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A priori Inequalities in L * () for Solutions
of Elliptic Equations in Unbounded Domains.

MAURIZIO CHICCO - MARINA VENTURINO (*)

ABSTRACT - We prove some a priori inequalities in L * (£2) for subsolutions of el-
liptic equations in divergence form, with Dirichlet’s boundary conditions, in
unbounded domains.

1. Introduction.

In an open subset £ of R", not necessarily bounded, we consider a
linear uniformly elliptic second order operator in variational form with
discontinuous coefficients, associated to the bilinear form

n n
QO  alu,v)= I[ 2 Wty v, + 2 (bju, v+ dyuw,,) + cuv] dx
ij=1 i=1
Q

If ue H'(R) is a solution of the inequality

@ a0 < [{fo+ 3 fofde Voeci@), v20in @,
i=1
Q

we can consider the problem of determining the minimal hypotheses on
the coefficients b;, d;, ¢ of the bilinear form (1) and on the known func-
tions f; (1=0, 1, ..., n) for the subsolution % to be (essentially) bounded
from above in Q. Such a problem was already studied e.g. in [2] and [3],

(*) Indirizzo degli AA.: Dipartimento di Metodi e Modelli Matematici, Uni-
versitd di Genova, P.le Kennedy Pad. D, 16129 Genova, Italia.
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where an inequality of the kind
n
®) essgsupusmax (0, max u)+K1{".ﬁ)”L'ﬂ(Q)+i§ ”ﬁ"L”(.Q)} + Kollull )

was proved, by supposing 2 bounded and f;, d;e L?(2) (i=1, 2, ..., n),
fo, ceLP2(Q), p>n.

The aim of the present work is to extend these results first of all al-
lowing the set 2 to be unbounded and relaxing the hypotheses on the
functions f, f;, b;, d;, c (i=1, 2..., n). Finally, the constants in the a prio-
ri inequality (3) are explicitly evaluated.

2. Notations and Hypotheses.

Let 2 be an open subset (bounded or unbounded) of R". Let a; e
n
eL=(Q)(3, j=1,2,...,m), X agtit;=v|t|*¥YteR"ae.in Q, where v
=1
is a positive constant. Let ¢ * := max (¢, 0), ¢~ := min (¢, 0) and suppose
that ¢ * e L2 *2(Q") for any Q' bounded, Q'c Q. Let us define the
spaces

4) XP(Q) :={feLp(2): o(f,p, 0) <+ V6>0}

5) X0 () :={feX?(Q2): lim w(f,p, d)=0}
o—0*

where

6) o(f,p, 6):=sup{||flLr@: E measurable, EcQ, meas(E)<d}.

REMARK 1. If feL}.(2), we define, for k>0,
(D ¢(f, p, k) := inf {meas (E): E measurable, EcQ, ||fl.-& =k},
and we have
® feXP(R2) if and only if 3Iky>0 such that ¢(f, p, ky) >0,
©  feXp(@) if and only if &(f,p, k) >0 VE>0.

REMARK 2. If G is a measurable subset of 2 such that meas(G) <
< ¢(f, p, k), then it turns out that || f||#) < k. In fact, if not there would
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exist a subset Gy of G with positive measure but so small that
I£lerecn > &

which is in contradiction with the definition of ¢, since meas (G\G,) <
<meas(G). =

REMARK 3. If 1 <g<p it turns out X?(2)c X{ ().
In fact, if Ec 2, meas(¥) <4, fe XP(2) we have

I Ao < [ Fllr & [meas (B)I® -9 < w(f, p, 6)6P /P
whence
o(f, q,8) So(f,p, 6)6P 9P =
We denote by S the constant in the Sobolev inequality
glleve-2gn < Sllge [L2wey Vg eCo(R™).

It is a well known fact (see e.g. [4]) that S is given by the following
formula:

(10) S =[n(n—-2)x]"2rn)"rn/2)-.

LEMMA. Let ue H} (), BcQ, u=0 in B. Then there exists a se-
quence {u;}jenCHJ () such that u;=0 in B, u; has compact support
n Q (] = 17 2, )a hm”u _uj”Hl(Q) =0.

J

Proor. It follows from the results of [3] that «* := max(u, 0),
u ™ := min (%, 0) both belong to H} (L), therefore we may assume with-
out loss of generality that =0 in Q. By definition of H{(Q), there
exists a sequence {¢;};enCCq(R) such that lim|u — ¢ ;410 = 0; we
may assume ¢;=0in 2 (j=1,2,...). Consider the functions uj =
=min(u, ¢;) (j=1, 2, ...). These functions are in H$(Q) and they
vanish on B and where ¢;=0. Furthermore it is easy to verify that
|(u—u;), | < |(u—¢;),| where all the derivatives exist (i.e. almost
everywhere in ), whence

(1) (w — u)e L2y S lw = @ )ellizey  (G=1,2,...).

Therefore the sequence {u,};.n has the required properties. =
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3. Main result.

THEOREM. In addition to the hypotheses mentioned above, we as-
sume: p>mn, ¢~ e XP"PN(Q), be XF(Q2), d;e X§(Q), ;e XP(Q) (i=
=1,2,...,n), feXP"P(Q) ue HL.(2),

12) a(u,v)sf{fov+ ifi%} de WYveCi(R), v=0 in Q.
i=1
Q

Furthermore suppose that there exists a monnegative real number m
such that max(u —m, 0) e H} (Q).

Then there exist constants K, K,, Ks, depending on the coefficients
of a(-, -), on n and p, such that

(13)  ess sup % < K; | max (u — m, 0)|| 20y + 2P~ " m +
Q

+K2{Sw(fo, np/(p +n), K3) + iglw(fi’ p, Ks)}

where:

S is the Sobolev constant (10),

K, = (4/3)®=m 4 gnpltp=m) g =122

K2 = (3S/V)[2np/(p—n) _ 1]’

Ky=min {1,¢(b;, n, vA65n), ¢(d;, p, v/(65n), $(c =, np/(p +n), v/(6S*)
(’L = 1, 2, ceey n)}

Proor. First of all we notice that if ¢ =m obviously the function
u; :=max (u —t, 0) is in H}(Q) as well. Moreover, it is easy to check
that (12) is verified also by nonnegative functions v e Hy () with com-
pact support contained in . In fact, let A be an open bounded set con-
taining the support of v, such that A c Q. It is easy to find a sequence
{v;};enc C¢ (A) which converges to v in the norm of H'(A). We can write
(12) with v; instead of v and let j go to infinity, taking into account Hol-
der’s and Sobolev’s inequalities and the fact that u € H(A4) by hypothe-
sis (and also u € L2¥®* =% (A)). So, (12) is true if v e H{ () with compact
support contained in 2. Then from the lemma above we can find a se-
quence of functions {u;};jcnCH¢ (£2) having compact support in , vani-
shing where u; = 0 (i.e. where u < 1), and converging to u, in the norm of
H'(R). As before, we can write (12) with %; instead of v and let j go to in-
finity, because u; and u, are different from zero only in a (fixed) set of fi-
nite measure, in which u = u; + ¢, thus allowing again the use of Holder’s
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and Sobolev’s inequalities. We conclude that (12) can be written with v

replaced by w; (Where it is always ¢ =m). Let us denote for brevity
Q;:={xeQ: ulx)>t}.

By using Hoélder’s and Sobolev’s inequalities, and taking into account our

previous hypotheses, we deduce

n
ll(u)s B2, < 221 Iaij Uy, (U ) A

on

Ln(24) ”(ut):c “%2(9,),

-

I I_Elbiuxiutdx < '21 J | D5 (%), U |dac$S'21||bi|
g i= i= a, i=

| f > diu(uy),, do
i=1
Q

< 2| | diug(uy),, |de+t 2| | di(uy),, |do <
i=1 ) i=1

24

n
sS ,21 d;]lr (0, (meas £,)P /P ||(u,), [B2q, +
P

n
+t 21 ;e (0, (meas 2 )P~ 227 |\(u,), |20,
<

jc—uutdx\ < [le ut|de+t] e wu|dws<
2 2, 24

<S§? ”‘7 - ||an/<n+p)(9l)(meas Q)P mie ”(ut)x “LZ(Qt) +

+t8S|le ™ [l mwn+ 010, (meas )% 722 ||(uy), 20,

s S“fo "LW‘“P)(Q,)(meas Q)P D|(w,), ||L2<9t),

jfoutdx
Q

n
< 3 Uilbrca (meas 20~ ), 2,

[ 3 fiw,de
g 1=1

Therefore it follows easily from (12)

1) v e, <

n
st [.leldillmo +8Slle “L"”/("*P)(Q,)] (meas Q)P =222 ||(uy), |20, +
o
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n
+ [S”ﬁ> [l mwtn+ 2@,y + E’l II1£; ”LP(Q,)] (meas )~ 227 ||(u,), |20, +

n n
+ S[igl 116 ”L"(Q,) + igl lld; ”L”(.Qt) (meas )7~ n)mp] [[C7N ”%2(9,) +

+8%e~ ”L"M"*P’(sz,)(meas Q)P mme|(y,), "%2«29-

For brevity, let us denote a(t) := meas(R2;). Then we get

05 {v=5[ 2 ltdray + 3 I L7 @0ane = +
+S”C - ”L"p/("+p)(95)[a(t)](p —mimp ]} "(ut)x ”LZ(Qt) s
< [Slllmesriap + 3 Wilinia, | aoro-222 +

n
+t] 3 1 osia + Sl ~ e at1o-222.
~
We notice that, when ¢t = m, we have
j (u — m)de = j(u - m)tdx = (t — m)2a(t)
Qm 2,

that is:

2
(16) a(t) s ———II?::llL:;!;: L Vi>m
Now we define (see (7))
(A7) 6o :=min {1, ¢(b;, n, v/(65n)), ¢(d;, p, v/(6Sn)),
¢(c™, np/(n+p), v/(68?)), (i=1,2,...,n)}

”um||L2(9)
(18) to =m+ —6(1)—/5—

(please note that > 0 because of our previous hypotheses and remark 1).
Then if ¢ = ¢, we have

e [z 0

(19) al®) < alty) < T2

=4,
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therefore by the definition of ¢ and remark 2 we deduce

(20) Elllbillmmt) <v/(6S),
@1) '§1 Id; L, < v/(6S),
(22) lle = ”L"P/("W’(Q,) <v/(6S%2).

From (16), (17), (19) it follows a(t) <1; then from (15), (20), (21), (22)
when t = t, we get

@3)  W2)lwpyll20y < [a@®)]?~ 2P [t (El il + Sl _”L”P/(“P’(s),)) +

n
+Slllmesnian + 3 [filloan |

Let us denote, for brevity,

@) K= @) 2 il + Sk~ 127 P (0,)
@) K= @) 2 Ifiley + SIHIL P @,)

and apply Holder’'s and Sobolev’s inequalitites to (23), thus obtain-
ing

(26) "ut”Ll(gt) < [a(t)](2+")/2n||ut||L2"/<"-2>(gt) < [a@®)PH PP (K, t + K;)
Now we follow a procedure of [1]. Define
@27 B :=lluylroy,  t=t

+

and note that it turns out B(t) = I a(s) ds. Therefore
t

(28) B't)=—at)<0 ae. in [t;, +x).

From (26), (28) we get the differential inequality

@) B < (Kt + K- (I  ae. in [ty + ®)

Suppose now, by contradiction, that g(t) >0 Vt =t, (i.e., by definition of
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B(t), ess supu = + ). Then in (29) we can divide by 8(f) obtaining
Q

(30) —ﬁ'(t)[ﬂ(t)]_np/(np+p_”) = (K4t + Ks)‘np/(np+p—n)

Integrating (30) between ¢, and ¢ * > ¢, (suppose for the moment K, > 0),
we obtain

(31) K4[ﬂ(t0)](p—n)/(np+p—n) _ K4[/3(t*)](p—n)/(np+p—n) >
> (K4t* + Ks)(p—n)/(np+p—n) _ (K4t0 +K5)(p—n)/(np+p—n)

which gives a contradiction when ¢ * tends to + .
Then it must be ess supu < + . We can rewrite (31) with {, <t* <

Q
< ess sup u; by letting ¢* tend to ess sup u we get
Q Q
(32) (K ess supu + K;)P~™/mp+p-m <
Q

< (K4t0+K5)(p—n)/(np+p~n) +K4[/3(t0)](}7—n)/(np+p—n)

Please note that the constant K, is not greater than 2/3 because of (21),
(22). From (32) by easy calculations we get

(33)  ess supu<@B)"? "yl xg )+ 27OVt + (BR[O - 1] K,
Q2

whence, by recalling the definition of ¢, (18) and K; (25) one can
write

(34) essgsup u < 2Py 4 [(4/3)P@=" 4+ 2mP=m § F12T |y, || 20y +

+@S2#0 0~ 11 Sl lwo-niay + 3 ilhay |-
1=

Finally, by taking into account (19), the definition of §, (see (17)) and the
functions ¢, w, we conclude

(85) ess sup u < 2Oy + [(4/3) PP 4 @M § P12y, (|L2c0) +

+(38/w)[ 2P/ P-m — 1][Sa)(f0, np/(p +n), 6y) + };w(fi, D, 60)]
with 6, given by (17). =

REMARK 4. If we suppose, in addition to the hypotheses of the pre-
vious theorem, that there exists ¢ = 1 such that u,, € L 9(£), then we can
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write, instead of (16) and (18)

(16" a(t) < upllfog, Et-m)"* VE>m,

(18" to =1+ [l |l o) 06
and proceeding as before we get to the conclusion in the form

(85')  ess sup u < 2P W + [(4/3) PO 4 20@=m § SV Y|l (|1 g +
Q

+@SPZ0 11 Su(fs, 1plp +0), 80) + 3 a(f b, 60)]
where d, is always given by (17).

REMARK 5. Suppose the coefficients d; and ¢~ of the bilinear form
a(-, +) to be identically zero. Then the constant K, defined in (24) vani-
shes, and by integrating (30) we get, more simply,

(36) essgsup u<ty+ (np +p—n)/(p—n) Kplee+r-m ||ut0||(Lp{($))/("”+p'")

whence, by taking into account the definitions of ¢, d, ..., and Young’s
inequality, we deduce

370 ess supu < m+ (0 2+ 1)l |20 + [np/(p — n)1Ks.
o]

This inequality is of the same kind of (35), but the coefficient of m in it is
now 1.

Acknowledgment: We are grateful to dr. Laura Servidei for correct-
ing English style.
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