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Totally Inert Groups.

V. V. BELYAEV (*) - M. KUZUCUO011FLU(**) - E. SEÇKIN(***)

Let G be any group and H be a subgroup of G. Then H is called an
inert subgroup of G if H n 1  00 for all g e G.

Every finite subgroup, every normal subgroup and the group itself
are the trivial examples of inert subgroups in a group. Moreover if G =
= GL(n, Q), then SL(n, Z) is inert in G see [7, page 55]. In a barely transi-
tive group G the stabilizer H of a point and any group containing H are
inert subgroups of G see [5].
A group G is called totality inert group (TIN-group) if every sub-

group of G is inert.

Clearly every FC-group is a TIN-group. But there exist totaly inert
non-FC- groups. The groups constructed by Olsanskff are the examples
of non-FC TIN-groups. The following is an easier example of a non-FC,
TIN-group.

Let A be an infinite abelian 2’-group. Let t be an involutory automor-
phism of A such that a t = a -1 for all a eA. Then G = is not an

FC-group but it is a TIN-group. Because for any H  G the group H n A
is a normal subgroup of G.
Clearly the property of being a TIN-group is a natural generalization of
being an FC-group. The above example shows that the class of TIN-
groups is larger than the class of FC-groups.

One may think that every FC by finite group is TIN-group. But the
following example shows that this is not true.
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Let G = (t) where and the or-

der of t is 2. Then for the subgroups and I

we have C n C~ = 1. This group G is an FC by finite group but
it is not a TIN-group.

It is clear that any subgroup of a TIN-group is a TIN-group and any
homomorphic image of a TIN-group is a TIN-group. But the following
example shows that direct product of two TIN-groups is not necessarily
a TIN-group.
Let A be an infinite abelian 2’-group and t be an involutory automor-
phism of A such that a t = a -1 for all a E A. Let G = A x (A &#x3E;Q ~t)) and

Let ( 1, t ) be an element of G. Then
Then implies that

Hence a 2 = 1, but this implies a = 1 as A is an
abelian 2’-group. Hence x = 1 and H is not an inert subgroup of G.

What are the structures of locally finite TIN-groups?
The groups constructed by Olsanskii [6] are examples of simple TIN-

groups. But of course they are not locally finite. Does there exist an infi-
nite locally finite simple TIN-group? In this article we answer this ques-
tion negatively.

THEOREM 1. There exists no infinite simple locally finite TIN-
group.

Basic Properties of Inert Subgroups.

LEMMA 1. (i) If H is an infinite simple inert subgroup of a group
G, then 

(ii) Let G be a simple group and H be a proper inert subgroup of
G. Then H is residually finite.

(iii) Homomorphic image of a TIN-group is a TIN-group.

(iv) If H is an irtert subgroup of G and N a G, then HN is irtert in G.

PROOF. (i) Trivial.

(ii) n H9  G. Since G is a simple group we have = 1.
geG

Hence the result follows.

(iii) and (iv) are trivial.
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LEMMA 2. Let P be a locally and residually finite p-group for some
prime p. If P/P’ is finite, then P is a finite group.

PROOF. Since P/P’ is finite, there exists a finite subset KcG such
that (K, P’ ) = P. Assume if possible that (K) ~ P. Let 9 e P - (K). Then
(K, g) is finite and there exists a normal subgroup such that

and N n (K, g) = 1. Let P = P/N, K = KN/N. Since

(K, P’ ) = P we get (K, P’) = P, but for a finite p-group the commutator
subgroup lies inside the Frattini subgroup therefore it is a non genera-
tor. Hence (K) = P. But g So we get P = (K). It follows that P
is a finite group.

DEFINITION 1. Let X and Y be two subgroups of a group G. We say
that X and Y are commensurable X n Y[ I  oo and Y: Y n X I  oo.

LEMMA 3. If X is an inert subgroup of a group G and X is commen-
surable with the subgroup Y of G, then Y is an inert subgroup of G.

PROOF. Let g E G. By assumption and
and Then It follows that

Since the group X is inert we have , Hence

and This gives
Then Then we get

and

Then

LEMMA 4 [1, Corollary 2.6]. Let G be a simple TIN-group and 1 ~
~ K a H be subgroups of G. Then H/K is an FC-group.

LEMMA 5. Let G be a simple TIN-group. Then

(i) for all non identity elements x and y in G, the groups CG(x)
and CG(y) are commensurable.

(ii) if is infinite for a non identity torsion element x in G,
then G is locally finite.

(iii) if G is locally finite, H  G, then either H is an FC-group or
F(H) = 1 where F(H) is the Hirsh-Plotkin radical of H.
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PROOF. (i). Let be an element of G. Then
is a normal subgroup of G. It is clear

that product of two elements are in N. So we show the normality of N.
Let y E N and t e G. Then It follows that

Then
Since CG (x) is an inert subgroup of G we have

Hence
...

1  oo. But G is simple and x E N implies that N = G. Hence for
all x and y in G the groups CG(x) and CG(y) are commensurable.

It follows that for any x e G the group CG ( x ) is an FC-group.
(ii) Let 1 ~ x be a fixed element of G such that CG (x) is infinite.

Let T(G) = {g e G : order of g is finite} be the set of torsion elements of
G. Then T(G) is a normal subgroup of G. Indeed if K is a finite subset of
T( G ), then by (i) Hence CG (K) is an infi-
nite group. Let aeCG(K). Then K;CG(a) and CG(a) is an FC-group.
Then by Dietzmann Lemma (K) ~ is finite. Hence (K) is a finite
subgroup. Hence T(G) = G and G is locally finite.

(iii) Let x and y be nonidentity elements of H. Then Kl = (XH ) and
K2 = (yH) are commensurable.

Indeed, for any i = 1, 2 by Lemma 4 H/K2 are FC-groups. Let y =

= yKl e H/Kl. Then (yll) = K2/(Kl n which is finite. Simi-

larly KI /(Kl n K2 ) is finite.
Let F(H) be the Hirsh-Plotkin radical. Assume if possible that H is not
an FC-group. Then by [2, Theorem 1.4 ] F(H) is a p-group and by [2,
Corollary 2.2 and Theorem 4.5] FC(F(H) ) = 1. Since there exists no FC-
element every conjugacy class is infinite. Let and

(XF(H» = L. Since the group L is an infinite residually finite p-group we
get L &#x3E; L’. Let y e L’ . Then (y F(H» aL’ and by Lemma 2 1 L: (y F(H) ) I
is infinite. But any two normal subgroups of F(H) are commensurable by
the above paragraph. Hence we obtain a contradiction.

LEMMA 6. Let G be a locally finite group. Let A be a normal infi-
nite Elementary abelian p-subgroup of G. Assume that every subgroup
of A is inert in G. Then for any x e G, there exists a subgroup B of finite
index in A such that, for all beB, bX e (b).

PROOF. Assume on the contrary that, there exists 1 ~ x e G such
that if A : B  then there exists al e B such that Then

ax1&#x3E; n a1&#x3E; = 1.
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Let Then Al is finite and

Bl is (x)-invariant and has finite index in A.
By a similar argument there exists such that (at) fl (a2 ) = 1.

Let A2 = (at) x (ct2) and Bl x A’

The group B2 has finite index in B1 and B2 is (x)-invariant. There exists
such that

Let Continuing like this we obtain an infinite sub-
group of A namely,

Let Then C" n C = 1. Hence C is not inert
in G which is a contradiction.

LEMMA 7. Let G be a locally finite group and A be a normal infi-
nite elerrzentary abelian p-subgroup of G. If every subgroup of A is inert
in G, then for all x E G’, [A , x ] I  00. I. e G ’ acts as finitary linear
group on A.

PROOF. Let x E G ’ . Then x = Xl X2 ... Xn where xi = [ yi , zi I for some
i =1, 2 , ... n. Clearly Hence

it is enough to prove that [A , xi ] is finite for all i = 1, 2, ... n.

By Lemma 6, for y2 and zi , there exist Bi and Bi such that Bi I 
 oo and A :  oo and for all b E Bi, 
E ~ b ~. Then A : B I  oo and for all b E B , and

This implies b Yi = b ni and b zi = b’ni for some ni and mi in Z. Since
the automorphism group of a cyclic group is abelian we get = b for

all b E B. So A : I  00 since Hence [A ,  00.

PROOF OF THE THEOREM 1. Asume that G is a simple locally finite
TIN-group. By [4] Theorem 4.4 every locally finite simple group has a lo-
cal system consisting of countably infinite locally finite simple sub-

groups. But by Lemma 1 in a simple locally finite TIN-group, an infinite
simple subgroup is a normal subgroup, so we may assume that G itself is
countable.
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By [3, Theorem B Page 190] a countable non-finitary locally finite
simple group has maximal subgroups. Let M be a maximal subgroup of
G. Then for 1M: M n Mg I  00 and I  oo. It fol-
lows from [1] Lemma 5 that ~M , M n M g I  00. As M is a maxi-

mal subgroup of G we get M = M  for all g e G. Hence M is a normal sub-
group of G. But G is simple, hence we may assume that G is a countable,
finitary locally finite simple group. By [3, page 216 Theorem 8], there
exists a prime p such that if H is any proper inert subgroup of G, then
HIOp(H) is locally normal. Consequently if F(H) = 1, then H is locally
normal. If F(H) ~ 1, then by Lemma 5 (iii) H is locally normal. By [3,
page 216 Theorem 6] G is isomorphic to an alternating group of finitary
permutations on some set SZ. But a stabilizer Ga of a e Q is an infinite
proper simple subgroup of G, and this is impossible by Lemma 1

(i).
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