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Homogeneous Totally Real Submanifolds
of Complex Projective Space (*).

CRISTIÁN U. SANCHEZ (**) - ANA L. CALÍ (***) - JOSÉ L. MORESCHI (***)

ABSTRACT - This paper is devoted to the study of a family of totally real submani-
folds of complex projective space CP n . This is the family of the so called R-
spaces or real flag manifolds which have very natural immersions into certain
complex projective spaces. The main result determines the geometric proper-
ties that characterize these immersions.

1. - A natural immersion.

Every R-space (real flag manifold) M n has a natural totally real im-
mersion into a complex projective space This immersion arises

naturally from the canonical embedding associated to the R-space. Let
us recall that an R-space M n, by definition, has a canonical embedding
into defined as follows. Let g be a real semisimple Lie algebra
without compact factors, f a maximal compactly embedded subalgebra of
g and g = f Q9 p the Cartan decomposition of g relative to ~. If we denote
by B the Killing form of g then p can be considered a Euclidean space
with the inner product defined by the restriction of B to p. Let G =
= Int ( g ) be the group of inner automorphisms of g; whose Lie algebra
may be identified with g. Let K be the analytic subgroup of G corre-
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sponding to f; then K is compact and acts on p as an isometry group. The
R-space M is the orbit of a non zero vector E E p i. e. M = AdG (K) E . A
particular case of this situation is that of the complex flag manifolds (see
for instance [12]) where one takes a compact semisimple Lie algebra u
and consider g = uC = u E9 iu as a real semisimple Lie algebra. Then
u E9 iu is a Cartan decomposition of g [5] [p. 185] and U = Int (u) acting
on iu by the adjoint representation has orbits which are complex flag
manifolds.

Let o : M n ~ ( ~ , B ) be the canonical embedding of an R-space. We
may consider that it is isometric by taking on M n the induced metric. It
is clear that the image of the embedding Q lies on a sphere. This defines
a new embedding

where n + q + 1 is the dimension of p. We may take now the induced
immersion

which followed by the natural embedding Q: yields an
immersion

which obviously is totally real.
In the present paper we determine the geometric properties that, in

terms of the second fundamental form, characterize these immer-

sions.

One of the motivations for this work is a result mentioned in [3]
(specifically Theorem C in page 354) where the authors study minimal
totally real submanifolds of CP~ obtaining a nice characterization of
them in terms of properties of the second fundamental form of the im-
mersion under a restriction on the Ricci curvature.

Another motivation is the known characterization of R-spaces as sub-
manifolds of R with canonically parallel second fundamental form [8].

The paper is organized as follows. In Section 2 we find the relevant
geometric properties of the immersion cp defined in (3). Section 3 con-
tains the proof of the fact that these properties determine the totally re-
al immersion cp .
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2. - Geometric properties of the immersion cp.

We describe now the fundamental properties of the immersion cp.

THEOREM 1. The second fundamental form a of the isometric im-
mersion cp has the following properties:

i) a is canonically parallel,

ii) If J denotes the complex structure on cpn + q at any E

E cp(M) then

PROOF. It is known, [8], that the canonical embedding (2 of the mani-
fold M n into = l~ n + q + 1 described above, has canonically parallel sec-
ond fundamental form in the sense of [9] with respect to any one of the
possible canonical connections that can be defined on M n .

Recall that a linear connection V’ on M n is said to be canonical if it

satisfies the following properties

ii) V~D = 0 , where V is the Riemannian connection of the induced
metric (.,.) on M n and 

With the canonical connection V’ on M n we can define as in [9] the
canonical covariant derivative of the second fundamental form a 0 of
the embedding e by the formula

We say that a o is canonically parallel if

Let a 1 be the second fundamental form of the embedding Q 1 defined
in (1) and let a 2 be that of (2). It is easy to see that = 0 im-

plies 1 ) = 0 which in turn immediately yields (Vx a 2) = 0 . Since Q is
a totally geodesic embedding we have proved the first part of the

proposition.
Let us prove (ii). We do this in two steps. Let us assume first that M "

is a complex flag manifold and let Q: g be one of its canonical em-

beddings. There exists on M n an integrable almost complex structure J1
(see for instance [1]) which commutes with the shape operators A~ of the



86

imbedding o (see [10] and references therein) i.e. for each X E Tp (M),
and p e M "

Then the second fundamental form a 0 satisfies

and since

where h is a real valued symmetric bilinear form and ~ is a locally de-
fined normal vector field, we clearly have

In turn a 2 and a satisfy the same equalities. On the other hand, since the
immersion cp is totally real, its second fundamental form a has to satisfy
the following identity where J is the complex structure in the complex
projective space CP’ (see for instance [7, p. 431])

Then we have

because a(X, J1 X) = 0, VX e Tp (M) and therefore the identity (ii) holds
in this case.

Let us consider now the case in which M n is a real flag manifold (i.e.
an R-space) which is not a complex flag manifold. We have then the
data associated to the R-space M n and its canonical imbedding namely a
real semisimple Lie algebra g without compact factors, f a maximal com-
pactly imbedded subalgebra of g and g = f Q3 p the Cartan decomposition
of g relative to f. Let B denote the Killing form of g; then p can be con-
sidered a Euclidean space with the inner product defined by the restric-
tion of B to ~. Let G = Int(G) be the group of inner automorphisms of g.
We may identify g with the Lie algebra of G. Let K be the analytic sub-
group of G corresponding to f; K is compact and acts on p as a group of
isometries. The R-space M n is the orbit of a non zero vector i.e.

M=Ad(K)E.
Let ac p be a maximal abelian subspace; we may assume E E a

[5, p. 247]. Let us extend a, to a Cartan subalgebra b = t Q3 a . Consider
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the complexification Qc of g and let cv be the corresponding conjugation.
Since g = ~ Q9 p is a Cartan decomposition there exists a compact real
form gu of Qc such that

Let Gc be the complex, simply connected, semisimple Lie group asso-
ciated to the complex Lie algebra Qc and let G1 and Gu be the analytic
subgroups of Gc corresponding to the subalgebras g and gu respectively.
They are closed in G, by [5, p. 152, 4, (ii)]. Let K1 be the analytic sub-
group of Gc corresponding to t , clearly K1 c G1 n Gu and Ad: G1 - G is an
analytic homomorphism onto G such that AdG, (K1 ) = K.

The manifold c gu is again our R-space M because the
representations of K1 in p and ip are equivalent. By [5][p. 180], if X, Y E
e p then

and so, if we take on ip the Euclidean metric induced by - Bu then M n
and are isometric.

Let M, = this is obviously a complex flag manifold,
contains M and, if we consider on M, the Riemannian metric induced by
the inner product on gu defined by - Bu, it is clear that M n is isometri-
cally embedded in M~ .

Our construction of the immersion not changed if
we use io : instead of g : M~2013&#x3E;p. Now we can associate to cp an
immersion cp’: defined as the bottom line in the next diagram
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where both spheres have radius . In fact M =

n Me and cp = (cp elM). We keep the notation above (a 1 is the second
fundamental form of Q 1, or a 2 that of ~0 2 , etc.) we just add a «c» to
indicate the corresponding second fundamental forms for Mp. Let y de-
note the second fundamental form of M in M~ .

Then, for X , we have

and hence

Then, for and the complex structure J in CP(S( gu», we
have that

In view of the fact that (ii) holds for complex flag manifolds we have
~ a ~ (X , X), JX) = 0 and since M, is totally real in CP(S(gu», it is clear
that (y(X, X), JX) = 0. Therefore we obtain

and the proof of the theorem is complete.

3. - The characterization.

In this section we prove that the conditions of Theorem 1 essentially
determine the immersion cp. In fact we have

THEOREM 2. Let M n be a simply connected, compact, Riemannian
manifold with a canonical connection and f : an isometric
immersion which satisfies the following conditions.

i) f is totally real.

ii) The second fundamental form a of the immersion f is canoni-
cally parallel (V’a = 0).

iii) If J is the complex structure on CP n + q then

Then Mn is a real flag manifold (R-space) and there is a vector E e p
such that and f is of the form 
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PROOF. The proof will be divided into several lemmas.
Let us take a point p E M ~ which we shall keep fixed for the rest of the

proof. We shall use the following notation.

is the first normaL space at p and

the first osculating space at p. Also will denote the orthogonal
complement of in Since M is totally real in cpn+q we
have J(Tp(M» c .

As it is well known, the way to construct symmetric subspaces (i.e.
totally geodesic submanifolds) of a symmetric space, such as 
is to consider a Lie triple system in the tangent space at a point
p E .

The following lemma is a modification, to our conditions (Vc a = 0 in-
stead of Va = 0), of [6, p. 101, 13].

LEMMA 3. Under the conditions of Theorem 2, ifR denotes the cur-
vature tensor in CP n + q ( c ) then

PROOF. Since f is totally real, (A) follows from [2, p. 260, 3.1]. To
prove (B) we take X , H E Np (M) and; E Np (M) 1.. Clearly
Ai --- 0 on Tp (M).

Let us prove that We may assume that

H = for some U, V E then

because V.k a = 0 . This shows that (X , Y) H may be written in terms
of elements belonging to and then R 1 (X , 

Now

and therefore R(X, Y) H E Op (M).
Now for Z E we have
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and by part (A) the first term is zero so R(X, Y) H E Np(M) and
part (B) is proved.

LEMMA 4. Under the conditions of Theorem 2, at the chosen point
p E Mn, Jp(Tp(M)) C Np(M)+.

For a totally real
immersion, the second fundamental form satisfies the following identity
[7, p. 431]. For every X, Y, Z E Tp(M),

Then the three-linear function Y), JpZ) is symmetric on

Tp(M). By condition (iii) of Theorem 2 it vanishes on the diagonal of

Tp (M) x Tp (M) x Tp (M) and hence it is identically zero. This clearly
means that

as was to be proven. -

LEMMA 5. Under the hypothesis of Theorem 2

PROOF. According to Lemma 4 we have 
The proof of the present lemma is formally anaLogous to that of

[7, p. 433]. The proof is omitted.

LEMMA 6. Under the hypothesis of Theorem 2

PROOF. Let X, Y, Z be vector fields tangent to M~ and H a section
of N(M). Since is symmetric we have H) Y = 0 .
Then
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We may assume, as above, that H = a( U, ~. Then, since V~ a = 0, we
have

and therefore

We may proceed then as we did with H and hence

We conclude that

which yields (E).
Now we prove (F). Let X, Y be vector fields on M n and H, W, sec-

tions of N(M). We have (VyR)(X, H) W = 0 and then

As in the proof of (E) we may show that V~ H and V~ W belong to
N(M) and therefore
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We may write R(X, H) W = U + ~ with U E T(M) and

therefore

which clearly belongs to Op (M).
It follows that R (a(X , Y), this proves (F) and com-

pletes the proof of the lemma.

The contents of Lemmas 3, 5 and 6 clearly yield the following

LEMMA 7. Under the hypothesis of Theorem 2, the first osculating
space Op (M) is a Lie triple system in 

Then there exists a totally geodesic submanifold that

Tp(L) = Op (M). The submanifold L is complete.
Since c &#x3E; 0 we have two possibilities for L: either

By Lemma 4 the manifold L can not be of type cpn+s(c).
We have to show now that f (M) c L and to that end we need

THEOREM 8. Let be an isometric immersion of a compact
connected Riemannian manifold M into a Riemannian manifold M1
and assume that:

i) M admits a canonical connection.

ii) The second fundamental form of the immersion f is canonical-
ly parallel i. e. Vc a = 0 .

Then for each point p E M and each unitary vector X E Tp (M),
if y is the VC-geodesic on M n defined by X , then c(t) = f ( y ( t ) ) is
a W-curve in Ml , [4, p. 57], of osculating 1 such
that for j = 1, ... , r the j-th element of the Frenet frame can be
urritten as V ( t ) = + where Pj and Qj are the tangent and
normal components respectively and satisfy

REMARK. This is a generalization of a part of Theorem 13 of
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[11] which is proven in that article for The extension of

the proof given there, to the general case, is straightforward.
Now the fact that VC a == 0 implies that Qi(0), ... , Qr ( 0 ) E Np (M) and

therefore Vi(0), ... , E Tp (L). Let b(t) be the Frenet curve on L of
osculating rank r with initial conditions c(0), Vi(0),..., and the
constant curvatures ... , kr of the W-curve c(t). The curve b(t) is a
Frenet curve in the ambient space because L is totally
geodesic in cpn+q(c). But, since c( t ) and b(t) satisfy the same equations
and have the same initial conditions in cpn+q(c) we have c( t ) = b(t), Vt .
Since in a manifold with a linear connection every pair of points can be
joined by a broken geodesic, we have proved

We observe that for each q E M n we have Tq (L) = Oq (M) because due
to Lemma 9 we have and since the dimension of Oq (M) is
constant along M n (recall that V’a = 0) and at the chosen 
we have Tp(L) = Op (M) we have that they coincide everywhere in M n .

We have

Since Mn is simply connected we have a lifting

and since M n has canonically parallel second fundamental form in

cpn+q(c) and Rpn+s(c/4) is totally geodesic in cpn+q(c) then M n has
canonically parallel second fundamental form in Rpn+s(c/4) and hence
the immersion Il has the same property. It is easy to show that in this
situation the immersion u considered as an immersion in R n + s + 1 has
canonically parallel second fundamental form. In view of [8, p. 195] the
proof of Theorem 2 is now complete.

REMARK. If the manifold Mn is not simply connected we need an extra
condition to get the existence of the lifting. This condition is obviously

_ ~ 1 ~ in .7l1 (RP n + S). To have this we may ask, instead of the
simple connectedness of M’, that the immersion f be such that:
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For every totally geodesic submanifold N c cpn+q such that c

cNccpn+q
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