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Prime Graph Components
of Finite Almost Simple Groups.

MARIA SILVIA LUCIDO (*)

ABSTRACT - In this paper we describe the almost simple groups G such that the
prime graph T( G ) is not connected. We construct the prime graph T( G ) of a fi-
nite group G as follows: its vertices are the primes dividing the order of G and
two vertices p, q are joined by an edge, and we write p - q, if there is an ele-
ment in G of order pq.

1. Prime graph of almost simple groups.

If G is a finite group, we define its prime graph, flG), as follows: its ver-
tices are the primes dividing the order of G and two vertices p, q are joined by
an edge, and we write p °--° q, if there is an element in G of order pq.

We denote the set of all the connected components of the graph T( G )
by 1,,r i (G), for i = 1, 2 , ... , ~(G)} and, if the order of G is even, we de-
note the component containing 2 by ,~ 1 ( G ) _ ,~ 1. We also denote by .7r(n)
the set of all primes dividing n, if n is a natural number, and by :r(G) the
set of vertices of r(G).

The concept of prime graph arose during the investigation of certain
cohomological questions associated with integral representations of fi-
nite groups. It turned out that T( G ) is not connected if and only if the
augmentation ideal of G is decomposable as a module. (see [4]). In addi-
tion, nonconnectedness of T( G ) has relations also with the existence of
isolated subgroups of G. A proper subgroup H of G is isolated if H n

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura e Applicata, Universi-
ta di Padova, via Belzoni 7, 1-35131 Padova, Italy.

E-mail: lucido@pdmatl.math.unipd.it
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f1 H9 = 1 or H for every g E G and CG (h) ~ H for all h E H. It was proved in
[10] that G has a nilpotent isolated Hall ;r-subgroup whenever G is non-
soluble and R = Ri(G), i &#x3E; 1. We have in fact the following equiva-
lences :

THEOREM [8]. If G is a finite group, then the following are

equivalent:

(1 ) the augmentation ideal of G decomposes as a module,

(2) the group G contains an isolated subgroup,
(3) the prime graph of G has more than one component.

It is therefore interesting to know when the prime graph of a group
G is not connected, i.e. has more than one component. The first classifi-
cation is a result of Gruenberg and Kegel.

THEOREM A [8]. If G is a finite group whose prime graph has more
than one components, then G has one of the following structures:

(a) Frobenius or 2-Frobenius;

(b) simple;
(c) an extension of a ~c 1-grou~ by a simple group;
(d) sirnpLe by ,~ 1;

(e) Jr i by simply by n 1.

The case of solvable groups has been completely determined by Gru-
enberg and Kegel:

COROLLARY [8]. If G is solvable with more than one prime graph
components, then G is either Frobenius or 2-Frobenius and G has exact-

ly two components, one of which consists of the primes dividing the
lower Frobenius complement.

Also the case (b) of a simple group has been described by Williams in [10],
by Kondratev in [8] and by Iiyori and Yamaki in [7]. A complete list of the sim-
ple groups with more than one component can also be found in [9].

In this paper we determine the case (d). The case (d) is in fact the
case of an almost simple group with more than one component. A group
G is almost sample if there exists a finite simple non abelian group S
such that S ~ G ~ Aut (S). First we observe that if r( G) is not connected
then also T(,S) is not connected. Then, using the Classification of Finite
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Simple Groups and the results of Williams and Kondratev, respectively
in [10] and [8], we consider the various cases.

The main results are then Lemma 2 and Theorem 3, concerning spo-
radic and alternating groups, and Theorem 5, concerning finite simple
groups of Lie type. In particular we observe that almost simple groups
which are not simple have at most 4 components (see Table IV).

REMARK 1. If F(G) is not connected, and G has a non-nilpotent
normaL subgroup N, then r(N) is not connected.

PROOF. We suppose that T(N) is connected. As T( G ) is not connect-
ed, there must be p in ;r(G) such that p ~ q for any q in ,~(N). Let P be a
p-Sylow subgroup of G. If we consider K = NP, where P acts on N by
conjugation, then K is a Frobenius group with kernel N, that must be
nilpotent, against our hypothesis.

In order to describe almost simple groups with non-connected prime
graph it is therefore enough to consider groups G such that G ~ Aut (S)
and S is a simple group with non-connected prime graph. A complete de-
scription of the simple groups with non-connected prime graph can be
found in [10] and [8]. We suppose S  G.

We use the Classification of Finite Simple Groups. Before beginning
with a general study we want to treat a particular case.

LEMMA 2. If S = As , there are four groups G1= ,S6 , G2 , G3 , G4 =

= Aut (A6 ) such that S  Gi ~ Aut (S). Then

PROOF. Since Aut (S) /Inn (S) is isomorphic to the Klein group with
4 elements, there are three almost simple groups over S of order 2 [ S [ .
Let G1, G2, G3 be such groups. Then G1 S6 and 2 --- 3 in 7r(S6). Let 8 be
an outer automorphism of S6 of order 2. Since Aut (A6 ) = Aut (Ss ), we
can consider G2 , the subgroup of Aut (A6 ) generated by Inn (A6) and 0.
Then G2 is a splitting extension of Inn (A6 ). Moreover 0 centralizes an el-
ement of order 5 of A6 , and 0 can not centralize any element of order 3 of
A6 because 0 exchange the two conjugacy classes of elements of order 3
of A6. Therefore 2 --- 5 in T(G2 ).
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Let G3 be the other subgroup of Aut (As ) of order 2 ~ A6 ~ . Then G3 is a
non-split extension of A6 and there is not any involution outside Inn (As ).
Therefore its prime graph is the same as that of As. Let G4 be Aut (As ),
then T(G4 ) is connected. From these observations we can deduce the
structure of the prime graph of the groups Gi, i = 1, 2, 3, 4..

THEOREM 3. If G = Aut (S) with S an alternating group or a spo-
radic then is. not connected if and only if G is one of
the following groups and the connected components are as follows:

PROOF. If = An, the alternating group on n letters, n # 6, we know
that G = Sn . From [10] we observe that r(S) is not connected if and only
if n = p , (p + 1 ), (p + 2) for some prime p. If n = p + 2 the element

(1, 2, ... , p) commutes with the element (p + 1, ~ + 2) in Sn and then
~ro --- 2 in On the other hand if n = p, p + 1 the centralizers of all
the elements of order p are exactly the cyclic subgroups of order p that
they generate.

If ,S is a sporadic group, then I GIS I = 2 and the result easily follows
from the Atlas [2].

We now suppose that is a finite simple group of Lie

type over the field with elements. We recall that, in this case,
the connected components for i &#x3E; 1 of are exactly sets
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of type for some maximal torus T such that T is isolated

(see Lemma 5 of [10]).
We also observe that al(S) is obviously contained in 
We use the notation and theorems of [3]. We consider Inndiag(S): it

is also a group of Lie type S, in which the maximal tori T have order
if T = T n S and d Then d divides q2 -1 and, if

A2 (4 ), then 
As T is abelian, it is therefore clear that if 7r (S) for

i &#x3E; 1, we have t --- s for s E n(q2 - 1).
A2 ( 4 ) and G contains an element of Inndiag (S) BS, then

by the above argument we can conclude that T( G ) is connected.
We can now consider G such that Inndiag (S) n G = S. Let a be in

G B S, then a does not belong to Inndiag (,S ); we denote by n a the set of
primes dividing We also recall from paragraph 9 of [3] that
peJla for any and (if A2 ( 4 ) ).
Therefore, if r is a prime dividing I GIS 1, then r divides a ~ I for some

a E G B S and we have and so 
Let Jrj i = n( be a component of T(S), for some isolated torus T.

Then Jrj remains a component of r(G) if and only if ( ~ T ~ , ~ = 1

for any y e GBS.
Then we only have to consider and check if 

C R1(G).
If a E G B S and I = r a prime, then, by Theorem 9.1 of [3], a is a

field, a graph-field or a graph automorphism (in the sense of paragraph 7
of [3]); in the same theorem is described for a a field or a graph-
field automorphism. When a is a graph automorphism, Cs (a) is de-

scribed in the paper [1], if S is over a field of even characteristic, and in
the paper [5], if S is over a field of odd characteristic. If

(I TI, , [ Cs(a) [ ) # 1, then r --- t for some prime t e I TI) and therefore
Ri(S) = R(|T|) C R1(G).
We now consider y E G B,S and m a positive integer such that y m = a

is an automorphism of order a prime r. If , then
n T = 1 and, as Cs ( y ) ~ we also have Cs ( y ) n T =1. Thus y

does not centralize any element x in T. If for any a E G B,S of order a
prime r we have that ( I T I , = 1, then, for any y E G B S, we have

n T = 1. We conclude that, in this case, = jr( I T I ) is a con-
nected component Jlj(G) for some j &#x3E; 1. We want to state now a number
theoretical lemma:
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LEMMA 4. Let m, n, f be positive integers, p, r prime numbers and
q = ~ f Then:

PROOF.

i) See Hilfsatz 2 a) of [6].

ii) Let t be a prime dividing q -1, then

For the second statement we observe that, if (r, q -1 ) =1, we can con-
clude by applying the first statement. Otherwise, as r is a prime, (r, q -
-1 ) = r and therefore if q = 1 + (r) m, for a positive integer m, we
have

where s is a positive integer.

THEOREM 5. Let S  G ~ Aut (,S) with S a finite simple group of
Lie type, then r(G) is not connected if and only if G is one of the groups
described in the Tables I, II, III, IV.

PROOF. The proof is made by a case by case analysis. For the con-
nected components of a finite simple group of Lie type, we refer,
without further reference, to [10] and [8]. From the remarks preceding
Lemma 4, it is therefore enough to consider automorphisms a of S of or-
der a prime r.

Type Al
with 1 &#x3E; 1, ,S ~ A2 ( 2 ), A2 ( 4 ), then is not connected if

and only if:
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TABLE III. - Connected components not containing 2 of r(G) urith t(G) = 2 and S  G ~
~ Aut (S), S finite simple group of Lie type, GIS = (y).

we always suppose s, t &#x3E; 0.
TABLE IV. - Connected components not containing 2 of r(G) urith t(G) = 2 and
S  G ~ Aut (S), S finite simple group of Lie type, =- (y).

we suppose s &#x3E; 0.
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i) 1 + 1 is a prime and in this case
where

ii) 1 is an odd prime and (q -1 ) ~ (l + 1) and in this case

We study the different automorphisms of Az.

i) If a is a field automorphism, then by Theorem 9.1 of [3],
), where 4 

+ 1, then r and 1 + 1 are two distinct primes and there-
fore

This proves that T( G ) is connected.
If r = L + 1, then In fact by Lemma 4 i), we know

that, for any i  r,

Since by
Lemma 4 ii), we have

We can conlcude that 
If a is a graph-field automorphism, then by Theorem 9.1 of [3], IT a =

, where q = q’" and r = 2. Then
+ 1) divides both and
and so r(G) is connected.

If a is a graph automorphism, then r = 2 and by Theorems 19.9 of [1]
and 4.27 of [5], ~

We already know that is co-

prime with all the primes in n a because Jl a is contained So in
this case we have 

ii) The proof is similar to the one of i). We obtain that T( G )



11

is connected, except in the cases in which a is a field automorphism
and r = l, or a is a graph automorphism of order 2.

,S = A2 ( 2 ) admits only a graph automorphism a and ~ a = { 2 , 3 ~ and
yr2(G)=Jp(2~+2+l)={7}~=A2(4): if a is a

diagonal automorphism then G ~ PGL(3, 4) and in this case r(G) is

connected.
If a is a field automorphism, then r = 2 and ,~ a = { 2 , 3, 7} and so

If a is a graph-field or a graph automorphism, then
and so

is = A, (-q): it a is a diagonal automorphism of order 2, then q is odd. if
G = PGL(2, q) then a 1 (G) = B~~~, Jl2(G) = lp 1, because 2 divides
the order of every maximal torus T of G.

If a is a field automorphism, If ( q -
-1)/(2, q - 1) # 1 then

If then q = 2 or 3, and in this case ~ 1
Moreover if r ~ 2, then

Therefore if q ~ 2, 3 and r # 2, r(G) is connected, while if r = 2 we have
JlI(G) = Jl(q(q2 -1» and yr2(G) = Jl«q2 +1)/(2, q - 1 )).

If a is a graph automorphism, then r = 2 so that

,7r i (G) = .7r i (S) for i = 1, 2, 3.

Type B,

If S = then r(S) is not connected if and only if:

i) 1 is an odd prime and q = 2 , 3; in this case

ii) 1 = 2n; in this case ~cz (S) _ Jt( rp = + 1 ) ~d) where d =
=(4-1~2).

i) In this case Aut (S) = Inndiag (S) and so there is nothing else to
prove.

ii) If a is a field automorphism, then Jl a = and 4 = q r.
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If r is odd, (q Z + 1 ) / d divides both CS (a) ~ I and (-ql + 1 ) / d and then T(G)
is connected.

If r = 2, (qL + 1 ) ~d = ( q 2 ~ + coprime with all the primes in Jl a,
because Jl a is contained in So in this case we have that

R2(S) = R2(G).
If 1 = 2 and p = 2, then a can also be a graph automorphism of order

2. Then and then r(G) is con-

nected.

By proposition 19.5 of [1], we have thus described the centralizers of
all aEGBS.

Type D,

If ,S = D, (4), then r(S) is not connected if and only if:

i) l is an odd prime and q = 2 , 3 , 5 and in this case

ii) 1 -1 is an odd prime and q = 2 , 3 and in this case

If 4, then the only automorphism a that we have to consider is a
graph automorphism of order 2, then .7r a = 
- 1)...(q2(l - 1) - 1)). Therefore in case i) we have that and
in case ii) 1’(G) is connected.

If 1 = 4, we have to consider also a graph automorphism of order 3. In
this case, by Theorem 9.1(3) of [3], in Aut (S) there are two conjugacy
classes of subgroups of order 3 generated by a graph automorphism. We
denote these two graph automorphisms by a and {3. Then /3 is obtained
from a by multiplying it with an element of order 3 of S, that is {3 = ga,
g e S. Therefore, as and Jl2(S) =
= 1), we have that, in this case, 1’(G) is connected.

Type Es

If ,S = Es (q), then T(S) is not connected and
where

If a is a field automorphism, then
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Theorem 9.1 ). If r ~ 3, then

Therefore T( G ) is connected.
If r = 3, then As

+ q 9 + 1 ) ~d divides by Lemma 4 i) it is clear that

Moreover, if we apply Lemma 4
ii) to q 9, we have that is coprime with q 9 - 1. Finally

and «q9 -
again by Lemma 4 i). So in this case we have

that If a is a graph-field automorphism, then
= 

and divides

~ ~ Es ( q ~ ) 1. . Then r(G) is connected. If a is a graph automorphism, by
Lemma 4.25 c) of [5] and 19.9 iii) of [ 1 ], we have that Jl a 
-1 )(q12 - 1 ) ). Since I T its coprime with all the primes in n a’ we have that
Jl2(S) = Jl2(G).

Type E7

If ,S = E7 (q), then r(S) is not connected if and only if q = 2 , 3 and in
this case S admits only a diagonal automorphism of order 2, and then
there is nothing else to prove.

Type E8

If ,S = then r(S) is not connected and

moreover, if 4 = 0 , 1, 4 (5),
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In this case a can only be a field automorphism ([3], Theorem 9-1), 4 = qT
and

We observe that

and

If r # 2, 3, 5 we prove that T(G) is connected. In fact

Since we have to prove that

is coprime with In fact

Finally, since 3 does not divide we have

proved the above statement and also that di-
vides YI (q).

We can prove in a similar way that + q 5 + 1 ) ~(q 2 + q + 1) divides
y2(q): in this case it is enough r ~ 3, 5. We can conclude that r(G) is
connected.
We suppose now that r = 2. Then

+ 1) divides 1 and therefore 1
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We want to prove that is coprime with
We observe that and therefore

In a similar way we can prove that is coprime
with

Now we consider yl (q) which is a divisor of We
observe that

Moreover and therefore, since

we have that (YI (q), q 6 + 1 ) = 1. We have thus proved that YI (q) is co-
prime with I Cs (a) I. . Therefore for r = 2, we have 

Moreover if r = 2 , then q = 0 , 1, 4 (5) and therefore

R4(G) = R5(S).
The proof for the cases r = 3 and 5 are similar to the previous one.

Type F4

If S = F4 (q), then T(S) is not connected and:

i) if 4 is odd, then I

ii) if 4 is even, then

i) a must be a field automorphism,
We observe that

+ 1 ).
If r ~ 2 , 3, then ( q 6 + 1) l(q2 + 1) So in this case

T( G ) is connected.
If r = 2 or 3, then is empty and therefore 

2 (G).

ii) If a is a field automorphism, q = q r and 
_ ,~(q(q g - 1 )(q 12 - 1 ) ) and if r # 2, then q 4 + 1 divides q 4r + 1 and so
R3(S) C R1(G).

For the component the proof is exactly the same as in part i).
If r = 2, then (q4 + 1) = q g + 1 is coprime with all the primes in Za; so
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in this case Jl3(S) = By Proposition 19.5 of [1], it is now enough to
consider a a graph-field automorphism, q = q 2 = 2m with m odd and

As divides

q6 + 1, we have while (q4 + 1) = q g + 1 is coprime
with all the primes in so in this 

Type G2

If ,S = G2 (q), then T(,S) is not connected and:

i) if 4 =1 (3), then

ii) if 4 = -1 (3), then

iii) if 4 = 0 (3), then and
If a is a field automorphism, q = qr and

If r ~ 2, 3 then (q3 + 1 )/(q + 1) divides
and (q3-1)/(q-l) divides (q3r-

and so r( G) is connected, in any of the three
cases.

i) Let a be a field automorphism. If a has order r = 2, q = q 2 and
q2 - q + 1 = q 4 - q 2 + 1 divides q 6 + 1 and is therefore coprime with
~ G2 ( q ) ~ . Similarly if a has order 3. So if r = 2, 3 we have that

n2(S) = n 2 (G).
ii) Let a be a field automorphism. If a has order r = 2, q = q 2 and

q2+q+1 =q4+q2+1. Since q2+q+1 divides both q4+q2+1 and
If a has order r = 3, we use the same ar-

gument of i) and conclude that n 2 (S) = Jl2(G).

iii) Let a be a field automorphism. If a has order r = 2, as in case i),
we have while, as in case ii), If
r = 3, we use the same argument of i) and conclude that n2(S) = 
and 

If a is a graph-field automorphism of order r = 2, then 4 = q 2 = 3n, n
an odd integer and = ;r(q(q 6 + 1 )( q 2 - 1 ) ). As q2 - 4 +
+ 1 = q 4 - q 2 + 1 divides q 6+ 1, we have Jl2 (S) =

_ ~2(G).
By Lemma 4.22 of [5] and 19.2 of [1], we have thus examined the cen-

tralizers of all automorphisms of ,S. We now consider the twisted finite
simple groups of Lie type. By the hypothesis that G n Inndiag (S) = 1,
we obtain that, in this case, and therefore we consider again
an automorphism a of order a prime r. We suppose S ~ 3D4 (q); if r # 2, a
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is a field automorphism, if r = 2 then a is a graph automorphism (in the
sense of paragraph 7 of [3]). The same is true for ,S = 3 D4 (q), substitut-
ing the prime 3 to the prime 2.

Type 2Al
If ,S = 2Az(q2) with then r(S) is

not connected if and only if

i) 1 + 1 is a prime and in this case

ii) 1 is an odd prime and (q + 1 ) ~ (l + 1 ) and in this case

i) If r ~ 2, then and .7r , = 2 AL ( q 2 ) ~ ) (see Theorem 9.1 of
[3]). + 1, then r and 1 + 1 are two distinct primes and there-
fore

Therefore in this case T( G ) is connected.
If r = 1 + 1, the proof is similar to the one of Ai.
If r = 2, then by Theorems 19.9 of [1] and 4.27 of [5] we have that

where

We know that I is coprime with
all the primes in Jl a because 7r , is contained in Jt 1 (,S). So in this case
R2(S) = R2(G).

ii) The proof is similar to the one of i) and so T(G) is connected, ex-
cept when r = 1, 2.

S = ~3(2~): it is enough to consider the automorphism of order 2
and so, as before, we have 

,S = 2A3 ( 32 ): it is enough to consider the automorphism of order 2 and
so, as before, we have that Jl2(S) _ ~c 2 ( G ) _ ~ 5 ~ =JT3(G) = {7}.
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S = 2A5 ( 22 ): it is enough to consider the automorphism of order 2 and
so, as before, we have that Jl2(S) =~n2(G) = {7} and =~3(G) _
= {11}.

Type 2B2

If S = 2B2(q2), then r(S) is not connected and

We only have to consider the case in which r is an odd prime and
m an odd integer. Then

([3], Theorem 9.1). 1 divides q 2r - 1, it is
clear that 

--

We observe that q 4 + 1 divides
+ 1 ) because r is odd.

It can be proved that, if r =1, 7 (8), ( q 2 - yl2q + 1) divides (q2 -
and divides

or, if r = 3 , 5 (8), then (q2-ý2q+l) divides (q2 + ~ q + 1 ) and
( q 2 + ý2q + 1) divides (q2 - ý2q + 1 ).

So, in any case, we have that h(G) is connected.

Type 2 Dz

If ,S =2Dz(q2), then is not connected if and only if

i) l = 2n and in this case where

ii) q = 2 and l = 2n + 1 and in this case ,

iii) q = 3 and
o 1 = 2n + 1 and 1 is not a prime and in this case

o ~2~+1 and 1 is a prime and in this case

e 1 = 2n + 1 and 1 is a prime and in this case
1 and ~



19

i) If r ~ 2, then ([3], Theorem 9.1) and
(q i + divides (qL + 1 ) ~d; therefore r( G) is connected.

If r = 2, then Jl a = = 1)...(q2(Z-l) - 1». There-
fore, as Jla is contained in we have that = Jl2(G).

ii) We only have to consider an automorphism of order
Then and, as (2Z-1 +

+ 1) divides ~_i(2)~ we can conclude that T(G) is connected.

iii) As in case ii), we only have to consider the case r = 2.
Then and

divides by Lemma
4 i), when 1 is a prime. Therefore, when 1 = 2n + 1, Jt( and,
when 1 is a prime, 7r( = n2(G).

Type 2E6

If S = 2E6(q2), then 1-’(S) is not connected and:

i) if q = 2 ther .

and »

ii) 2 then ; where d =

i) We only have to consider the case r = 2. Then, by 19.9 iii) of [1],
we have and then

while

ii) If r ~ 2, then 4 = q r and Jl a = jr( 2Eg (q 2 ) ~ ) (see Theorem 9.1 of
[3]). If r ~ 3, then (q 6 - q 3 + divides (qs - q~ + and therefore

T(G) is connected.
If r = 3, then ~ca=,~(q(q5+1)(q8-1)(q9+1)(q12-1)). It can be

proved that 7r,, n Jl2(S) is empty and therefore Jl2(S) = n 2 (G).
If r = 2, then by Lemma 4.25 c) of [5] and 19.9 iii) of [1], we have 

4

we can conclude that T ~ I is coprime with all the primes in 7r,,; so in this
case we have that ~2(S) _ .7r 2 (G).
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Type 2 F4

If S = 2F4 ( 2 )’, then T(S) is not connected and G =2F4(2) and
Jl2(G) = {13} 1 (see [2]).

If S = 2 Fq ((~ ), then T(S) is not connected and

We only have to consider the case in which is an odd prime and
m an odd integer. Then

([3], Theorem 9.1). We observe that

If &#x3E; and it is there-
fore coprime with ( q 36 -1 ). Moreover

and divides
1. Therefore, in this case we and

We can now suppose that r ~ 3. It can be proved that if r =

---1, 7, 17, 23 (24), then

divides

and

divides

then

divides

and

divides

So, if r ~ 3, we have that T( G ) is connected.
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Type 2 G2

If S ~~Gz(~), then r(S) is not connected and:

We only have to consider the case in which r is an odd prime and q2 =
= q2r = 3"’, m an odd integer. Then Ra = n(12G2(q2) I ) = R(q(q2 - 1)(q6 +
+ 1 ) ) ([3], Theorem 9.1). We observe that (q2 - y’3q + 1 )(q2 + y’3q + 1 ) =

If and it is

therefore coprime with (q2 -1) and also with (qÖ + 1). Therefore, in this
case we have and

If r ~ 3, the proof is similar to the one 

Type 3 D4

If S = 3D4 (q~ ), then is not connected and

, then q = q r and
([3], Theorem 9.1). If r ~ 2, + 1 divides + 1 and

and then T( G ) is connected.
If and ( q g - q 4 + 1 ) is coprime with

(q 2 - 1 )(q g + q 4 + 1). So in this case we have that Jl2(S) = n2(G).
If r = 3, then by Theorem 9.1(3) of [3], in Aut (S) there are two conju-

gacy classes of subgroups generated by automorphisms of order 3. We
denote these two automorphisms by a and {3. Then ~3 is obtained from a
by multiplying it with an element of order 3 of S, that is B = ga, g e S.
Therefore, and (q4 - q2 + 1 ) di-

vides q6 + 1, we can conclude that R2(S) = n2(G)..

We have thus examined all the almost simple groups.

Acknowledgements. I wish to thank C. Casolo for precious suggestions
on the topic of this paper and M. Costantini for helpful discussions. I

would also like to thank prof. M. Suzuki for a kind remark while I was
writing this paper.



22

REFERENCES

[1] M. ASCHBACHER - G. M. SEITZ, Involutions in Chevalley groups over fields of
even order, Nagoya Math. J., 63 (1976), pp. 1-91.

[2] J. CONWAY - R. CURTIS - S. NORTON - R. PARKER - R. WILSON, Atlas of finite
Groups, Clarendon Press, Oxford (1985).

[3] D. GORENSTEIN - R. LYONS, The local structure of finite groups of character-
istic 2 type, Memoirs of the American Math. Soc., 42, n. 276, March
1983.

[4] K. W. GRUENBERG - K. W. ROGGENKAMP, Decomposition of the augmenta-
tion ideal and relation modules of a finite group, Proc. London Math. Soc.,
31 (1975), pp. 149-166.

[5] M. E. HARRIS, Finite groups containing an intrinsic 2-component of
Chevalley type over a field of odd order, Trans. Amer. Math. Soc., 272 (1982),
pp. 1-65.

[6] B. HUPPERT, Singer-Zyklen in klassischen Gruppen, Math. Zeit., 117 (1970),
pp. 141-150.

[7] N. IIYORI - H. YAMAKI, Prime graph components of the simple groups of Lie
Type over the field of even characteristic, J. of Algebra, 155 (1993),
pp. 335-343.

[8] A. S. KONDRATÉV, Prime graph components of finite simple groups, Mat.
Sb., 180, n. 6 (1989), pp. 787-797 (translated in Math. of the USSR, 67 (1990),
pp. 235-247).

[9] M. S. LUCIDO, Tesi di Dottorato, Dipartimento di Matematica - Università di
Padova (1996).

[10] J. S. WILLIAMS, Prime graph components of finite groups, J. of Algebra, 69
(1981), pp. 487-513.

Manoscritto pervenuto in redazione il 17 ottobre 1996.


