Rendiconti

SEminario Matematico

 della
Università di Padova

Dieter Held
 Jörg Hrabě De Angelis
 MARIO-OSVIN PAVČEVIĆ
 $P S p_{4}(\mathbf{3})$ as a symmetric (36, 15, 6)-design

Rendiconti del Seminario Matematico della Università di Padova, tome 101 (1999), p. 95-98
http://www.numdam.org/item?id=RSMUP_1999__101__95_0
© Rendiconti del Seminario Matematico della Università di Padova, 1999, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

$P S p_{4}$ (3) as a Symmetric (36, 15, 6)-Design.

Dieter Held $\left(^{*}\right)$ - Jörg Hrabě de Angelis $\left({ }^{*}\right)\left({ }^{\dagger}\right)$ - Mario-Osvin Pavčević $\left({ }^{* *}\right)$

AbSTRACT - In this paper we present a description of the symmetric design with parameters $(36,15,6)$ on which the symplectic group $P S p_{4}(3)$ acts transitively. In particular we give a group theoretical approach to such a design.

1. Introduction and preliminary results.

Let G be the symplectic group $P S p_{4}$ (3) of order 25,920 . It is our objective to prove that G can be viewed as a symmetric ($36,15,6$)-design.

We state some facts about G which can be found in [2] and [1]. With the notation in [2][Lemma 8] we have

Lemma 1. (i) The group G contains precisely four conjugacy classes of elements of order 3 with representatives $\sigma_{1}, \sigma_{1}^{-1}, \varrho=\sigma_{1} \cdot \sigma_{2}$ and $\sigma_{1} \cdot \sigma_{2}^{-1}$. We have $\left|C_{G}\left(\sigma_{1}\right)\right|=\left|C_{G}\left(\sigma_{1}^{-1}\right)\right|=81 \cdot 8, \quad\left|C_{G}(\varrho)\right|=27 \cdot 4$, and $\left|C_{G}\left(\sigma_{1} \cdot \sigma_{2}^{-1}\right)\right|=27 \cdot 2$. A Sylow 2-subgroup of $C_{G}\left(\sigma_{1}\right)$ is a quaternion group, and a Sylow 2-subgroup of $\boldsymbol{C}_{G}(\varrho)$ is a four-group.
(ii) Elements of order 9 in G are roots of 3-central elements of order 3 in G.
(*) Indirizzo degli AA.: Fachbereich Mathematik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany.
$\left.{ }^{(}{ }^{\dagger}\right)$ Died on June 2, 1997.
(**) Indirizzo dell'A.: Zavod za primijenjenu matematiku, Fakultet elektrotehnike i računarstva, Unska 3, HR-10000 Zagreb, Croatia.
(iii) A Sylow 5-normalizer in G is a Frobenius group of order 20.
(iv) G contains a maximal subgroup S isomorphic to Σ_{6}. The normalizer of S in $\operatorname{Aut}(G)$ is isomorphic to $\Sigma_{6} \times Z_{2}$.

Since we are interested in a transitive action of G on 36 objects we will have a closer look to subgroups of G which are isomorphic to Σ_{6}.

Lemma 2. Let S be a maximal subgroup of G isomorphic to Σ_{6}. Let $R \neq S$ be a subgroup of G which is conjugate to S in G. Then,
(i) the index of S in G is equal to 36 ,
(ii) $R \cap S$ is isomorphic to either $Z_{2} \times \Sigma_{4}$ or $\Sigma_{3} \times \Sigma_{3}$,
(iii) S acts on $\Omega=\operatorname{ccl}_{G}(S)$ in orbits of length 1, 15 and 20 .

Proof. Obviously, (i) holds. From $|R S|=|S|^{2} \cdot|R \cap S|^{-1} \leqslant|G|$ we get $|R \cap S| \geqslant 20$. If $|R \cap S|=20$, we have $|S: R \cap S|=36$. Thus, S acts transitively on Ω which is a contradiction to the fact that S and R can not be conjugate under the action of S. Thus, we have $|R \cap S|>20$. We split the following argument into two cases.

Case 1. Here, 5 divides the order of $|R \cap S|$. Since both R and S contain a Sylow 5 -normalizer of G, we get that a Frobenius group of order 20 lies in $R \cap S$. Now, $|R \cap S|>20$ yields that $R \cap S$ is isomorphic to Σ_{5}. Note that the only proper subgroups of $S \cong \Sigma_{6}$ which contain a Frobenius group of order 20 as a proper subgroup are isomorphic to Σ_{5}. We get $|R \cap S|=120$, i. e. $|S: R \cap S|=6$ in this case.

Case 2. Here, 5 does not divide the order of $R \cap S$. Since $|R \cap S|>$ >20, and since $S \cong \Sigma_{6}$ does not contain a subgroup of index 5 , we have $|R \cap S| \in\left\{2^{4} \cdot 3,2^{3} \cdot 3,2^{3} \cdot 3^{2}, 2^{2} \cdot 3^{2}\right\}$, i.e. $|S: R \cap S| \in\{15,30,10,20\}$. Furthermore, we get that $R \cap S \cong Z_{2} \times \Sigma_{4}$ if $|R \cap S|=2^{4} \cdot 3$, and $R \cap S$ is 3 -closed if and only if $|R \cap S|=2^{3} \cdot 3^{2}$ or $|R \cap S|=2^{2} \cdot 3^{2}$.

Case 1 and 2 yield that orbits of S on Ω are of length $1,6,10,15,20$, or 30. Since $|\Omega|=36$ an easy computation shows that S has precisely one orbit of length 1 , precisely one orbit of length 15 and either 2 orbits of length 10 or one orbit of length 20 . In particular, there are precisely 20 elements in Ω which intersect S in a 3 -closed subgroup.

Let T be a subgroup of G which is conjugate to S in G. Assume that $T \cap S$ is 3 -closed. Then, S is conjugate to T via the normalizer of
$D=\boldsymbol{O}_{3}(S \cap T)$ in G. Thus, $\mid \boldsymbol{N}_{G}(D)$: $\boldsymbol{N}_{S}(D) \mid$ is the number of conjugate subgroups of S in G containing D. Obviously, S contains precisely 10 Sylow 3 -subgroups. Hence, D lies in precisely 3 elements of Ω. Thus, $\left|N_{G}(D)\right|=3 \cdot\left|\boldsymbol{N}_{S}(D)\right|=2^{3} \cdot 3^{3}$. Assume $\boldsymbol{C}_{G}(D)=D$. Then $\left|N_{G}(D) / C_{G}(D)\right|=2^{3} \cdot 3$, and by the structure of $G L_{2}(3)$ we have $\boldsymbol{N}_{G}(D) / C_{G}(D) \cong S L_{2}(3)$. But a Sylow 2 -subgroup of $S L_{2}(3)$ is a quaternion group and $N_{S}(D)$ contains a subgroup isomorphic to D_{8}. Thus, we have $\left|\boldsymbol{C}_{G}(D)\right|=3^{3}$. Elements of $D^{\#}$ are not 3-central in G, since an involution of S acts invertingly on D. Since elements of order 9 are roots of $3-$ central elements of order 3 in G, we get that the centralizer of D in G is elementary abelian of order 27 . Let P be a Sylow 2 -subgroup of $\boldsymbol{N}_{S}(D)$. Then, $P \cong D_{8}$. By the lemma of Maschke we have $\boldsymbol{C}_{G}(D)=D \times X$ with $X^{P}=X$. By lemma 1 (i) we see that P does not centralize X. Hence, $X^{\#}$ does not contain any 3 -central element of G. It follows that $\left|\boldsymbol{C}_{G}(X)\right|$ is a group of order 27.4 which has a four-group as a Sylow 2 -subgroup. Obviously the three conjugates of S, say S, S_{1}, S_{2}, containing D are conjugate via X. Thus, we have $S \cap S_{1} \cong S \cap S_{2} \cong \Sigma_{3} \times \Sigma_{3}$ by the structure of $\boldsymbol{N}_{G}(D)$. The assertion follows.

2. The design.

Let G, S, Ω be as in section 1 , and $\Omega=\left\{S_{0}, S_{1}, \ldots, S_{15}, S_{16}, \ldots, S_{35}\right\}$ such that $S=S_{0}, S_{i} \cap S \cong Z_{2} \times \Sigma_{4}$ for $1 \leqslant i \leqslant 15, S_{i} \cap S \cong \Sigma_{3} \times \Sigma_{3}$ for $16 \leqslant i \leqslant 35$. Denote by \bar{S} the set $\left\{S_{1}, \ldots, S_{15}\right\}$, and for $S_{i}=S^{g_{2}}, g_{i} \in G$, let $\bar{S}_{i}=\left\{S_{1}^{q_{i}}, \ldots, S_{1}^{g_{5}}\right\}, 1 \leqslant i \leqslant 35$.

Define an incidence structure $\mathcal{O}=(\mathcal{P}, \mathfrak{B}, \mathfrak{J})$ by $\mathscr{P}=\Omega, \mathfrak{ß}=\{\bar{T} \mid T \in$ $\in \Omega\}, \mathcal{J}=\{(R, \bar{T}) \mid R, T \in \Omega, R \in \bar{T}\}$.

Theorem 1. The incidence structure \odot is a symmetric ($36,15,6$)design on which $\operatorname{Aut}(G)$ acts as an automorphism group.

Remark. © is uniquely determined by $\operatorname{PSp}_{4}(3)$. It is possible to show that $\operatorname{Aut}(\mathscr{D})$ is isomorphic to $\operatorname{Aut}(G)$.

Proof. Since Aut (G) acts on Ω we have that $\operatorname{Aut}(G)$ is an automorphism group of \mathfrak{O}. Obviously, $|\mathscr{P}|=|\mathcal{B}|=36$, and each block, i.e., element of \mathscr{B}, contains 15 points, i.e., elements of \mathscr{P}. Thus, we only have to show that the intersection of two different blocks contains precisely 6 points.

Consider \bar{S}. Since S contains precisely 15 subgroups isomorphic to $Z_{2} \times \Sigma_{4}$, we get that S_{1}, \ldots, S_{15} are uniquely determined by their intersection with S. Consider intersections of conjugate subgroups isomorphic to $Z_{2} \times \Sigma_{4}$ in Σ_{6}. Such an intersection is isomorphic to $Z_{2} \times \Sigma_{3}$ or E_{8}. Since $\Sigma_{3} \times \Sigma_{3}$ does not contain an elementary abelian group of order 8, we get that there are $\left|Z_{2} \times \Sigma_{4}\right| /\left|E_{8}\right|=6$ elements of \bar{S} which intersect S_{1} in a subgroup isomorphic to $Z_{2} \times \Sigma_{4}$. Thus, $\left|\bar{S} \cap \bar{S}_{1}\right| \geqslant 6$. Note that $S \cap S_{1} \cong Z_{2} \times \Sigma_{4}$ has precisely three orbits on \bar{S} of length $1,6,8$, respectively. If $\left|\bar{S} \cap \bar{S}_{1}\right|>6$, then $\left|\bar{S} \cap \bar{S}_{1}\right|=14$. Thus, $\left\langle S, S_{1}\right\rangle$ stabilizes the set $\{S\} \cup \bar{S}=\left\{S_{1}\right\} \cup \bar{S}_{1}$ which is a contradiction to $\left\langle S, S_{1}\right\rangle=G$. Thus, $\left|\bar{S} \cap \bar{S}_{i}\right|=6$ for $1 \leqslant i \leqslant 15$.

For $1 \leqslant i \leqslant 15$ there are precisely 8 elements in $\left\{S_{16}, \ldots, S_{35}\right\}$ which lie in \bar{S}_{i}. Since S acts transitively on $\left\{S_{16}, \ldots, S_{35}\right\}$, we have that $\left|\bar{S}_{j} \cap \bar{S}\right|=\left|\bar{S}_{k} \cap \bar{S}\right|$ for any $j, k \in\{16, \ldots, 35\}$. Thus, we have $\left|\left\{S_{16}, \ldots, S_{35}\right\}\right| \cdot\left|\overline{S_{j}} \cap \bar{S}\right|=|\bar{S}| \cdot 8$, hence $\left|\overline{S_{j}} \cap \bar{S}\right|=15 \cdot 8 / 20=6$, for $j \geqslant 16$. We have shown that $\left|\overline{S_{j}} \cap \bar{S}\right|=15 \cdot 8 / 20=6$, for $1 \leqslant j \leqslant 35$. The transitivity of G on Ω completes the proof.

REFERENCES

[1] J. H. Conway - R. T. Curtis - S. P. Norton - R. A. Parker - R. A. Wilson, Atlas of Finite Groups, Oxford (1985).
[2] Z. Janko, A Characterization of the finite simple group $P S p_{4}(3)$, Canadian J. Math., 19 (1967), pp. 872-894.

Manoscritto pervenuto in redazione il 10 maggio 1997.

