the framework of Example 2.1, (PF) becomes the Cauchy prob-
lem

and from Theorem 2.3 we naturally infer the following simpler and prac-
tical result.

THEOREM 2.4. Let D = X and let (az) be satisfied. Assume that:

( bl ) Flc(., x ) is measurable whenever x E projX ( C).
( b2 ) For almost every t and every x E Ct , the set F( t , x ) is con-

vex and the multifunction F(t, .) has a closed graph at x.

(b) There exists Rt) such that

a. e. in I, for all x E X.
Then problem (P’) has a solutions 

REMARK 2.4. In Theorem 2.4, different choices of C produce dis-
tinct global existence results for (P’). As an example, the case
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(t, x ) H F( t , x ) convex-valued, measurable with respect to t, and upper
semicontinuous in x [10, Section 5] is treated by setting C = I x 
whereas taking C = 0 leads to a theorem that comprises some known
nonconvex-valued situations [10, Section 6].

REMARK 2.5. The above result improves the global version of [13,
Theorem 1 ], which may be obtained at once from [13, Theorem 1] by re-
placing the local integrable boundedness hypothesis with a condition
like (b3 ). This is easily seen as soon as we realize that, because of [13,
Propositions 3 and 4], the set

T is lower semicontinuous

for some V open neighbourhood of x ~

considered in [13, Theorem 1 ] complies with (ail). We then note that The-
orem 3.1 of [19] requires regularity properties for F stronger than (a2 ),
(b1 ), and (b2 ), whereas, in place of (b3 ), a weaker condition is assumed.
However, during the proof of that result one really reduces to a multi-
function fulfilling (b).

Theorem 2.4 applies to several concrete cases where the (global) exis-
tence results of [17,13,12,19] fail, as the next elementary example
shows.

EXAMPLE 2.4. Pick I : _ [ -1, 1 ], to : _ -1 /2, xo : _ -1. Given any
nonmeasurable subset E of I, we define, for (t, x) e I x R,

Obviously, the multifunction F : I x R ~2R is lower semicontinuous on
the set A := {(~, x ) E I x R: t &#x3E; r) and ( al ), (a2), (bi)-(b3) hold. So, by
Theorem 2.4, problem (P’ ) has a solution belonging to R). Nev-
ertheless, the results of the above-mentioned papers cannot be used
since neither the graph of F(t , ~ ), t e] - 1, 1 ], is closed at the point xo nor
F is £XB(R)-measurable. Let us also observe that solutions to ( P’ )
whose graphs exhibit segments lying and

might trivially be constructed.



295

Finally, always in view of Example 2.1, the result below allows one to
deduce Theorem A in [12] (and so the result of [17, p. 190]) from Theo-
rem 2.3.

THEOREM 2.5. Suppose H is a closed-valued multifunction from
I x Rn into Rn with the following properties:

(Cl) For almost all t E I and all x either H( t , x ) is convex or
H(t, .) is lower semicontinuous at x.

(C2) The E H(., x ) is measurablel is dense in Rn.

For almost every t E I the graph of H(t, .) is closed.

(C4) There is ml E L ~ (I , such that H(t, x) n B(0, ml (t) ) ~ ~
a. e. in I, for all x 

Then there exist a set A c I x Rn and a closed-valued multifunction
F from I x Rn into Rn satisfying (al )-(a5 ). Moreover, for almost every
t e I and every x eRn one has F(t, x ) c H(t, x).

Likewise, in the framework of Example 2.2, (PF) becomes the Dirich-
let boundary value problem

and comments analogous to those made for (P’) come true in the present
setting. As an example, through Theorem 2.3 we achieve the follow-
ing

THEOREM 2.6. Let D = X and Let (a2) be fulfilled. Assume that con-
ditions (b1 )-(b3 ) of Theorem 2.4 hold. Then problem (P") has a solution
ZG E W2’ ~([a, b], l~.n).

We conclude the section by pointing out that, concerning the opera-
tors 0 and Vf, Theorem 2.1 needs hypothesis ( a7 ) only. This means that it
can also be used together with existence results for specific problems
where the finite dimension of Y and (a) are not required; see for in-
stance [10]. Moreover, the same arguments of [12,19] show that the mul-
tifunction F considered in Theorems 2.3, 2.4, and 2.6 can actually be tak-
en integrably bounded (in the sense of [12, p. 297]).
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3. Proofs of Theorems 2.1, 2.2, and 2.5.

Before establishing Theorem 2.1 we formulate the following two
technical lemmas.

LEMMA 3.1. Let F satisfy hypotheses (a5) and (a.6). Then, for any
the multifunction x - F(t, x) n B(Oy, m( t ) ) , convex

closed-valued and upper semicontinuous.

PROOF. Fix Owing to ( a5 ) the set 

x E Ct , is nonempty, convex, and closed. Next, arguing by contradiction,
suppose there eidst x e Ct, a sequence c Ct, as well as an open subset
Q of Y fulfilling for all 

k - oo

F( t , x ) n B(0y, m( t ) ) c Q. Pick yk E F( t , xk ) f 1 B(Oy, m( t ) ) B ,5~, and

note that, on account of exhibits a subsequence {yki} converg-
ing to some y E B( Oy, m( t ) ) B S~. Since assumption ( a5 ) implies y E F( t , x),
we really obtain x ) n B(Oy, which is absurd.

LEMMA 3.2. Let H be a multifunction from I x D into Y, let E e 2,
and Let ue U. Suppose W(u)(t) E H(t, 0(u)(t)), t E E, and write E * for
the set of all t E E such that there exists a c E having the
properties: Then

PROOF. By Lusin’s theorem, to every E &#x3E; 0 there corresponds E, ~ JE
with ,u(E~ ) &#x3E; ~c(I ) - E and continuous. Put El : = E n E, and ob-
serve that &#x3E; ,u(E) - e. Owing to Lebesgue’s density theorem (see
for instance [20, Theorem 7.13]) the set is a point of den-
sity for is a subset of E * complying with u(E2) =,u(El). Thus,
,u(E * ) &#x3E; ,u(E) - E for any E &#x3E; 0, namely * ) =,u(E). 0

PROOF OF THEOREM 2.1. Define, for every (t, x) eA,

Obviously, F(t, x) is nonempty and closed._ Moreover, F(t, x) c
c B(0y, m(t) ). Let us verify that the multifunction F: A - 2y has the lower
Scorza Dragoni property. To this end, fix E &#x3E; 0. Using (a~2), ( a3 ), and
Lusin’s theorem gives a compact subset Ee of I BN such  E,
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is lower semicontinuous, is continuous and positive. So,
by [1, Proposition 5, p. 44], the multifunction

is lower semicontinuous. This immediately leads to the desired conclu-
sion, because for any open set Q c Y one has

Next, pick g = m in hypothesis (a7) and write m * in place of ~o *. Since,
owing to ( a1 ), the multifunction t H Ct , t E I, is measurable, Theorem 1 in
[2] and standard arguments produce a sequence of compact sub-
sets of I, no two of which have common points, satisfying the conditions:
fl(Eo) = 0, where Eo : = IB U Ek ; (Ek x X) n A is open in Ek x D; m * 
is continuous, while is lower semicontinuous. Let Mk, 
be a real number complying with

Then, on account of Theorem 1.2, for each /ceN there exists a TMk-con-
tinuous selection fk : X) n A - Y from F x X) n A. Choose

and write

Moreover, for every (t, x) E I x D, set

as well as

We claim that the multifunction G : fulfils the conclusion of

the theorem. Indeed, G(t, x) is a nonempty, convex, closed subset of
B(Oy, m(t) ). To prove (i2 ), fix bounded, and E &#x3E; 0. An ele-
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mentary computation yields

while (1), assumption (a~6), and usual properties [10, Proposition 9.1] of
Kuratowski’s measure of noncompactness a imply

Since c was arbitrary, we actually have a(G(t, L) ) ~ kt a(L).
Let us next verify that, for (t, x) E I x D,

When the formula immediately follows from ( a1 ) and (1).
So, suppose (t, x) E C. One obviously has F*(t, x)çG(t, x). If y E
E YBF * (t, x) then y qt B(F * (t, x), t7) as soon as t7 &#x3E; 0 is sufficiently small.
Bearing in mind that, in view of Lemma 3.1, the multifunction

z H F * ( t , z) is upper semicontinuous at x, we can find E &#x3E; 0 complying
with Therefore, G(t, x) c
c B(F * (t, x), ~) and consequently y f/. G(t, x). This gives F * (t, x) _
= G(t, x).

Write is measurable} and D2 : _
= DB projx (C). Because of (a4 ) we get D1 U D2 = D. Thus (i3) is achieved by
simply showing that, for any x E Dl U D2 and any the multifunction

measurable. Exploiting the identity 
besides p(N) = o, it is enough to establish the measurability of

G( ~ , x) and G( ~ , x) I Ek n A -- When Proposition 1.1 ensures
that the multifunction is

measurable. Hence, by (1) and (2), the same holds regarding
Suppose and choose y E Y, 

Since the function fk is rMk-continuous at (t, x), to every a &#x3E; 0 there cor-
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responds 6 &#x3E; 0 such that

for all Accordingly,

for every &#x3E; which forces

This means that the function dy(y, G( ~ , is lower semiconti-
nuous from the right and so measurable. Through [11, Theorem 3.3] we
then infer the measurability of t - G(t, x), 
As (i4 ) can be verified by using standard arguments (see for instance [1,
p. 102]), it remains to prove (i5 ). Let u E U satisfy

where fl(N1) = 0. Taking into account (ii ) and hypothesis (a7)’ we obtain
a set N2 g I of Lebesgue measure zero such that is Lipschitz conti-
nuous with constant m * ( t ) at each t E I B N2 . Define No : :=NUN1 U N2 .
It is evident that = 0 and Moreover,
one has

Indeed, denote by Ek the set of BNo for which there exists a se-
quence enjoying the properties:

In view of Lemma 3.2 we are really reduced to see that W(u)(t) E
E F(t, 0(u)(t)) whenever t e E/ . So, pick a point t in Ek . If (t, 0(u)(t)) E
E C the above inclusion immediately follows from (1)-(3). Suppose
(t, Ø(u)(t» E A and 0. Since (Ek x X) n A is open in Ek x D and
the function fk is Fmk-continuous at (t , 0(u)(t)), there exists 6 &#x3E; 0 such

that the conditions

imply (r, z ) E A as well as
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Hence, using (4) together with the Lipschitz continuity of 0(u) at t
yields Ilø(u)(tj) - p(u)(t) Ilx  Mk (tj - t) for any sufficiently large j. Con-
sequently, by (2) and (5),

This clearly forces

while (4) leads to

for j E N large enough. Therefore,

As a was arbitrary, we actually have = fk (t, 0(u)(t)). Thus,
tp(u)(t) e F(t, 0(,u)(t)), and the proof is complete.

Theorem 2.2 can be established through reasonings somewhat simi-
lar to those employed in [16, Theorem 1]. So, we only present the main
ideas of the proof.

PROOF OF THEOREM 2.2. Bearing in mind that X is separable and
(i3) holds, we obtain a countable set D * cD with the following proper-
ties : D * = D; G(., x) is measurable for each x E D *. If (t, x) E I x D, we
write

Owing to ( i4 ) and the convexity of G(t, x ) one has

Hence, on account of (il ) and Cantor’s theorem, G(t, x) is also nonempty,
convex, and compact. Arguing as in [16, p. 263] we then infer that the
multifunction G is 2 the graph of G( t, .) is closed
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for every t E I, while the set

is convex and weakly compact.
- - 

Next, for v E K, assumption (ag) combined with the inequality
yields

So, it makes sense to define

The set T(v) is clearly convex and nonempty; see [16, p. 264]. Let us now
verify that the graph of the multifunction r: K -~ 2x is weakly sequen-
tially closed. Pick v , W E K and choose two c K ful-

filling Wj E E N, lim vj = v, lim Wj = w weakly in L q (I , Y). Exploit-
j - oo j - oo

ing (a8) and taking a subsequence if necessary, we may suppose

at almost all t E I. By Mazur’s theorem [9, Theorem IL5.2], for each j E N
there exists such that

hence

without loss of generality. Let t satisfy (7), (8), and

Since G( t , ~ ) is upper semicontinuous at

there corresponds such that

whenever j ; v. Because of (8) this produces

As a was arbitrary, we really get namely,
w E 

We have thus proved that all the hypotheses of Theorem 1.1 hold. So,
there is a function v E K complying with v E T(v). Due to (6), the point
u : _ represents a solution of problem (PG)- 0
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We conclude this section with the following

PROOF OF THEOREM 2.5. In view of [12, Proposition 3.3] we can sup-
pose that for almost all t E I and all either H( t , x ) is convex or

H(t, -) restricted to some neighbourhood of x is lower semicontinuous.
Assumption ( c2 ) provides a countable subset D * of such that D * = 

and H( ~ , x ) is measurable whenever x E D * . If we

write

The same arguments made in [16, p. 263] ensure that the multifunction
H 00 is £ X B(Rn)-measurable. So, owing to [13, Propositions 3 and 4], the
set

is lower semicontinuous

for some V open neighbourhood of x ~
satisfies condition ( al ). Next, choose Rt) with m( t ) 
t E I, and define

It is not difficult to see that the multifunction F : I x proper-
ties ( a2 )-( a,s ). Moreover, by means of standard computations and using
( c1 ) we obtain F( t , x ) x ) a.e. in I, for every x E IV, which completes
the proof.
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