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Compact Flat Manifolds
with Holonomy Group Z2 ~ Z2 (II) (*).

J. P. ROSSETTI - P. A. TIRAO (**)

ABSTRACT - In this paper we give a complete classification of compact flat mani-
folds with holonomy group Z2 EÐ Z2, with the property that the holonomy rep-
resentation decomposes as a direct sum of indecomposable representations of
Z-rank equal to 1 or 2. We exhibit explicit realizations of all the manifolds clas-
sified, computing the first integral homology groups. Finally, we compare the
results obtained with the known results in low dimensions.

Introduction.

It follows from Bieberbach’s work that classifying compact flat mani-
folds (cfm’s), up to affine equivalence, is equivalent to classifying their
fundamental groups, up to isomorphism.

In 1965 Charlap (see [3]) gave a general approach to the classifica-
tion, and applied it to classify all Zp-manifolds i.e., all cfm’s with cyclic
holonomy group of prime order. To this end, he used Reiner’s results
([10]) on the classification of integral representations of the group

Z~ .
In [4], P. Cobb constructed an infinite family of cfm’s with holonomy

and first Betti number zero. This family was enlarged in

[12], where new infinite families of such manifolds were constructed

(*) Supported partially by FaMAF and CONICOR.
(**) Indirizzo delgli AA.: FaMAF, Universidad Nacional de C6rdoba, Ciudad

Universitaria, 5000 C6rdoba, Argentina; e-mail: rossetti@mate.uncor.edu;
ptirao@mate.uncor.edu
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by allowing certain integral representations of non diagonal type
in the holonomy representation.

In this paper we shall give a complete classification of compact flat
manifolds with holonomy group with the property that the
holonomy representation is a direct sum of Z2 ® Z2-indecomposable rep-
resentations of Z-rank equal to 1 or 2. The cfm’s in this class which have
first Betti number zero are exactly those considered in [12].

In order to obtain this classification we shall develop Charlap’s
scheme, showing that the basic difficulty in this case is to decide when
two special classes determine the same flat manifold. This main step is
carried out in Section 5.

Moreover, we shall exhibit explicit realizations of the fundamental
groups as subgroups of We summarize the full classification and
the first integral homology groups in the table of Section 7.

Finally we specialize our results for low dimensions, comparing with
the known classification in [1] in the cases of dimension 3 and 4. In par-
ticular, we show that the method constructs all Z2OZ2-compact flat
manifolds of dimension 3, and 21 out of the existing 26, in dimension 4.
For dimensions n = 5 and n = 6, we give the total number of Z2 EÐZ2-
manifolds constructed in the paper. The family we study in this paper in-
cludes in dimension 5 (see Remark 7.4), the two isospectral non homeo-
morphic cfm’s constructed in [5, p. 496]. We note that a full classification
of all Z2 ® Z2-manifolds is yet unknown for dimensions n ~ 5 .

1. - Preliminaries.

Let M be an n-dimensional compact flat manifold with fundamental
group T. Then M =Rn/T, F is torsion-free and, by Bieberbach first theo-
rem, one has a short exact sequence

where A is free abelian of rank n and 0 is a finite group the holonomy
group of M. This sequence induces an action of 0 on ll that determines
an integral representation of rank n of 0. Thus A becomes a Z(Q)-mod-
ule, which moreover is a free abelian group of finite rank. From now on,
by a 0-module, we will mean a Z( ø )-module which, as a Z-module, is free
and of finite rank.

As indicated by Charlap in [2], the classification of all compact



101

flat manifolds with holonomy group (P can be carried out by the
following steps:

1) Find all faithful Q-modules A.

2) Find all extensions of 0 by A, i.e., compute H2 ( ~ , A).
3) Determine which of these extensions are torsion-free.

4) Determine which of these extensions are isomorphic to each
other.

For each subgroup K of 0 the inclusion i : induces a restric-

tion homomorphism resK : H2 ( ~ ; ll ) --~ H2 (K; A).

DEFINITION. A class A) is special if for any cyclic sub-
group of (P, K, of prime order, one has 0.

Step 3) reduces to the determination of the special classes by virtue
of the following result.

LEMMA 1.1 [3, p. 22]. Let A be a 0-module. The extension of (P by A
corresponding to a E H2 ( ~ ; A) is torsion-free if and only if a is

special.

We now state some definitions and a main result in [3].

DEFINITION. Let A and L1 be Q-modules. A semi-linear map from A

to L1 is a pair ( f , A) where f : is a group homomorphism, A E
and

The Q-modules A and L1 are semi-equivaLent if f is a group isomorphism.
If A = I then A and L1 are equivalent via f.

Let E(Q) be the category whose objects are the special pointed W-
modules, i.e., the pairs ( , a) where A is a faithful Q-module and a is a
special class in ~l ) and whose morphisms are the pointed semi-lin-
ear maps. That is, ( f , A) is a semilinear map from (A, a) to (A, such

that f * (a) = A * (~8), where A * (~i)(a~, i) _ Ai) for any (a, i) Ei 0 x 0.

THEOREM 1.2 [3, p. 20]. There is a bijection between the isomor-
phism classes of the category ~( ~ ) and connection preserving diffeo-
morphism classes of compact flat manifolds with holonomy group CP.
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We consider the subcategory of ~(~), whose objects are the
pointed 0-modules which decompose as a direct sum of submodules of Z-
rank less than or equal 2 and whose morphisms are the pointed semi-lin-
ear maps. It is straightforward to see that a restricted version of the pre-
vious theorem holds for the category 

COROLLARY 1.3. There is a bijection between the isomorphism
classes of the category and connection preserving diffeomorphism
classes of compact flat manifolds with holonomy such that the

holonomy representation decomposes as a direct sunz of indecompos-
able summands of rank less than or equal two.

DEFINITION. Two integral representations p and O’ of (P are semi-
equivalent if there exists a unimodular matrix P and an automorphism A
of 0 such that

Let L1 be a 0-module and We denote by A(4 ) the Q-
module which has L1 as underlying abelian group, with the action of 0
defined by

and L1 are semi-equivalent via ( f, A), then f : A - A(D) is a Q-
isomorphism. In particular if (A, a) and (4 , fl) are isomorphic special
pointed 0-modules in 1F( W), then ~l and L1 are semi-equivalent. The asso-
ciated representations p and Q’ then satisfy

for some unimodular P,

and Q’ are semi-equivalent.
Therefore, in order to determine the isomorphism classes of Ii~((P), it

will suffice to classify the integral representations involved, up to

semi-equivalence.
From now on we will identify integral representations of 0 with

0-modules.

2. - Classification of $representations.

Every integral representation Q of a finite group G decomposes as a
direct sum of indecomposable subrepresentations, but in general, the in-
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decomposable summands are not uniquely determined by 9 (see for in-
stance [11]). However in the context of this paper, the indecomposable
summands of an integral representation will be uniquely determined up
to order and equivalence.

By an representation we will understand a faithful integral repre-
sentation of Z2 that decomposes into a direct sum of indecomposable
representations of rank less than or equal 2. In this section we will give a
parametrization of the semi-equivalence classes of ~ representations.

It will be convenient to identify a representation e of Z2 with the

three integral matrices in Q(Z2 ?~2 " {0}), which we will denote by B1,
B2 and 

We begin by recalling all the indecomposable integral representa-
tions of of rank one and two, up to equivalence.

LEMMA 2.1. A complete set of representatives of equivalence class-
es of indecomposable representations of Z2 EÐ Z2 of rank less thccn or
equal 2 is given by -

PROOF. It is known that in the only indecomposable representation
of rank 2 of Z2, the generator acts by J (see for instance [10]). Given an in-
decomposable representation of of rank 2 we may assume that

one of the Bi’s is J. As the other Bi’s commute with J and satisfy B 2 = I
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the only possibilities for these Bi’s are ± I and ± J. We notice that J and

- J are conjugate by 0 -1 . Thus, for example, the representation
- I, J, - J is equivalent to - I, - J, J and I, J, J is equivalent to I, - J,
- J. It is now easy to conclude that give a com-
plete set of representatives for the equivalence classes of indecompos-
able representations of rank 2.

If Q is an Grepresentation, then o is equivalent to

where the non-negative integers r, and l~i are uniquely determined
by o (see Remark 2.4).

Conversely, given non-negative integers r, mi, Li, ki (1 ~ i ~ 3), we as-
sociate to them the representation of rank n = r + m + 2 L + 2 k, defined

by (1), where m = I mi, 1 = ¿ lie and k = I ki .
i=l i i=l i i=l i

We now associate to a given Q e 1F the triple

where mi, li and ki are as in (1). Conversely, for each triple as in (2) and
n a nz + 2 1 + 2 k we associate the representation constructed as in (1),
with r=n-m-2L-2k.
A permutation of the triple (2) is a triple of the form

where a e S3.

PROPOSITION 2.2. There is a bijective correspondence between se-
mi-equivalence classes of ’,F’-representations of rank n and triples in the
set

~ + 2~ + 2~ ~ ~; and k &#x3E; 0 or for at least two indices i ~
up to permutation.

PROOF. Given an element in the set, we associate the F-representa-
tion constructed in (1), by taking r =n - m - 2l - 2k. Choosing only one
triple in each class (of the set up to permutation), we built the family R of
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these representations. Notice that the last condition in the set ensures
that the representations of S are indeed faithful.

It is clear that every Grepresentation is semi-equivalent to one in B.
On the other hand if ~o , g’ E B are semi-equivalent, we wish to show

that Q = Q’. Let P be a unimodular n x n matrix and 0 an automorphism
of such that Po(g ) P -1= o ’ ( ~ (g ) ) , VgeZ2EÐZ2. Then, there
exists a E ,S3 such that for 1 ~ i ~ 3. By the uniqueness of
the parameters mentioned above, it follows that r = r’ and (mi, Li, kj ) =
= (~Q~i~, for 1 ~ i ; 3. Thus

up to permutation by Q, and so Q = o ’ as asserted.

NOTATION 2.3. We recall that F is the family of representatives of
semi-equivalence classes of ~ representations, constructed in the proof
of Proposition 2.2.

We denote by Si 1 the subfamily of 3 of representations having the
three elements in the triple different. We also denote by 3 2 (resp. ~3 )
the subfamily of S of representations having 2 (resp. 3) elements in the
triple equal.

Notice that 9, is the disjoint union B1 U B2 U R3-

REMARK 2.4. If A is a subset of (Bi , B2 ) the quotient

is an invariant of the equivalence class, [ o ], of o. By using these quo-
tients one can show that the integers r, 1 ~ i ~ 3, in (1) are
uniquely determined by [ o ]. For instance, then one

has
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Also

Hence Li can be determined, for all i, and r is also determined.
On the other hand, it was recently proved (see [8]) that the full Krull-

Schmidt theorem holds for integral representations of The au-
thors wish to thank W. Plesken, M. I. Platzech, L. Levy and L. Klingler
for useful correspondence which helped to clarify the validity of the
Krull-Schmidt property in the present case.

3. - Some group cohomology.

In this section we shall determine, for each Z2 E9 Z2-module ~l in IT,
the cohomology group ~l ), by exhibiting an explicit set of
generators.

This computation can be possibly done by other methods, like those
in [13], but we shall take a simple minded approach which only uses the
basic definitions.

Since cohomology is additive and two modules corresponding to se-
mi-equivalent representations have isomorphic cohomology groups, it

will suffice to consider four cases. From now on we shall write Z2 =

- (B1, B2 ), and 

Case I): H2«B1, B2); A), where ~l is of rank one and the action is
trivial.

Case 2): H2 ((B1, B2 ~; ~l ), where ~l is of rank one and B1 acts trivially
while B2 acts by - I .

Case 3): H2«B1, B2); A), where ll is of rank 2 and B1 acts trivially,
while B2 acts by J = 1 0 .

Case 4): H 2((Bl, B2); ~l ), where ll is of rank two, B1 acts by - I and
B2 acts by J.

In all cases we first determine the cocycles C 2 ( (B1, B2); A), i.e., the
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functions B2 ~ X (Bl , B2 ~ ~ ~l such that ah = 0. Recall that

By normalizing the cocycle h, we may assume that h(x, I) = h(I, x) = 0,
for all x E (B1, B2 ~.

Also, it will be useful to recall that the coboundaries are the

functions

where f : (B1, B2) is any function.

Thus, evaluating (3) for x , y , B2 , B3 ~ we have a linear sys-
tem of 27 equations and 9 1 ~ k , l ~ 3}, in cases
1) and 2); while in cases 3) and 4) we have 54 equations and 18

unknowns.

We will make use of the following notation. With p, q and r we denote
any element B2 , B3 ~ acting as I and with i and j any element in
the same set acting as - I. We will also abbreviate h(Bk , Bl) by ( k , l) and
8h(Bk, Bb Bm) by (k, l, m).

Case 1 ). - The full set of equations is summarized in the following
table

Observations. Equations 5 follow from 2 and 3, while equations 2, 3
and 4 are equivalent to equations 2, 3 and 4’ : (p, q) = (q, p). Equations 3
follow from 2 and 4’. By the symmetry of r and p in 2 there are three
equations left. The same happens in 4’.



108

Thus the system ah = 0, is equivalent to

and so every cocycle h has the following general form,

for some a, y eZ.
Let ha (resp. h~ and be the cocycle obtained by letting a = 1,

(resp. a = y = 0 and y = 1, a = ~8 = 0). Then

H2«B1, B2); A) = ( [ ha ], [ h~ ], [ hY ] ). Finally to determine the cohomology
group, we write down the coboundary 8f, where B2 ~ ~ Z is any
function such that f (I ) = 0. If we let tk = f (Bk ) we have

It follows that ha + 0, h~ -~- 0, 0 and furthermore ha - 0,
ha - 0, 0 and finally 2 ha -~- 2hf3 -- 2 hY --- 0. Hence

Case 2). - As in Case 1), the system of 27 equations can be reduced. It
is sufficient to consider only the triples ( i , i , i ), (i, i , j ), ( i , j , i ) and

(~ro , p, i ), from which one can conclude that the set of linearly indepen-
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dent equations is:

Thus, in this case, every cocycle h has the form

for some a, f3 E Z.
Let be as before. It is not difficult to see that ha --- h~, ha -~- 0

and 2 ha --- 0. Thus

In cases 3) and 4) we just give the general form of a cocycle h, and the
relations satisfied by the generators of C2«(B1, B2); A). Recall that

h:(B1, B2) x B2 ~ -~ ~ . We shall write the second coordinate of h
below the first one.

Case 3).
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for some a, B, y, 6 and E E Z.
The generators satisfy hf3 --- hY --- 0, ha - h, - h6 --,- 0 and 2 ha --- 0. Thus

we have

Case 4).

for some a, f3, y and 
It is straightforward to verify that hY --- hd --- 0, and thus

4. - Restriction functions.

To carry out the third step in the classification scheme outlined in
Section 1, in the light of Lemma 1.1, it is necessary to investigate the re-
striction functions to determine the special classes in the cohomology
groups.

Since resK: H2«B1, B2); ~l ) ~ H2 (K; ~l ) and any cyclic subgroup of
B2 ) is isomorphic to Z2 we need to determine the groups H2 (Z2 ; ~l )

for the three indecomposable Z2-modules, namely, those modules for
which the action of the generator of Z2 is given respectively by (1), ( -1)

and (i 10). In the first case we have that H Z2; ) =:: Z2,
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with generator given by

whereas in the second and third cases we have H2 (Z2 ; ~l ) = 0.
We next study the restriction functions for each of the cases in Sec-

tion 3.

Summing up

H2 ((Bi ); ~l ) = 0, thus we only need to consider the case when K = (Bl ).
We have

Notice that defined in (4)). Thus

Case 3). - If i = 2 or i = 3, H2 (~Bi ~; ll ) = 0, thus we only need to con-
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sider the case We have H2«B1); ~l ) = H2«B1); (e1» E9
E9 H2 ( (B2 )i ( e2 )) = ( [ fi ] ) E9 ( f f2 ~ ) ~ with fi = f By this isomorphism the ele-
ment [ fi ] + corresponds to [h] e H2 ( (Bl ); ~1 ) where

On the other hand

Notice that Hence, it follows that

where is the homomorphism defined by d ( 1 ) _
- (1, 1).

Case 4). - Since H2«B1, B2); A) = 0, there is nothing to be done in
this case.

5. - Isomorphism classes in 

It follows from the discussions in Section 1 that we can view the ob-

jects in ~(Z2 EÐ Z2) as the set of special classes in H2 (Z2 ~l ) where
~l is a Z2 ® Z2-module as above.

If a and f3 are in ~(Z2 where a E H2 (Z2 ~l ) and ~3 E
if there exists a semi-linear map ( f , A ) such

In this case, ll and ~l ’ are semi-equivalent, therefore
each isomorphism class of is contained in A),
for some module in S. Moreover if a and f3 are in A)
and a - fl, then the associated representation Q satisfies = o(A(g) ),

and consequently for Q in F1, A must be the identity
automorphism.

For each representation Q E R, we consider the matrices B1, B2 and
B3 acting on ~l = ( e1, ... , en ~. Thus ~1 is the direct sum of indecomposable
submodules, of the ten classes listed in Lemma 2.1. Let ~l i be, for

i = 0 , 1, ... , 9, the submodules that are direct sum of indecomposable
submodules all of them equivalent, in the order considered in Section 2.
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Thus ll o has rank r and is the sum of trivial submodules; A 1 has rank ml ,
~12 has rank m,2,...,~19 has rank2k3-

It follows that

It will be convenient to make use of the following notation. Given a E
EH2«B1, B2 )); ~l ), we will write a = (vo, vl , ... , vs ) with vo E (Z2EÐz2)r,
Vl E Z21, ... , v6 E Z2 l’ In the coordinates of vo we will identify ( 1, 0 ) with
hi, ( o, 1 ) with h2 and ( 1, 1 ) with h3 (Section 4, Case 1)). Finally if 6 Ei
e (0, 1 ) we will set 3 = ( ~ , 0 , ... , 0 ) E Z2 where t could be equal to
m1, m2 , M3, ll, l2 or 19.

LEMMA 5.1. For every a E H 2((Bl, B2 ); ~l ), a = (vo, vl , ... , vs ), let

~ i = 1 if 0, ði i = 0 otherwise. In H2«B1, B2 ); A) the following equiv-
alences hold:

if the non zero coordinates in vo , if any ,
are all equal to hj;

if there are at least two different hi’ s in vo ,
for 1-i-3 .

PROOF. To prove the lemma we will construct a linear isomorphism
f : such 0 , ... , 0, d 1, ... , d 6) = a in the first case and

in the second.

We will define f in each submodule A j . We start with ~l 2 and ~3.
Recall that 1 = ~er+ 1, ~ ~ ~ ~ er+ ml ~· If v1= 0 define 1= I. If

v, = (v 1, ... , 0 with 11, let jo be the first j such that 
~0.

We define

for r + 1 ~ i ~ r + m1 , m1: v ~ # 0 1. Notice that
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(/ ~i)*(0, 9 ... , 0 , 1, 0 , 9 ... , 0) = v1, where 1 is in the jo-th position. By
where is the transposition interchang-

ing ei and ej, we have that 0 , ... , 0 ) = VI. Finally we notice
that 1 is a linear isomorphism. In a similar way we define
fA2 and f A3.

Consider now the submodules A 4 A 5 and ll 6. If v4 = 0 define =
= I. (v 1, ... , 1}, let jo be the first j such that

0. We define

for r + m + 1 ~ i ~ r + m + 2 ll , ~~0}. As be-
fore, it follows that

( f ~~ 4 )* ( 1, 0, ... , 0) = v4 . Again f ~~ 4 : A 4 - A 4 is a linear isomorphism.
For A 5 and the definition of f is analogous.

On the submodules A 7, and A 9 we define f to be the identity.
We now define This is the most complicated situation. If vo = 0

o = I. If vo # 0, we distinguish two cases depending on whether the
nonzero coordinates of vo are all equal, or whether there are at least two
different nonzero coordinates. In the first situation, defining fl 0 in a
way similar 1 it follows that ( f ~~ o )* (hj , 0, ... , 0) = vo . In the sec-
ond situation, if vo = ( v 1, ... , v r ), where hl , h2 , let j be the
first index j such that v j ~ 0 and let j2 be the first index j greater than j1
such that v j ~ 0 and v j ~ v jl . Thus vo = (0~ ... ~ 0, + 1,

... , v j2 , v j2 + 1, ... , v,), with vj, = hil’ v j2 = h22 and v j = 0 or v j = hil 
 j  j2. Thus we define

Hence V o z 2, ~2 ),~ ( hil , h22 , 0 , ... , 0) = vo . We notice that/ is a
linear isomorphism.
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To finish the proof we only need to show that ( hil , hi2’ 0, ... , 0)
is equivalent to ( hl , h2 , 0 , ... , 0 ).

By applying if necessary, we may assume that il  i2 . Thus, we
have to consider the cases _ ( h1, or ( hil , h22 ) _ (h2, 

By taking

in the first and second cases respectively, it turns out that

a * (hi, h2 , 0 , ... , 0 ) = (hil’ hi2’ 0 , ... , 0 ). Both a’s are linear isomor-

phisms. Finally by taking o = f o z 1, jl 0 í 2, j2 o Q we obtain the required
f.

It is now convenient to characterize the special classes in

H 2(~Bl, B2); A).

LEMMA 5.2. (a) A class of the form (o, 1 0, 6 11 ... , 3 6) is special
if and only 1 ;i~3. r

( b ) For each 1 ~ j ~ 3, (hj, 0 , ... , 0, d 1, ... , d 6) is special if and
only if6j+ ð j + 3 ~ 1. ~

( c ) The classes (hl , h2 , 0 , ... , 0, d1, ... , d6) are always special.

PROOF. The lemma follows directly from the results in sections 4
and 3. m

In the sequel we will determine the equivalences among these special
classes.

LEMMA 5.3. In H2«B1, B2); A) we have the following equiva-
lences :
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PROOF. Let f: A -A be the linear isomorphism defined by

It is straightforward to verify that f satisfies f * (vo, 1, T2, d 3, 0, d 5, =

= (vo, 1, 3-2~ T39 19 7~ ?e), thus proving the first relation. The remaining
two follow in a completely similar way.

LEMMA 5.4. In H2«B1, B2); A) the following equivalences hold:

PROOF. (a) Let f be the linear isomorphism defined by

To understand the effect of applying f * we will restrict our attention
to

We now recall the general form of the cocycles of Case 3) in Section 3
and the facts that 0, ha --- hE -~ 0, when B1 acts as I and B2 and B3 act
as J. Since on ~er + m + 2 al + ~ ~ er + m + 2l1 + 2 ~ B1 acts as J and B2 as I while B1
and B2 act by J on ~ er + ~rt + 2 h + 2 L2 + ~ ~ er + m + 2 l1 + 2 L~ + 2 )~ we must interpret
properly the table in Case 3). Hence

The proofs of ( b ) and (c) are analogous to the proof of (a).
The proof of (d) can be obtained from (a) and a statement as ( b ) with
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h2 in the second coordinate, in place of the first. Thus, by taking

(d) follows.

By using the above results we can now give an upper bound on the
number of equivalence classes of special classes in H2 ( (B1, B2 ); A).

We begin by considering the classes with vo = 0. Thus d + d i + 3 % 1,
for 1 ~ i ~ 3 and by Lemma 5.3 it suffices to consider the classes with
3 j i + ð i + 3 = 1, for 1 ~ i ~ 3. Therefore, if vo = 0, there are at most 23 = 8
equivalence classes, corresponding to all possible choices of pairs

(54), (ð 2, d5) and (d3, d6).
In the cases when vo = 0 , ... , 0) for some 1 ~ j ~ 3, we will only

analize the case j = 1, since the remaining two are similar. Thus

d 1 + d 4 ~ 1, and as before, it suffices to consider those classes with

3 1 + 3 4 = 1. By Lemma 5.4 we may assume d 5 = ~ s = 0. Hence there are
at most 8 equivalence classes with vo = 0 , ... , 0), and consequently,
if we include the cases with j = 2 or j = 3, there are at most 3 x 8 = 24
classes of this type.

Finally if vo = ( hl , h2 , 0, ... , 0 ) we may assume by Lemma 5.4 that
d 4 = a 5 = d 6 = 0, hence there are most 8 equivalence classes of this

type.
If we take into account all three types, we see that there are at most

40 equivalence classes of special classes in H((Bi , B2 ); A).
We see next that if e is in the subfamilies B 2 or B 3 of S (see 2.3), there

are some new equivalences among the special classes described

above.

Recall that two classes a and ~3 in H2«B1, B2 ~; A) are equivalent if
f * a = A * ~3, with ( f, A) a semi-linear map. At the beginning of the sec-
tion we pointed out that for representations in Si the automorphism A
should be the identity. For representations in ~2 either A = I or A is the
automorphism that permutes the two elements having the same associat-
ed triple (see Section 2) and fixing the third non trivial element. In this
case f can be chosen to interchange suitably the ~l 2 s in order to make
( f, A) a semi-linear map. On the other hand, for representations in B3
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the automorphism A can be arbitrary and f should be chosen so that
( f, A) is semi-linear.

EXAMPLE. If A permutes B1 and B2 then we choose f mapping iso-
morphically A1 - A2, A4 - A5, A7 - A8, f being the identity on A0, A3,

Notice that in this case, pairwise, ll 1 and ll 2 , ll 4 and ~l 5 , and
A 7 and are of the same rank. Indeed we define f ( ei ) = ei + ml for ei E

When considering special classes in H2«B1, B2 ~; A), with ~l in ð2 or
83 the possibility of choosing A to be a non trivial automorphism pro-
duces more equivalences. These will be listed in Lemmas 5.5 and

5.6.

REMARK. Let B1, B2, B3 be a representation in R2 having the first
and third associated triples equal and the second one different (see
Proposition 2.2). Then and since m2 ~ m3 we have ml =
= m2 = m3 . Thus the representation given by B1, B3 , B2 is semi-equivalent
to B1, B2 , B3 and has the first and second associated triples equal. There-
fore we may assume that the family ð 2 is the disjoint union of two sub-
families of representations, those having the first and second triples
equal (~2,1) and those with the second and third triples equal ( ~2, 2 ).
Thus ð2 = 1 U U2, 2·
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PROOF. (a), (b) and (c) follow by choosing ( f, A) with A permuting
B1 and B2 and f as in the example.

(d) follows by taking ( f , A) as before, except that f ( e1 ) = e2 and
f(e2) = el.

The proofs of ( a ’ )-( d ’ ) are similar.

LEMMA 5.6. In H2«B1, B2); A), with A E R3, we have:

(a) Two classes of the form (0, ... , 0, ~ 1, a 2, a 3, 1 - a 1, 1- d 2, 1- d 3)
r

having the same sum 6 1 + 6 2 + 6 3 are equivalent.

(b) Every class of the form (hj, 0 , ... , 0, d 1, ~, ~ 3, a 4, a 5, a 6) with j =

2, 3 is equivalent to one of the form (j’L1, o , ..., 0, a 1, 3 2, d3, d4, 0, 0).
r

(d) Two classes of the form (hl , h2 , 0 , ... , 0, ~, d 2, ~ 3, 0, 0, 0) having
r

the same sum 6 1 + ð 2 + ð 3 are equivalent.

PROOF. (a) If 6 1 + ð 2 + ð 3 equals 0 or 3, there is nothing to

prove.
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Given two classes a and ~3 with ð 1 + ð 2 + ð 3 = 1, suppose d i = 1 in a
and 3 j = 1 in B. By taking A the automorphism that permutes Bi and Bj
and f the linear isomorphism that maps ll i + 3 H ~l ~ + 3 and

one checks 

(b) By taking A to be the automorphism that permutes B1 and Bj
and choosing a suitable f, we see that the given class is equivalent to one
of the form (hl, 0, ... , 0, d 1, ~, ~ 3, ~ 4, d 5, a s). Thus by Lemma 5.4 (a),
( b ) follows. ~

(c) It follows by choosing ( f, A), where A permutes B1 and B2 and f
is as in the example before Lemma 5.5.

(d) Having in mind that the vector vo = ( h1, h2 , 0 , ... , 0 ) is trans-
formed into A * vo by any semi-linear map ( f, A), it is possible to obtain
all the classes with the same sum 3 1 + d 2 + ð 3, and having A * vo in the
first r coordinates. Therefore, by Lemma 5.1, (d) follows.

Putting together the results in Lemmas 5.1-5.6, we give in L2 and
(~3, a complete set of representatives of the equivalence classes of special
classes corresponding to representations in F1, 9 ð 2 and F3 respectively.
Later we shall prove that in fact two classes in the same set are not

equivalent (except for the equivalences stated on the right of each

line). ,
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There are 8 classes of each type, hence at most 40 classes for a repre-
sentation in the family F1.

two classes having the same

sum , ~1+62) are equivalent;

two classes having the same

sum~ 5i+52 are equivalent;

two classes having the same

sum ð 1 + ð 2 are equivalent.

Hence there are at most 26 classes for a representation in the family
ð2. ·

two classes having the same

sum, (51+~2+~3 are equivalent;

two classes having the same

sum , d 2 + ð 3, are equivalent.

two classes having the same sum,

ð 1 + ð 2 + ð 3, are equivalent.

Hence there are at most 14 classes for a representation in the family
F3.

Now we will show that within each set, the special classes are in-
equivalent. For this, we notice two facts about a Q-isomorphism f from A
to A:

(*) This set is built up considering representations in ~2, 1. There is an anal-
ogous set for representations in 82,2- ·
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5.7. The action of Q on A is Q-diagonalizable. Thus () is Q-equivalent
to a direct sum of Q-characters. Since f is a g-morphism, if o acts on A 0 by
a certain character, then Q acts by the same character.

5.8. By considering Q as an integral representation (not as a Q-repre-
sentation) the following condition can be obtained.

LEMMA 5.8. If f: O-automorphisrrt, then for any subset
S of Z2 EÐ Z2, f induces an automorphism of abelian groups

The proof of this lemma is not difficult and we shall omit it.
In order to show how one can use the conditions imposed on a Q-auto-

morphism we give an illustrative example.

EXAMPLE. Let Q be the representation of Z2 ED Z2 on ZJ given by

where J = (0 1 and let f be a g-automorphism of Z3. By 5.7 it follows
that f (e2 + e3) E e1, e2 + e3&#x3E;. Moreover, by Lemma 5.8, 
E ~ 2 el , e2 + e ), since the class of 61 in Ker (B2 - I)/Im (B2 + I) does not
vanish, while the class of e2 + e3 vanishes in this quotient. Since

Zei ) has order two, i.e., 2 a = 0 Va E H2 (x o ; Zel ) (see Section 3), it
follows that f * ( 0 , ð) = ( 0 , ~ ’ ). The important thing here is that from
( 0 , ~ ), it is impossible to obtain ( 1, ~ ’ ), for ð, 3 ’ E Ze2 In

other words, the classes (1, 3) and (0, d ’ ) are not equivalent.

LEMMA 5.9. Two special classes in ~1 which are of two different
types are not equivalent.

PROOF. The only possible semi-linear maps in this family are of the
form ( f , I). Since I * ( hi ) = hi , Vi, then it is not possible to change the
type of the special class.

LEMMA 5.10. The classes in ~1 are inequivalent.
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PROOF. The classes (hl , h2 , 0 , ... , 0, d1, d2, d3, 0, 0, 0) are not equiv-

alent to each other because of the restrictions in 5.7.

For the classes (hl , 0 , ... , 0, d1, d 2, d 3, 1 - d 1, 0, 0), we can say that

two of them are not equivalent when they have distinct d 2 or 6 3 by 5.7.
When they have the same ð 2 and the same 6 3 but different 6 1 they are
inequivalent by 5.8. The proofs for the types with h2 or h3 in place of h,
are similar.

Finally, for the classes (0, ... , 0, d2, d 3, 1- d 1, 1 - d 2, 1 - d 3) the

inequivalence follows from the fact that two classes having different d i
for some i are inequivalent by 5.8.

5.11. In the cases of the sets 62 and ~3, the inequivalence of all spe-
cial classes listed is proved by entirely similar arguments.

REMARK 5.12. For a representation Q with parameters r ~ 2, mi ~ 1
and li &#x3E; 1 for 1  i  3 there exist exactly:

40 inequivalent special classes if Q is in F1,
26 inequivalent special classes if Q is in 82 and
14 inequivalent special classes if Q is in 83.

The lowest ranks in which such a Q exists are: 11 for 83,12 for 82 and
14 for 

6. - Explicit realization and integral homology.

In this section we will give an explicit realization of the Bieberbach
groups r corresponding to the special classes classified in Section 5, as
subgroups of isometries of Rn, i.e., F c--&#x3E; 0(n) x R’. To do this we begin
by considering a representation in 8 and B1, B2 the matrices associat-
ed to Q. We note that B1 and B2 are in the orthogonal group 0(n). ~

If v E Rn , let Lv denote the translation by v. Often we will identify A
with LA in what follows. For each one of the special classes a E

E B2 ); ll ) listed in the previous section, we will determine bl and
b2 in Rn in such a way that the subgroup of 

is an extension of B2) by A, with extension class a.
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We recall that given I’ an extension of (Bl , B2 ) by Il, the correspond-
ing extension class is determined as follows. Fix a section B2 ) -j 1,
and define the function f:(B1’ B2) x (Bl, B2) ~~l by f(X, Y) =
= s(X) s(Y) The extension class of r is given by [ f ] E
E H2( (B1, B2); A).

Hereafter we pick the following section:

Notice that, with this definition, the corresponding f satisfies f(x, I) =

=f(I, x) = 0 for any B2 ).
Since the cohomology is additive, it suffices to consider the four inde-

composable cases, as in Section 3. So we will consider the function

f: (B1, B2 ~ x B2 ~ -~ ~l ’, where ~l ’ is indecomposable of rank 1 or 2.
In each case we will calculate the values of f in (x , y ) for x , y E

B2 , and we will list them in a table, as in Section 3. It will be
easy to figure out the class [ f ] E H 2((Bl, B2); ~l ’ ), for different choices
of b1 and b2.

We observe that f (Bl , B2 ) = 0 in all cases, because 

= s(B1 ) s(B2 ). In general f(Bi, Bi) = s(Bi) s(Bi) = + The other
values of f are obtained similarly.

Case 1). - Recall that the action of B2 ~ is trivial. The values of f
are
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Notice that bl and b2 must be We conclude that,

(Here h1 and h2 are as in Section 4.)

Case 2). - Recall that B1 = 1, B2 = B3 = -1. The values of f are

We get that,

The cases when B2 = 1, B1 = B3 = -1 and B = 1, Bl = 82 = -1 are
similar.

Case 3). - In this case .
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The values of f are

We conclude that,

In the case when B3 = I, B1= B2 = J, it can be deduced that [f ] is

equal to the previous [ f ].
Finally when B2 = I, B1= B3 = J it can be deduced that [f ] is the

same as in the previous cases but interchanging the roles of b1 and
b2.

Case 4). - There is nothing to be done, since the cohomology vanishes
in this case.

Now, with this information, it is straightforward to determine bl and
b2 , for any given special class a. We shall now exhibit, for each special
class in Section 5, some suitable 61 and b2 . For a E H2«B1, B2); ll ) with
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~l E B1, we have:

REMARK. If h2 appears in the first coordinate of a (resp. h ) in place
of hl , we let the first coordinate of bl equal -1 (resp. 2) and that of b2 equal
0 (resp. 2).

For the classes a E H2 ((B1, B2 ~; ~2 U ~3, b1 and b2 are chosen
in a completely analogous way. In any event we will give explicitly bl and
b2 in all cases, in the next section.

REMARK. We now restrict ourselves, within the manifolds M studied
above, to those having first Betti number zero (,Q 1 (M) = 0 ).
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It is well known that = rank where is the submodule

fixed by G. Furthermore, it is not hard to check that for any o E R, Q acts
without fixed points if and only if r = 0 and 1 = 0. Thus, the correspond-
ing cohomology classes have the form (d 1, d 2, d 3). By Lemma 5.2 there is
only one special class of that type, the class (1, 1, 1). This means that for
each Grepresentation of rank n with r = 0 and 1 = 0, all choices of

bl , such that T = (B1Lbl’ torsion-free, yield isomorphic
Bieberbach groups. This generalizes the uniqueness result proved by an
elementary method in [12] (see Lemma 2.2 in [12]), for Grepresentations
with r = 0, 1 = 0 and k = 0, i.e., those representations considered by Cobb
in [4]. We state this result in the following

PROPOSITION 6.1. Let M and M’ be compact flat manifolds with
first Betti number zero and holonomy group Z2 ED Z2 such that the
holonomy representations Q and Q’ are tr-representations. Hence, M
and M ’ are affinely equivalent if and onLy if o and Q’ are 
lent.

REMARK 6.2. As mentioned above, Proposition 6.1 includes a

uniqueness assertion for the manifolds in the family constructed by
Cobb. It was suggested in [7] that this family might exhaust the Z2 
manifolds with first Betti number zero, however we have seen in [12]
that this is far from being the case. On the other hand the family in [12]
does not yet exhaust this class as can be seen already in dimension 6, by
using the integral representation where p is one of the
two indecomposable representations of Z2 ED Z2 of rank 3, having no fixed
vector.

In order to obtain a full classification of all Z2 ® Z2-manifolds (with
arbitrary first Betti number) one should consider all direct sums of inde-
composable Z2 ® Z2-representations (we recall that Krull-Schmidt theo-
rem holds in this case). We note that a full classification of indecompos-
able representations was obtained by Nazarova (see [9]). Also, Heisler
[6] has computed the cohomology groups of the representations in the
first list, out of the two, given by Nazarova.

Integral Homology.

For each special class in sets ~1-~3 we have constructed a group
F, hence a compact flat manifold, In this part of the
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section we shall use the realizations obtained to determine the first

integral homology group of all these manifolds.
It is well known that H1 (M; Z) n.
We consider r = (y i , Y 2 , ~l ~, where y = B1Lbl’ y 2 = B2 Lb2 and A =

etc., as defined in Section 5.
It is clear, for j = 1 and j = 2, that

We first introduce some notation. Let

M = U M~ , L = U L~ and K = Notice that ... , r~, Mi=
= {r + 1, ..., r + m1}, etc. 

For each i such that r + m  i ~ n, we let i ’ be the index i + 1 or i - 1
with the property that ~ ei , ei , ~ is an indecomposable submodule of A.
Namely

Notice that [yj, L,,] does not depend on the choices of a or b1 and b2.
Moreover, we have:

We denote
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If a is as in (i) it follows that:

Summarizing, T = ~ y 1, Y 2 , el , ... , en ~ and

Hence

where ð = ð 1 + ð 2 + ð 3 and y = max ( 0 , (5-1).
If a is as in (ii), then [ y 1, y~] is the same as in the previous case

and

Hence
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If a is as in (iii) then [y i , y 2 ] is the same as in the previous case;
also

Hence

7. - Table.

In this section we condense the information obtained in sections 5
and 6 in a table. This table will be useful to visualize in some manner all
the cfm’s with holonomy group with the property that the holon-
omy representation is an ~ representation.

For each ~o in the parametrization given in Proposition 2.2, there are
as many cfm’s as inequivalent special classes corresponding to Q. We re-
call that two cfm’s corresponding to different representations in a are
not homeomorphic. Also not all representations of Proposition 2.2 pro-
duce the same number of cfm’s. In fact, some of them do not produce any.
This can be understood by looking at the possible special classes for a
given ~o. We will come back to this in Remark 7.1.

In the first column of the table we give the characterization of the
special class, as in the 

In the second column we put the number of non-homeomorphic cfm’s
for the different selections of d i = 0 or 6 i = 1, writing at the top (resp.
middle, bottom) the number corresponding to representations in Si (re-
sp. (*)~ ~3 ).

(*) The case correponding to representations in B 2, 2 is completely similar
and it is omitted in this table. 

’
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In the third column we write down the vectors b1 and b2 in

Rn as computed in Section 6. The last 21~ coordinates of both vectors will
be omitted since they are always zero.

In the last column we list the torsion part of the first integral homo-
logy group of these manifolds. The free part wili left out, since we know
it is always isomorphic to Z" 1.

REMARK 7.1. If we have a representation O with r = 0, we only need
to consider the first type of special classes in the table. Also we observe
that in order to have at least one cfm associated to this (2, necessarily
mi &#x3E; 1 or li &#x3E; 1, for all 1  i  3. This is so because 6 and 1 - d in the ta-
ble can not both vanish simultaneously.

REMARK 7.2. We note that for the families ð2,1 and by adding
the number of all cfm’s in the table we obtain a number which is bigger
than the actual number given in Remark 5.12. This discrepancy is due to
some repetitions that occur. Indeed, for 83 the classes of type (h2, ... )
and (h3, ...) are isomorphic to the classes of type (hl, ...) according to
Lemma 5.6 ( b ). Similarly, for representations in ð 2, the classes of type
(h2, ...) are isomorphic to those of type (hl, ...) according to Lemma 5.5
(b).

REMARK 7.3. We now indicate a series of steps one can follow, given
a manifold of the kind treated in this paper, to find the homeomorphic
manifold in the table above. If M = with T’ = B’ A’),
then one first should change M to the form M = Rn IT where T =
= (B1 Lbl’ B2 Lb2’ ~1 ~ with B1 and B2 so that the associated representation o
is in S. Now, using the section defined at the beginning of Section 6 one
finds the corresponding special class. Finally one applies, if necessary,
Lemmas 5.1, 5.3 and 5.4 to transform the resulting special class into an
equivalent one in 1 ~ i ~ 3. When (2 is in (resp. one may also

have to apply Lemma 5.5 (resp. Lemma 5.6). At this point, one is in a po-
sition to identify the original manifold M with the one diffeomorphic in
the above table.

REMARK 7.4. We observe that among the ~manifolds classified are
included the two isospectral non homeomorphic manifolds of dimension 5
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introduced in [5]. Indeed they correspond respectively to the parameters
r = 1, m3 = 2, k3 = 1, and m1= m2 = m3 = 1, 13 = 1. Both representations
lie in ð 2, with associated special classes (h3, 1, 0 ) and ( 1, 1, 1, 0 ),
respectively.

REMARK 7.5. By a computation we find that, for low dimensions, the
total number of F-manifolds (classified in this paper) is as follows.

We observe that the three existing 3-dimensional Z2 ®Z2-manifolds
are obtained by considering the following representations in the family
3’ and the corresponding special classes:

The first one is the Hantzsche-Wendt manifold.
In dimension 4, the list in [1] gives 26 manifolds. Out of these, 21 cor-

respond to ~representations, studied in this paper. In the five remain-
ing manifolds, the decomposition of the holonomy representation in-

volves indecomposable representations of rank 3 (in four cases) and 4
(the remaining case).
We conclude by listing the parameters of the 21 ~ manifolds of di-
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mension 4 obtained. They can be easily identified with corresponding
Bieberbach groups in the tables in [1].

We note that for dimension n ; 5, the total number of Z2 EÐZ2-mani-
folds is not known.
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