RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

MAURIZIO CHICCO MARINA VENTURINO

A priori inequalities in $L^\infty(\Omega)$ for solutions of elliptic equations in unbounded domains

Rendiconti del Seminario Matematico della Università di Padova, tome 102 (1999), p. 141-149

http://www.numdam.org/item?id=RSMUP_1999__102__141_0

© Rendiconti del Seminario Matematico della Università di Padova, 1999, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A priori Inequalities in $L^{\infty}(\Omega)$ for Solutions of Elliptic Equations in Unbounded Domains.

Maurizio Chicco - Marina Venturino (*)

ABSTRACT - We prove some a priori inequalities in $L^{\infty}(\Omega)$ for subsolutions of elliptic equations in divergence form, with Dirichlet's boundary conditions, in unbounded domains.

1. Introduction.

In an open subset Ω of \mathbb{R}^n , not necessarily bounded, we consider a linear uniformly elliptic second order operator in variational form with discontinuous coefficients, associated to the bilinear form

(1)
$$a(u, v) = \int_{O} \left\{ \sum_{i, j=1}^{n} a_{ij} u_{x_i} v_{x_j} + \sum_{i=1}^{n} (b_i u_{x_i} v + d_i u v_{x_i}) + cuv \right\} dx$$

If $u \in H^1(\Omega)$ is a solution of the inequality

(2)
$$a(u, v) \leq \int_{\Omega} \left\{ f_0 v + \sum_{i=1}^n f_i v_{x_i} \right\} dx \quad \forall v \in C_0^1(\Omega), \ v \geq 0 \text{ in } \Omega,$$

we can consider the problem of determining the minimal hypotheses on the coefficients b_i , d_i , c of the bilinear form (1) and on the known functions f_i (i = 0, 1, ..., n) for the subsolution u to be (essentially) bounded from above in Ω . Such a problem was already studied e.g. in [2] and [3],

(*) Indirizzo degli AA.: Dipartimento di Metodi e Modelli Matematici, Università di Genova, P.le Kennedy Pad. D, 16129 Genova, Italia.

where an inequality of the kind

(3)
$$\operatorname{ess \, sup}_{\Omega} u \leq \max(0, \, \max_{\partial \Omega} u) + K_1 \Big\{ \|f_0\|_{L^{p/2}(\Omega)} + \sum_{i=1}^n \|f_i\|_{L^{p}(\Omega)} \Big\} + K_2 \|u\|_{L^{2}(\Omega)}$$

was proved, by supposing Ω bounded and f_i , $d_i \in L^p(\Omega)$ (i = 1, 2, ..., n), f_0 , $c \in L^{p/2}(\Omega)$, p > n.

The aim of the present work is to extend these results first of all allowing the set Ω to be unbounded and relaxing the hypotheses on the functions f_0, f_i, b_i, d_i, c (i = 1, 2 ..., n). Finally, the constants in the a priori inequality (3) are explicitly evaluated.

2. Notations and Hypotheses.

Let Ω be an open subset (bounded or unbounded) of \mathbb{R}^n . Let $a_{ij} \in L^\infty(\Omega)$ $(i,\ j=1,\ 2,\ \dots,\ n), \sum\limits_{i,\ j=1}^n a_{ij}\,t_i\,t_j \geqslant \nu\,|t\,|^2\,\forall t\in\mathbb{R}^n$ a.e. in Ω , where ν is a positive constant. Let $c^+:=\max(c,\ 0), c^-:=\min(c,\ 0)$ and suppose that $c^+\in L^{2n/(n+2)}(\Omega')$ for any Ω' bounded, $\Omega'\subset\Omega$. Let us define the spaces

(4)
$$X^p(\Omega) := \left\{ f \in L^p_{loc}(\Omega) : \omega(f, p, \delta) < +\infty \ \forall \delta > 0 \right\}$$

(5)
$$X_0^p(\Omega) := \left\{ f \in X^p(\Omega) : \lim_{\delta \to 0^+} \omega(f, p, \delta) = 0 \right\}$$

where

(6)
$$\omega(f, p, \delta) := \sup \{ \|f\|_{L^p(E)} : E \text{ measurable}, E \subset \Omega, \max(E) \leq \delta \}.$$

REMARK 1. If $f \in L_{loc}^p(\Omega)$, we define, for k > 0,

(7)
$$\phi(f, p, k) := \inf \{ \text{meas}(E) : E \text{ measurable}, E \subset \Omega, \|f\|_{L^p(E)} \ge k \},$$
 and we have

(8)
$$f \in X^p(\Omega)$$
 if and only if $\exists k_0 > 0$ such that $\phi(f, p, k_0) > 0$,

(9)
$$f \in X_0^p(\Omega)$$
 if and only if $\phi(f, p, k) > 0 \quad \forall k > 0$.

REMARK 2. If G is a measurable subset of Ω such that meas $(G) \le \emptyset(f, p, k)$, then it turns out that $||f||_{L^p(G)} \le k$. In fact, if not there would

exist a subset G_0 of G with positive measure but so small that

$$||f||_{L^p(G\backslash G_0)} > k$$

which is in contradiction with the definition of ϕ , since meas $(G \setminus G_0) <$ < meas (G).

REMARK 3. If $1 \le q < p$ it turns out $X^p(\Omega) \subset X_0^q(\Omega)$. In fact, if $E \subset \Omega$, meas $(E) \le \delta$, $f \in X^p(\Omega)$ we have

$$||f||_{L^{q}(E)} \le ||f||_{L^{p}(E)} [\text{meas}(E)]^{(p-q)/pq} \le \omega(f, p, \delta) \delta^{(p-q)/pq}$$

whence

$$\omega(f, q, \delta) \leq \omega(f, p, \delta) \delta^{(p-q)/pq}$$
.

We denote by S the constant in the Sobolev inequality

$$||g||_{L^{2n/(n-2)}(\mathbb{R}^n)} \le S||g_x||_{L^2(\mathbb{R}^n)} \quad \forall g \in C_0^1(\mathbb{R}^n).$$

It is a well known fact (see e.g. [4]) that S is given by the following formula:

(10)
$$S = [n(n-2) \pi]^{-1/2} \Gamma(n)^{1/n} \Gamma(n/2)^{-1/n}.$$

LEMMA. Let $u \in H_0^1(\Omega)$, $B \subset \Omega$, u = 0 in B. Then there exists a sequence $\{u_j\}_{j \in \mathbb{N}} \subset H_0^1(\Omega)$ such that $u_j = 0$ in B, u_j has compact support in Ω (j = 1, 2, ...), $\lim_j ||u - u_j||_{H^1(\Omega)} = 0$.

PROOF. It follows from the results of [3] that $u^+ := \max(u, 0)$, $u^- := \min(u, 0)$ both belong to $H^1_0(\Omega)$, therefore we may assume without loss of generality that $u \ge 0$ in Ω . By definition of $H^1_0(\Omega)$, there exists a sequence $\{\phi_j\}_{j\in\mathbb{N}}\subset C^1_0(\Omega)$ such that $\lim_{n \to \infty} \|u-\phi_j\|_{H^1(\Omega)}=0$; we may assume $\phi_j\ge 0$ in Ω $(j=1,2,\ldots)$. Consider the functions $u_j:=\min(u,\phi_j)$ $(j=1,2,\ldots)$. These functions are in $H^1_0(\Omega)$ and they vanish on B and where $\phi_j=0$. Furthermore it is easy to verify that $|(u-u_j)_x|\le |(u-\phi_j)_x|$ where all the derivatives exist (i.e. almost everywhere in Ω), whence

(11)
$$||(u-u_i)_x||_{L^2(\Omega)} \le ||(u-\phi_i)_x||_{L^2(\Omega)} \quad (j=1, 2, \ldots).$$

Therefore the sequence $\{u_j\}_{j\in\mathbb{N}}$ has the required properties.

3. Main result.

Theorem. In addition to the hypotheses mentioned above, we assume: p > n, $c^- \in X_0^{np/(n+p))}(\Omega)$, $b_i \in X_0^n(\Omega)$, $d_i \in X_0^p(\Omega)$, $f_i \in X^p(\Omega)$ (i = 1, 2, ..., n), $f_0 \in X^{np/(n+p)}(\Omega)$, $u \in H^1_{loc}(\Omega)$,

$$(12) \quad a(u,\,v) \leq \int\limits_{\varOmega} \left\{ f_0\,v + \sum\limits_{i=1}^n f_i\,v_{x_i} \right\}\,dx \quad \forall v \in C^1_0(\varOmega), \ v \geq 0 \ in \ \varOmega \ .$$

Furthermore suppose that there exists a nonnegative real number m such that $\max(u-m, 0) \in H_0^1(\Omega)$.

Then there exist constants K_1 , K_2 , K_3 , depending on the coefficients of $a(\cdot, \cdot)$, on n and p, such that

$$+K_2\Big\{S\omega(f_0, np/(p+n), K_3) + \sum_{i=1}^n \omega(f_i, p, K_3)\Big\}$$

where:

S is the Sobolev constant (10),
$$K_{1} = (4/3)^{np/(p-n)} + 2^{np/(p-n)} K_{3}^{-1/2},$$

$$K_{2} = (3S/\nu)[2^{np/(p-n)} - 1],$$

$$K_{3} = \min \{1, \phi(b_{i}, n, \nu/(6Sn)), \phi(d_{i}, p, \nu/(6Sn)), \phi(c^{-}, np/(p+n), \nu/(6S^{2}))$$

$$(i = 1, 2, ..., n)\}$$

PROOF. First of all we notice that if $t \ge m$ obviously the function $u_t := \max(u-t,0)$ is in $H_0^1(\Omega)$ as well. Moreover, it is easy to check that (12) is verified also by nonnegative functions $v \in H_0^1(\Omega)$ with compact support contained in Ω . In fact, let A be an open bounded set containing the support of v, such that $\overline{A} \subset \Omega$. It is easy to find a sequence $\{v_j\}_{j\in\mathbb{N}}\subset C_0^1(A)$ which converges to v in the norm of $H^1(A)$. We can write (12) with v_j instead of v and let j go to infinity, taking into account Hölder's and Sobolev's inequalities and the fact that $u\in H^1(A)$ by hypothesis (and also $u\in L^{2n/(n-2)}(A)$). So, (12) is true if $v\in H_0^1(\Omega)$ with compact support contained in Ω . Then from the lemma above we can find a sequence of functions $\{u_j\}_{j\in\mathbb{N}}\subset H_0^1(\Omega)$ having compact support in Ω , vanishing where $u_t=0$ (i.e. where $u\le t$), and converging to u_t in the norm of $H^1(\Omega)$. As before, we can write (12) with u_j instead of v and let j go to infinity, because u_t and u_j are different from zero only in a (fixed) set of finite measure, in which $u=u_t+t$, thus allowing again the use of Hölder's

and Sobolev's inequalities. We conclude that (12) can be written with v replaced by u_t (where it is always $t \ge m$). Let us denote for brevity

$$\Omega_t := \left\{ x \in \Omega \colon u(x) > t \right\}.$$

By using Hölder's and Sobolev's inequalities, and taking into account our previous hypotheses, we deduce

$$\begin{split} \nu & \|(u_t)_x\|_{L^2(\Omega_t)}^2 \leqslant \sum_{i=1}^n \int\limits_{\Omega_t} a_{ij} \, u_{x_i}(u_t)_{x_j} dx \;, \\ & \left| \int\limits_{\Omega} \sum_{i=1}^n b_i \, u_{x_i} \, u_t \, dx \right| \leqslant \sum_{i=1}^n \int\limits_{\Omega_t} |b_i(u_t)_{x_i} \, u_t \, | \, dx \leqslant \sum_{i=1}^n \|b_i\|_{L_n(\Omega_t)} \|(u_t)_x\|_{L^2(\Omega_t)}^2, \\ & \left| \int\limits_{\Omega} \sum_{i=1}^n d_i \, u(u_t)_{x_i} \, dx \right| \leqslant \sum_{i=1}^n \int\limits_{\Omega_t} |d_i \, u_t(u_t)_{x_i} \, | \, dx + t \sum_{i=1}^n \int\limits_{\Omega_t} |d_i \, (u_t)_{x_i} \, | \, dx \leqslant \\ & \leqslant S \sum_{i=1}^n \|d_i\|_{L^p(\Omega_t)} (\operatorname{meas} \Omega_t)^{(p-n)/np} \|(u_t)_x\|_{L^2(\Omega_t)}^2 + \\ & + t \sum_{i=1}^n \|d_i\|_{L^p(\Omega_t)} (\operatorname{meas} \Omega_t)^{(p-2)/2p} \|(u_t)_x\|_{L^2(\Omega_t)}, \\ & \left| \int\limits_{\Omega} c^- u u_t \, dx \right| \leqslant \int\limits_{\Omega_t} |c^- u_t^2 \, | \, dx + t \int\limits_{\Omega_t} |c^- u_t \, | \, dx \leqslant \\ & \leqslant S^2 \|c^-\|_{L^{np/(n+p)}(\Omega_t)} (\operatorname{meas} \Omega_t)^{(p-2)/2p} \|(u_t)_x\|_{L^2(\Omega_t)}, \\ & \left| \int\limits_{\Omega} f_0 \, u_t \, dx \, \right| \leqslant S \|f_0\|_{L^{np/(n+p)}(\Omega_t)} (\operatorname{meas} \Omega_t)^{(p-2)/2p} \|(u_t)_x\|_{L^2(\Omega_t)}, \\ & \left| \int\limits_{\Omega} \sum_{i=1}^n f_i(u_t)_{x_i} \, dx \, \right| \leqslant \sum_{i=1}^n \|f_i\|_{L^p(\Omega_t)} (\operatorname{meas} \Omega_t)^{(p-2)/2p} \|(u_t)_x\|_{L^2(\Omega_t)}. \end{split}$$

Therefore it follows easily from (12)

$$\begin{split} & (14) \qquad \nu \| (u_t)_x \|_{L^2(\Omega_t)}^2 \leqslant \\ & \leqslant t \left[\sum_{i=1}^n \| d_i \|_{L^p(\Omega_t)} + S \| c^- \|_{L^{np/(n+p)}(\Omega_t)} \right] (\text{meas } \Omega_t)^{(p-2)/2p} \| (u_t)_x \|_{L^2(\Omega_t)} + \\ \end{aligned}$$

$$\begin{split} + \Big[S \|f_0\|_{L^{np/(n+p)}(\Omega_t)} + \sum_{i=1}^n \|f_i\|_{L^p(\Omega_t)} \Big] (\text{meas } \Omega_t)^{(p-2)/2p} \|(u_t)_x\|_{L^2(\Omega_t)} + \\ + S \Big[\sum_{i=1}^n \|b_i\|_{L^n(\Omega_t)} + \sum_{i=1}^n \|d_i\|_{L^p(\Omega_t)} (\text{meas } \Omega_t)^{(p-n)/np} \Big] \|(u_t)_x\|_{L^2(\Omega_t)}^2 + \\ + S^2 \|c^-\|_{L^{np/(n+p)}(\Omega_t)} (\text{meas } \Omega_t)^{(p-n)/np} \|(u_t)_x\|_{L^2(\Omega_t)}^2. \end{split}$$

For brevity, let us denote $\alpha(t) := \text{meas}(\Omega_t)$. Then we get

$$(15) \qquad \Big\{ \nu - S \Big[\sum_{i=1}^{n} \|b_{i}\|_{L^{n}(\Omega_{t})} + \sum_{i=1}^{n} \|d_{i}\|_{L^{p}(\Omega_{t})} [\alpha(t)]^{(p-n)/np} + \\ + S \|c^{-}\|_{L^{np/(n+p)}(\Omega_{t})} [\alpha(t)]^{(p-n)/np} \Big] \Big\} \|(u_{t})_{x}\|_{L^{2}(\Omega_{t})} \leq \\ \leq \Big[S \|f_{0}\|_{L^{np/(n+p)}(\Omega_{t})} + \sum_{i=1}^{n} \|f_{i}\|_{L^{p}(\Omega_{t})} \Big] [\alpha(t)]^{(p-2)/2p} + \\ + t \Big[\sum_{i=1}^{n} \|d_{i}\|_{L^{p}(\Omega_{t})} + S \|c^{-}\|_{L^{np/(n+p)}(\Omega_{t})} \Big] [\alpha(t)]^{(p-2)/2p}.$$

We notice that, when $t \ge m$, we have

$$\int\limits_{\Omega_m} (u-m)^2 dx \geqslant \int\limits_{\Omega_t} (u-m)^2 dx \geqslant (t-m)^2 \alpha(t)$$

that is:

(16)
$$a(t) \le \frac{\|u_m\|_{L_2(\Omega_m)}^2}{(t-m)^2} \forall t > m.$$

Now we define (see (7))

(17)
$$\delta_0 := \min \left\{ 1, \, \phi(b_i, \, n, \, \nu/(6Sn)), \, \phi(d_i, \, p, \, \nu/(6Sn)), \right.$$

$$\phi(c^-, \, np/(n+p), \, \nu/(6S^2)), \, (i=1, \, 2, \, \dots, \, n) \right\}$$

$$t_0 := m + \frac{\|u_m\|_{L^2(\Omega)}}{\delta_0^{1/2}}$$

(please note that $\delta_0 > 0$ because of our previous hypotheses and remark 1). Then if $t \ge t_0$ we have

(19)
$$\alpha(t) \le \alpha(t_0) \le \frac{\|u_m\|_{L^2(\Omega)}^2}{(t_0 - m)^2} = \delta_0$$

therefore by the definition of ϕ and remark 2 we deduce

(22)
$$||c^{-}||_{L^{np/(n+p)}(\Omega_{t})} \leq \nu/(6S^{2}).$$

From (16), (17), (19) it follows $a(t) \le 1$; then from (15), (20), (21), (22) when $t \ge t_0$ we get

$$(23) \qquad (\nu/2) \| (u_t)_x \|_{L^2(\Omega_t)} \leq [\alpha(t)]^{(p-2)/2p} \left[t \left(\sum_{i=1}^n \| d_i \|_{L^p(\Omega_t)} + S \| c^- \|_{L^{np/(n+p)}(\Omega_t)} \right) + S \| f_0 \|_{L^{np/(n+p)}(\Omega_t)} + \sum_{i=1}^n \| f_i \|_{L^p(\Omega_t)} \right].$$

Let us denote, for brevity,

(24)
$$K_4 := (2S/\nu) \left(\sum_{i=1}^n \|d_i\|_{L^p(\Omega_{t_0})} + S\|c^{-}\|L^{np/(n+p)}(\Omega_{t_0}) \right)$$

(25)
$$K_5 := (2S/\nu) \left(\sum_{i=1}^n \|f_i\|_{L^{p}(\Omega_{t_0})} + S\|f_0\| L^{np/(n+p)}(\Omega_{t_0}) \right)$$

and apply Hölder's and Sobolev's inequalitites to (23), thus obtaining

$$(26) ||u_t||_{L^1(\Omega_t)} \le [\alpha(t)]^{(2+n)/2n} ||u_t||_{L^{2n/(n-2)}(\Omega_t)} \le [\alpha(t)]^{1+(p-n)/np} (K_4 t + K_5)$$

Now we follow a procedure of [1]. Define

(27)
$$\beta(t) := ||u_t||_{L^1(\Omega_t)}, \quad t \ge t_0$$

and note that it turns out $\beta(t) = \int_{t}^{+\infty} \alpha(s) ds$. Therefore

(28)
$$\beta'(t) = -\alpha(t) \le 0$$
 a.e. in $[t_0, +\infty)$.

From (26), (28) we get the differential inequality

(29)
$$\beta(t) \le (K_4 t + K_5)[-\beta'(t)]^{1+(p-n)/np}$$
 a.e. in $[t_0, +\infty)$

Suppose now, by contradiction, that $\beta(t) > 0 \ \forall t \ge t_0$ (i.e., by definition of

 $\beta(t)$, ess $\sup_{\Omega} u = +\infty$). Then in (29) we can divide by $\beta(t)$ obtaining

(30)
$$-\beta'(t)[\beta(t)]^{-np/(np+p-n)} \ge (K_4 t + K_5)^{-np/(np+p-n)}$$

Integrating (30) between t_0 and $t^* > t_0$ (suppose for the moment $K_4 > 0$), we obtain

(31)
$$K_{4}[\beta(t_{0})]^{(p-n)/(np+p-n)} - K_{4}[\beta(t^{*})]^{(p-n)/(np+p-n)} \ge$$

$$\ge (K_{4}t^{*} + K_{5})^{(p-n)/(np+p-n)} - (K_{4}t_{0} + K_{5})^{(p-n)/(np+p-n)}$$

which gives a contradiction when t^* tends to $+\infty$.

Then it must be ess $\sup u < + \infty$. We can rewrite (31) with $t_0 < t^* <$ < ess $\sup u$; by letting t^* tend to ess $\sup u$ we get

$$(32) \qquad (K_4 \operatorname{ess \, sup}_{\Omega} u + K_5)^{(p-n)/(np+p-n)} \leq$$

$$\leq (K_4 t_0 + K_5)^{(p-n)/(np+p-n)} + K_4 [\beta(t_0)]^{(p-n)/(np+p-n)}$$

Please note that the constant K_4 is not greater than 2/3 because of (21), (22). From (32) by easy calculations we get

(33)
$$\operatorname{ess} \sup_{\mathcal{Q}} u \leq (4/3)^{np/(p-n)} \|u_{t_0}\|_{L^1(\Omega_{t_0})} + 2^{np/(p-n)} t_0 + (3/2) [2^{np/(p-n)} - 1] K_5$$

whence, by recalling the definition of t_0 (18) and K_5 (25) one can write

$$(34) \qquad \text{ess sup } u \leq 2^{np/(p-n)} \, m + [(4/3)^{np/(p-n)} + 2^{np/(p-n)} \, \delta_0^{-1/2}] \|u_m\|_{L^2(\Omega)} + 2^{np/(p-n)} \, \delta_0^{-1/2} \|u_m\|_{L^2(\Omega)} + 2^{$$

$$+ (3S/\nu[2^{np/(p-n)}-1] \bigg[S \big\| f_0 \big\|_{L^{np/(p+n)}(\Omega_{t_0})} + \sum_{i=1}^n \big\| f_i \big\|_{L^p(\Omega_{t_0})} \bigg].$$

Finally, by taking into account (19), the definition of δ_0 (see (17)) and the functions ϕ , ω , we conclude

(35)
$$\operatorname{ess \, sup}_{\Omega} u \leq 2^{np/(p-n)} m + \left[(4/3)^{np/(p-n)} + 2^{np/(p-n)} \delta_0^{-1/2} \right] \| u_m \|_{L^2(\Omega)} +$$

$$+ (3S/\nu) \left[2^{np/(p-n)} - 1 \right] \left[S\omega(f_0, np/(p+n), \delta_0) + \sum_{i=1}^n \omega(f_i, p, \delta_0) \right]$$

with δ_0 given by (17).

REMARK 4. If we suppose, in addition to the hypotheses of the previous theorem, that there exists $q \ge 1$ such that $u_m \in L^q(\Omega)$, then we can

write, instead of (16) and (18)

(16')
$$a(t) \leq \|u_m\|_{L^q(\Omega_m)}^q(t-m)^{-q} \quad \forall t > m ,$$

(18')
$$t_0 := m + \|u_m\|_{L^q(\Omega)} \delta_0^{-1/q}$$

and proceeding as before we get to the conclusion in the form

$$(35') \qquad \text{ess sup } u \leq 2^{np/(p-n)} m + \left[(4/3)^{np/(p-n)} + 2^{np/(p-n)} \delta_0^{-1/q} \right] \|u_m\|_{L^{q}(\Omega)} + C_0^{np/(p-n)} \|u_m\|_{L^{q}(\Omega)}$$

$$+ (3S/\nu)[2^{np/(p-n)} - 1] \bigg[S\omega(f_0, \, np/(p+n), \, \delta_0) + \sum_{i=1}^n \omega(f_i, \, p, \, \delta_0) \bigg]$$

where δ_0 is always given by (17).

REMARK 5. Suppose the coefficients d_i and c^- of the bilinear form $a(\cdot, \cdot)$ to be identically zero. Then the constant K_4 defined in (24) vanishes, and by integrating (30) we get, more simply,

(36)
$$\operatorname{ess \, sup}_{\Omega} u \leq t_0 + (np + p - n)/(p - n) \, K_5^{np/(np + p - n)} \| u_{t_0} \|_{L^2(\Omega)}^{(p - n)/(np + p - n)}$$

whence, by taking into account the definitions of t_0 , δ_0 , ..., and Young's inequality, we deduce

(37)
$$\operatorname{ess sup}_{\Omega} u \leq m + (\delta_0^{-1/2} + 1) \|u_m\|_{L^2(\Omega)} + [np/(p-n)] K_5.$$

This inequality is of the same kind of (35), but the coefficient of m in it is now 1.

Acknowledgment: We are grateful to dr. Laura Servidei for correcting English style.

REFERENCES

- [1] H. Brézis P. L. Lions, An estimate related to the strong maximum principle, Boll. Un. Mat. Ital. (5), 17-A (1980), pp. 503-508.
- [2] C. MIRANDA, Alcune osservazioni sulla maggiorazione in L^{ν} delle soluzioni deboli delle equazioni ellittiche del secondo ordine, Ann. Mat. Pura Appl. (4), 61 (1963), pp. 151-170.
- [3] G. STAMPACCHIA, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), pp. 189-258.
- [4] G. TALENTI, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), pp. 353-372.

Manoscritto pervenuto in redazione il 23 ottobre 1997.