
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

SILVIA BERTIROTTI

ROBERTO VAN DER PUTTEN
Existence of minimizers and lower semicontinuity
of integral functionals in the vectorial case
Rendiconti del Seminario Matematico della Università di Padova,
tome 102 (1999), p. 125-140
<http://www.numdam.org/item?id=RSMUP_1999__102__125_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1999, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1999__102__125_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Existence of Minimizers and Lower Semicontinuity
of Integral Functionals in the Vectorial Case.

SILVIA BERTIROTTI - ROBERTO VAN DER PUTTEN (*)

ABSTRACT - We study the existence of minimizers and the lower semiconti-
nuity of functionals of the type

dx respectively, where f is a convex integrand satisfying

some assumptions which are usual in the setting of nonlinear elasticity.

1. Introduction.

In this paper we study the existence of minimizers for functionals of
the type

and the lower semicontinuity of the functional

where S~ is a bounded open set in W, and f is a convex
integrand such that f ( s , t ) = + 00 if and only if 0. These assumptions
are usually verified by stored energy functions that are considered in
nonlinear elasticity (see [D], [FT]).

(*) Indirizzo degli AA.: Dipartimento di Matematica, Universita di Genova,
16146 Genova, Italy.
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The main difficulty in the study of the existence of the minimizers for
energy functionals (1.1) or (1.2) lies in the inapplicability of direct
methods by reason of lack of coerciveness of the functional respect any

space.
The existing minimum results base itself on the existence of solutions

of the following Dirichlet problem

which has been solved by Dacorogna and Moser ([DMo]) in the case of
the datum g Holder continuous.

These results are related to functionals with stored energy functions
which depend only on detDu ([D]) and to the particular case of the dis-
placement problem for elastic crystal ([FT]).

The problem of the existence of minimizers for (1.1) under general
assumptions is still open and it might be solved by proving the existence
of solutions of in the case for a suitable ~3 &#x3E; 1 depending
on the growth condition of the integrand.

In section 3 we give an existence result for (0) in the case of g e 
This is a partial answer (we don’t know if the solution belong to

R") ) to a conjecture in [DMo].
We obtain the result as a direct consequence of the existence of

solutions for the following problem related to the Monge-Ampere
equation

We refer to [GT] for classical results. Recently Brenier ([B]) has proved
the existence of weak solutions of the Monge-Ampere equation satisfy-
ing the range condition = S2 under mild assumptions on g. After-
wards Caffarelli ([Cl], [C2]) provided some regularity theorems for this
problem. In this paper we prove the existence of solutions of the boun-
dary problem if The proof base itself on the techniques
used by Gangbo ([G]) in the setting of the polar factorization of vector
valued functions.

The section ends with an existence results for the minimizers of (1.1)
which is an easy consequence of the existence theorem related to pro-
blem 
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Finally we recall that a different Dirichlet problem related to the
minimum problem for (1.1) has been recently studied in [DMa] and
[Z].

In the last section we prove the weak lower semicontinuity of (1.2) in
a suitable affine subspace of We observe that the convex

integrand f is merely measurable respect the first variable. In this set-
ting the lower semicontinuity of (1.2) has been proved in the scalar case
([DGBDM], [A]) and in the vectorial case ([v]). In these results, the as-
sumption f ( s , 0)  + 00 for every s is crucial.

The semicontinuity theorem present in this paper (Theorem 4.5) is
proved under the usual assumptions of the nonlinear elasticity. In parti-
cular f(s, .) has to satisfy a growth condition which permits to limit the
study of the semicontinuity of (1.2) on a space of homeomorphisms. Then,
by using the change variable formula, we overcome the difficulty related
to the lack of regularity of the integrand.

2. Notations and definitions.

Throughout this work Q will denote a nonempty, bounded, open sub-
set of where n a 2.

If R e R, R &#x3E; 0, we denote by BR the open ball with center the origin
and radius R.

Besides, if m ~ 1, 83(Rm) and ~(II~m ) will be the Borel and Lebesgue
a-algebras on R~ respectively.

Let 1 ~p~ and we say that R~) if
the coordinate functions of u belong to LP(Q) together with their distri-
butional derivatives up to order; we denote by Du the matrix of the
first derivatives of u; besides, if n = m, det Du and Adj Du will be the Ja-
cobian determinant of Du and the transpose of the matrix of cofactors of
Du. In the case m = 1, we denote by Vu and by the gradient and the
Hessian matrix of u rispectively. Finally, if ~ un ~n is a sequence in

lEgm ) and we denote by un ~ u the conver-
gence of the sequence to u respect the weak topology of

W1, p(Q; Rm).
If m ; 1 and f : mapping, we denote by 

the subdifferential of f at the point and by f * the Fenchel conju-
gate of f; besides we denote f** = (f*)* (see [ET] for definitions).

Now we recall the definition of convex integrand.
Let in a 1, B E ~( lE~m ) and g : B x ~. -~ R U { be a ~(B ) x 83(R)-



128

measurable function. We say that g is a convex integrand if g( s , ~ ) is con-
vex and lower semicontinuous on R for a.e. s e B.

Besides, in the case of integrand, by g * ( s , t ) and at g( s , p) we will
mean [g(s, ~)]* (t) and a- [g(s, .)](p) respectively.

In the section 3 we widely use the following definitions.

DEFINITION 2.1. Let B be an open subset of Rn such that
meas ( aB) = 0 and h : B - Rn be a mapping. We say that h is a measure-
preserving mapping on B if h satisfies the following equivalent
properties:

for every 

DEFINITION 2.2. Let BC R" be an open set and a

mapping.
h is said to satisfy the if meas (h(A ) ) = 0 for each A E

E 2(B) such that meas (A ) = 0.
h is said to satisfy the N if meas (h -1 (A ) ) = 0 for each

A E 2(Rn) such that meas(A) = 0.

Finally we recall the definition of topological degree.
Now let f : Q ~ be a continuous mapping, A a domain such that

A (S Q and y Suppose that Then there exists re R, 0 
 r  1, small enough, such that f induces a homomorphism of cohomology
groups ,

If gl , g2 are convenient generators of the cohomology groups, there
exists an integer, denote it such that f * (gl ) _
=,u(y, f, A) g2; ,u(y, f, A) is called the topological degree of y with re-
spect to the pair ( f, A).
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3. The existence results.

The main result of this section is related to a boundary value problem
for the Monge-Amp6re equation.

Let f , g be two real, bounded functions defined on S~. We say that u, a
Lipschitz real function, is a weak solution of the Monge-Ampère
equation

for any 
Besides we define the operator

By Proposition 4.5 in [G], the operator ~ is well defined.
In the proof of Theorem 3.1 we will consider the space

If meas (8Q) = 0, it is straightforward to prove, by using cut-off func-
tions, that Vo is dense in 

THEOREM 3.1. Let Q be a bounded, open subset of Rn with

meas (3Q) = 0. Let f e C(S2) such that f &#x3E; 0 in S2 and

= meas ( ,S~ ). Then there exists u E for every
such that

PROOF. Let R &#x3E; 0 such that S~ c BR . Then by using Tietze extension
theorem and Uryshon Lemma we can construct a mapping g that is a
continuous extension of f on W, such that g &#x3E; 0 in W and

= meas (BR ). Then, by Theorem 5 in [DMo] there exists a homeomorphism
i satisfying

A

; (q5(A)) for every open set A c BR .
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Now we consider the set

Finally we and define the functional

for every (u, v) E W. Now we consider the problem Min ~J(u, v): (u, v) e
and we prove the existence of a minimizer. Following [G], let

{(~ be a minimizing sequence in W such that inf = 0.

Now we regularize the sequence in this way: we set 

By Proposition 4.5 in [G] the is compact for the
uniform topology on the compact subset of Besides we observe that

I is a minimizing sequence. Indeed, since (um, vm ) E W and by
(3.1), we deduce that

and

From these inequalities, it follows that + ~. (y) = for every
y E Therefore (vm , um ) E W and I is still a minimizing se-
quence. Then there exist two locally Lipschitz functions p , q : 
such that vm and Em converges uniformly on compact subsets of Rn to p
and q respectively. It is easy to check that p and q are convex functions
and Therefore we have that J(p, q) = v):(u, V)E
E W~. Finally we consider

From the definition of Fenchel conjugate and (3.2) we easily get that
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and now it is easy to check that and J(w, w * ) _
= Min v): (u, v) E Wl. Since 1/J satisfies N-property, (3.3) and (3.4)
imply that p = w and q = w * on BR .

For each h E C(BR ) n L °° (BR ), we define

Now, we have that ~(w * ) = J( q) = w = w ** and then, since V satisfies
and by Lemma 2.4 in [G], we obtain that

where G’ denotes the Giteaux derivative of G. Now, for each k E Yo and
r E R, we define

Now we check that

Let y E Since k E vo, we have that

Now we have that

therefore

and so

The opposite inequality follows from (3.6).
Now it is straightforward to check that (wr, wr) E W Vr E R. Hence,

since J(w, w * ) = Min ~J(u, v): (u, v) E Wl and by (3.5), we obtain
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This implies that Vw o y satisfies N -I_property on BR and, since Vo is
dense in we have that (3.7) holds for every There-
fore Vw 0 y is a measure-preserving mapping on BR and, consequently,
Vw and Vw * satisfy Hence

for every Thus

for every k Then w * is a weak solution of g(Vu) = 1

on BR and, by the regularity theorem in [ C1 ], w * e n 

for every p  + oo; besides w * is strictly convex. This last property im-
plies that w is differentiable everywhere on BR; therefore Vw * = 
on BR and By (3.8) it follows that

for 
This means that w is a weak solution of = g in BR and we

+ oo([C1]). Let us now prove that w is
a solution of (~2 ). First we observe that, since (w , w * ) E W, w ( y ) +
+ w * ( y ) for every y e 8Q and this means that Vw(y) = y for every

Besides, for we have ([RR], § v.3.4, Thm.2)

since ,u(x, Vw, Q) =,u(x, Id, Q) = 1 for every x e Vw(Q), ([RR], § 11.2.3
Thm. 6). Therefore we obtain det D2 (w ( y ) ) = f(y) a.e. in Q. D

THEOREM 3.2. Let Q a bounded, open subset of Rn with C 1 boun-
dary. Let f E C(D) and 0 E C 1 (,5~; Rn) such that f &#x3E; 0 and det Dg5 &#x3E; 0 on
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Then there exists for every p  + 00 such

that

PROOF. Let us consider the following problems

and

By Theorem 3.1, these problems have solutions v , Rn) n
n C(Q) for every p  + 00. Besides w is invertible in Q and 

Rn) n C(Q). Then we set and We have
that g , u e n C(S2) for every p  + 00 and the chain rule holds. This
follows from Theorem 2.9 in [R] and by a density argument since v satis-
fy Therefore we obtain

a.e. in S~, since w satisfies N-property and v satisfies N -’-property. Be-
sides we have that u(x) _ if x E aS2.

Now we are able to prove the existence result for the functional

(1.1). 
_

Given a convex integrand, we define the mul-
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tifunction

THEOREM 3.3. Let 92 a bounded, open subset of Rn with C 1 bound-
ary. Let 0 e C 1 (S~; Rn) such that detdo &#x3E; 0 in S2. Besides let f : S~ x R-
-~ 1C~. U I be a convex integrand satisfying the follouring condi-
tion :

(a) for every , if and only t ~ 0 ,

(b) there S2 ~ IE~ a continuous selection of r,

Then the;e exists u P (Q; Rn) f1 C(D) for every p  + 00 solution of
the problem

REMARK. Assumption (b) is satisfied by any continuous integrand f,
strictly convex in the last variable such that

for every (x, t) E SZ x R, where a, b are positive costants and h : R - R is
a lower semicontinuous function satysfing lim h(t) _ + 0c).

t-&#x3E;+~

PROOF. By hypothesis ( b ) we have that, for every reD, 0 E

E p(r ) ) and then f (x, ~ f (x, t) for every (x, t) E SZ x R. This
implies that p(x) &#x3E; 0 for every x ~ 0 ~(x) ) ~ f (x, for

almost every XEQ and Rn).
Now, by Theorem 3.2, there exists u e R") n CM) for every

p  + 00 such that p(x) a.e. in Q and u(x) = for every
Hence u is solution of (,T3). m

Now we produce an example of integrand satysfing the assumptions
of Theorem 3.3.
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EXAMPLE. Let be 92, 0 as in the Theorem 3.3 and let 
-~ lE~ U { + oo } defined by

where a is a positive, measurable fuction on Q, p E is positive and
such that

Then it easy to verify that f is a convex integrand and

so that T(x) = p(x).

4. The semicontinuity result.

In this section we study the lower semicontinuity of integral func-
tionals of the type

defined on the Sobolev space 
Throughout the section will be a nonempty, bounded, connected

and strongly Lipschitz open subset of with n a 2. Besides, if p &#x3E; n
and we shall assume that the H61der continuous

representative of u has been choosen. Now, given 
such that uo be one-to-one in S~, we consider the closed affine subspace

of defined by

and the set
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The principal tools in our analysis will be the following two theorems
due to Ball [B, Theorem 1 and 2].

THEOREM 4.1. u cz Ap. Then:

(b) The change of variables formula

holds for all measurable set A c Q and any measurable function
h: provided only that one of the integrals in (4.1) exists.

The second theorem gives conditions under which a function u E Ap is
a homeomorphism.

THEOREM 4.2. Let p &#x3E; n and u E Ap. Besides let uo (Q) satis, fy the
cone condition, and suppose that there exists q &#x3E; n such that

then u is ac homeomorphism of Q onto and the inverse function
w E q (Uo (S2), Rn). Moreover we have:

Finally ifuo(Q) is strongly Lipschitz, then u is a homeomorphism of 52
onto uo (S2).

As a consequence of the previous theorem we have the following

COROLLARY 4.3. Let {3 &#x3E; n - 1, p &#x3E; (/3n(n - 1 ) )~(/~ + 1 - n) and

uo(Q) be strongly Lipschitz; besides let u eAP such that (detDu) e
Then u is a homeomorphism of S2 onto uo(S2) and the inverse

function w e Rn) for a suitable q + 1).

PROOF Let such that Since 

- 1))/(B + 1 - n) and by continuity and monotonicity properties of the
function a(r) = ({3 + 1 - r) I(r(n - 1 ) ), we have that there exists q e

e (n, ~ + 1 ) such that  ({3 + 1 - q) /(q(n - 1 ) ). Now we consider s e
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e + 1 - q), p /(q(% - 1 ) )) and we obtain (q - 1 ) ((s~(s - 1 ) ) ~ {3 and
qs ~ p /(% - 1). For such choice of s and q and by H61der inequality, we
obtain that there exists a costant c = c(Q, n, q, s, {3) s.t.

Therefore we have that condition (4.2) is satisfied. As a consequence of
Theorem 4.3 u is a homeomorphism of ,~ onto 

Now we state the hypothesis on the integrand of the functional F.
Let be a function satisfying the following

assumptions:

(a) f is a convex integrand;
(b) for every s e f(s, t) = + 00 if and only t S 0;

(c) there exist costants c &#x3E; 0 , ~3 &#x3E; n - 1 such that f ( s , t ) ~ ct -/3, for
every s E and t &#x3E; 0. In the proof of the semicontinuity result we shall
use the following Lemma.

LEMMA 4.4. Let f as above, p &#x3E; n and be a sequence in

Rn) and lim inf F( un )  + 00.

Then det Du(x) &#x3E; 0 a.e. in Q and (detDu)-1 

PROOF. It follows directly from assumption (c) and the sequential
weak lower semicontinuity of the functional

THEOREM 4.5. Let f as above, p &#x3E; (~in(n - 1 ) )~(~i + 1 - n) and sup-
pose that uo (Q) is strongly Lipschitz. Then the functional F is sequen-
tially weakly lower semicontinuous on Rn).

PROOF. First we observe that the functional F is well defined; as a
matter of fact, since f is 2(W) Q9 M(R)-measurable, there exists a Borel
function f : Rn x I~ -~ R U I such that f ( s , t) = f(s, t) for every
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where and Finally, if we

define

we have that h is a Borel function and by Lemma 7 in ([RR], § V.2.4.) we
get

for every Consequently f(u(.), detDu(’» is 2(Q)-mea-
surable ; besides f is positive by (c) and therefore F is well defined.

Now we consider u E Ap such that By Corollary
4.3, u is a homeomorphism of S2 onto uo (Q) and the inverse function we

R") + 1). If we apply the change of
variables formula (4.1) to the function h(x) = f (u( x ), det Du( x ) ), we
obtain

Now we define a new functional. Let

and let consider g * *. It is easy to check that g * * is a convex integrand
and g * * ( s , t ) = g( s , t ) if t ~ 0. Then we define

for every Run). We observe that

and G is sequentially weakly lower semicontinuous in 
since q &#x3E; n. Finally we prove the semicontinuity of F. Let u E
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E W1, pu0(Q, Rn) and {un}n be a sequence in W1, pu0(Q, Rn) such that un - u 
in and We can suppose that

 + 00 and, by (c), that
neN

Hence, by Lemma 4.4, we have that u, Un eAp and 
e Lf3(Q) for every n E N. Therefore, for every n E N, we have

that u, un are homeomorphisms of D onto (Corollary 4.3) and we
denote by w , wn their inverse functions respectively. We recall that

R") for a suitable q E (n, ~i + 1 ). Hence, by (4.4)
and the lower semicontinuity of G, to prove the weakly lower semiconti-
nuity of F, it is enough to prove that wn -w in Rn». First
we check that the sequence ~ wn ~n is bounded in In-

deed,by (4.3) and H61der inequality, there exist positive costants c2 =
= c2(n) and Cg = n, q, s, ~3) such that

Besides, by (4.1), we obtain

Since the sequence ~ Dun ~n is bounded in and by (4.5), we
obtain that the is bounded in Then

there exist a subsequence of ~ wn ~n (we will denote it as the original se-
quence) and 16 E such that wn - iu. It remains to prove
that w = 16 on But, since q converges uniformly to 16 in

and then we get

for every S~. In the same way one can verify that = y for

every Therefore on and this concludes the

proof.
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