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Approximation of Functions of Two Variables

by Some Operators in Weighted Spaces.

B. FIRLEJ - M. LESNIEWICZ - L. REMPULSKA (*)

ABSTRACT - We study some linear positive operators of the Szasz-Mirakjan
type in polynomial and exponential weighted spaces of continuous functions of
two variables. We give theorems on the degree of approximation, and theo-
rems of the Voronovskaja and Bernstein type for these operators. Similar re-
sults for functions of one variable are given in [3]-[8].

1. - Notation.

1.1. We take the following notation: N : _ ~ 1, 2, ... ~, No : N U 10
Ro : _ [ o , + ~ ), Ro = Ro x Ro and, for p E No and x E Ro , let

For fixed pi , No let

and let be the space of all real-valued functions f defined on Ro
such that wpl , p2 ( ~ , ~ ) f ( ~ , ~ ) is uniformly continuous and bounded on Ro
and the norm is given by

with the norm (3) is called the polynomial weighted space
([1]).

(*) Indirizzo degli AA.: Institute of Mathematics, Poznan University of Te-
chnology, Piotrowo 3A, 60965 Poznan, Poland.
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For feel; PIt P2 we define the modulus of continuity

where d h, a f(x, y) = f(x + h, y + 3 ) - f(r , y). Moreover, for fixed

m, P2 E No, let C!!, PIt p~ be the space of all functions fe Ci ; having
the partial derivatives of the order ~ m belonging also to C1;Pl,P2.

1.2. Similarly as in [2] we define the exponential weighted space
C2; ql, q2. Let for a fixed q &#x3E; 0

and, for fixed q1, q2 &#x3E; 0, let

We denote by C2; ql, q2’ qi , ~2 ~ 0, the space of all real-valued functions f
defined on Ro for which vql , q2 ( ~ , ~ ) f ( ~ , ~ ) is uniformly continuous and
bounded on Ro and the norm is given by

Analogously as above we define the modulus of continuity C2; ql, q2;
., .) and the class C2"t ql, q2.

1.3. In this paper we introduce the following operators in the space
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for all and (x, y ) ER6, where

and cosh x, sinh x, tanh x are the elementary hyperbolic functions.
From (8)-(11) we deduce that m , n E N , n E N, i =1, 2 , are lin-

ear positive operators well-defined in every space and ~‘2; ql, q2. *
Moreover,

In Section 2 we shall give some auxiliary properties of In Sect.
3 we shall give some approximation theorems, the Voronovskaja theorem
and the Bernstein inequality for these operators.

In this paper we shall denote by lVlk ( a , b), k = 1, 2, ... , the suitable

positive constants depending only on indicated parameters a, b .

1.4. The operators are some analogues of the operators 
considered for function f of one variable in the papers [3]-[8], i.e.

x E Ro , n E N. The operators are examined in [3]-[8] for functions
blonging to a polynomial or exponential weighted space i = 1, 2 ,
were introducend in [3]; Llil, i = 3 , 4 , were defined in [5]).
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By (10), (11) and (13)-(16) we have

2. - Auxiliary results.

2.1. First we shall give some properties of the operators proved
in [3]-[8].

LEMMA 1 ([3], [5]). For all n E N, X E Ro and 1 ~ i ~ 4 we have

LEMMA 2 ([7]). For every fixed xo E Ro there exists a positive con-
stant M1 (xo ) such that for all n E N and 1 ; i ~ 4

LEMMA 3 ([7]. For every fixed xo e Ro we have

LEMMA 4 ([3], [5]). For every No there exist positive con-
stants M2 (~ro ) and M3 (~ro ) such that for all x E Ro , n E N and 1 - i - 4
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LEMMA 5 ([4], [6]). For every fixed q &#x3E; 0 and r &#x3E; q there exist posi-
tive constants r), k = 4 , 5, and a natural number no &#x3E;
&#x3E; q(ln (rlq) )-1 such that for all n &#x3E; no, x E Ro and 1 ; i ~ 4

LEMMA 6 ([8]). For every fixed p, s E No there exist positive con-
stants M6 ( s ) and M7(p, s ) such that for all n E N we have

LEMMA 7 ([8]). For every fixed s e No and r &#x3E; q &#x3E; 0 there exist a

positive constant M8 (q, r, s) and a natural number no &#x3E; 

such that for all n &#x3E; no

2.2. In this part we shall give some basic properties of the operators
From (8)-(16) we deduce that 

for all (x, y) and m, n E N.
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Applying Lemmas 1-7 and (18), (19) and (1)-(6), we immediately ob-
tain the following two lemmas.

LEMMA 8. For every fixed Pl, E No there exists a positive con-
stant P2) such that for all m , n E N and i = 1, 2

Consequently,

for every f E Cl ; P2’ m , n E N and i = 1, 2 . This inequality and (8)-( 11 )
show that m , n E N, i = 1, 2 , is a linear positive operator from the
space C1; PIt P2 into C1; P2’ P2 E NO -0

LEMMA 9. For every fixed q1, q2 &#x3E; 0 and r1 &#x3E; q1, r2 &#x3E; q2 there exist
a positive constant M 1b --- Mlo ( ql , q2 , r1, r2 ) and natural numbers mo
and no ,

such that for all m &#x3E; mo , n &#x3E; no and i = 1, 2

Consequently, for every f E C2 ; ql , q2, m &#x3E; mo , n &#x3E; no and i = 1, 2 , we
have

From this and by (8)-(11 ) it follows that i =1, 2 , is a linear posi-
tive operator from the space C2 ; q1, q2 into C2 ; rl , r2 provided that m &#x3E; mo
and n &#x3E; no .

Applying the above lemmas, we shall prove the following
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LEMMA 10. Suppose that (xo, Yo) is a fixed point in R6 and p is a
given , function with some space PI’ and cp(xo, 2/o) = 0 .
Then

PROOF. Let i = 1. By (8) we have for every n E N

We shall prove that lim A(xo, yo ) = 0 = lim yo ). First let xo &#x3E; 0

and yo &#x3E; 0. Choose e &#x3E; 0. By the properties of cp there exist two positive
constant M11 and 6 = 3(E) such that

where M9 = ~ro2 ) is a fixed positive constant given in Lemma 8.
By (23), (2), (13) and Lemma 4 we get
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which gives lim yo ) = 0 . In the case Bn we write

Using (24) and Lemma 8, we get

Since 1(2k + 1 ) /n - yo I a 3 implies 1 ~ (( 2 k + 1 ) /n - yo )2 ~ - 2, so we get
by (23), (2) and (18)

Using Lemma 4, we obtain for n E N
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Analogously we obtain

It is obvious that for a fixed ( xo , yo ) E Ro and for given positive numbers
~ ð, Mk(P1, ~2 ) with 12 ~ k ~ 14 there exist natural numbers n1, n2 , n3
such that

Hence there exists a natural number n4 , n4 ~ n2 , such that

which implies

i.e. lim yo ) = 0 . Combining these, we obtain (21) for i = 1 and

xo &#x3E; 0 , yo &#x3E; 0 from (22). Now let = 0. From the assumption on cp
and from (10), (11) it follows that

and for

If xo &#x3E; 0, yo = 0, then 0 ) = 0 and
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for Now arguing as in the case yo ) with we obtain

for every (xo, yo) such that = 0 .

Thus the proof of (21) for i = 1 and for every fixed ( xo , yo) E R2 is
completed.

The proof of (21) for i = 2 is identical.
Similar we can prove the following

LEMMA 11. Suppose that (xo, yo) is a fixed point in R5 and cp is a
given function belonging to some space C2; ql, q2’ q1, q2 ~ 0, and

cp(xo, yo ) = 0. Then the assertion (21) holds.

3. - Main results.

3.1. In this section we shall estimate the degree of approximation of
functions belonging to Cl; Pl, P2 or C2; ql, q2 by the operators Tml iln -

THEOREM 1. Suppose that with some Then

there esists a positive constant M15 (PI, ~2 ) such that for all (x, y) E RO 2
m, nEN and i = 1, 2

PROOF. We shall prove (25) only for i = 1 because the proof of (25)
for i = 2 is analogous. Let i = 1 and let (x, y) be a fixed point in R5.
Then, for every (t, z ) E R20 and g E C11;p1,p2, we can write

From this and by (12) we get for m, n E N
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and consequently

By (3) it follows that

and analogously

which by (1), (2), (8) and (18) imply
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Using the Holder inequality, Lemma 1 and Lemma 4, we get by (13), (15)
and (17)

and analogously

Consequently, for m, n E N, we obtain

From these inequalities and (26), we obtain (25) for m, n E N, (x, y) ER6
and i =1. Thus the proof is completed.

Arguing as in the proof of Theorem 1 and applying Lemma 5, we can
prove the following

THEOREM 2. Suppose that g E C2; q2 with some q1, q2 &#x3E; 0 and

r1 &#x3E; q1, r2 &#x3E; q2 . Then there exist a positive constant M2o =
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* M2o (q1, q2 , r1 r2 ) and natural numbers mo and no satis, fying the condi-
tions (20) such that for all ( x , Y) E Ro , m &#x3E; mo , n &#x3E; no and i = 1, 2

Applying the above theorems, we shall prove the main two theo-
rems.

THEOREM 3. For every fixed pi, P2 E No there exists a positive con-
stant M21 (PI, P2) such that for ( x , 
and i = 1, 2 there holds true

PROOF. be Steklov means of defined by
the formula

From this it follows that
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which imply fh, 6 Eel; Pl, P2 for every fixed h, 6 &#x3E; 0 and moreover

By (8)-(12) and (28)-(31) we can write

for every fixed ( x , y ) ER6, m , &#x3E; 0 and i = 1, 2 .
Using Lemma 8 and (29), we get

By Theorem 1 and (29)-(31) we have

Hence, from (32) it follows that

Now, for every fixed (x,Y)ER6, m, n E N and i = 1, 2, setting
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h = (x + 1 )/m and 6 = (y + 1 )/n we obtain the desired estima-
tions (27). m

THEOREM 4. Suppose that f E C2; q1, q2 with some ql, q2 &#x3E; 0 and let

rl &#x3E; ql , r2 &#x3E; q2 . Then there exist a positive constant M2*3 =-
- M23 ( ql ~ 9 q2 , r1, r2 ) and natural numbers mo and no satisfying the condi-
tions (20) such that for all ( x , y ) r= Ro 2 9 m &#x3E; mo , n &#x3E; no and i = 1, 2

PROOF. Analogously as in the proof of Theorem 3 we use the Steklov
means fh, a of f E C2; ql, q2 defined by (28). By (5)-(7) and (28) and by our as-
sumptions, we have

for h , 3 &#x3E; 0. Arguing as in the proof of Theorem 3 and using Lemma 9
and (34)-(36), we obtain for ~~&#x3E;0 and
I = 1 , 2

where M24 = M24 (ql ~ Q’2 ~ r1, ~2 ) = const &#x3E; 0. Setting h = V(X +-, ) /M and
6 = ( y + (as in the proof of Theorem 3), we obtain the desired in-
equality (33). o

Theorem 3 and Theorem 4 imply the following

COROLLARY 1. wish some Pl, P2 E NO
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and qi , q2 &#x3E; 0. Then for every (x, y) ER6 and i = 1, 2

Moreover, the assertion (37) holds uniformly on every rectangle 0 ~ x ~

3.2. In this part we shall give the Voronovskaja type theorem for the
operators 

THEOREM 5. Assume that with some Then

PROOF. Let (xo, yo) be a fixed point in 7~. Then, by the Taylor for-
mula for fECP,pl’P2’ we have for every ( t , z ) ERg.

From this and by (12) we get for every n E N and i = 1, 2
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But by (17)-(19) we have for k E N

From these and by Lemma 1 and Lemma 3 we get

Next, using the H61der inequality, we have for n E N and i = 1, 2

It is easily verified that for the function cp( ~ , ~ ) = 1/J 2 ( ., .) we can apply
Lemma 10. Hence

The linearity of and (17)-(19) and Lemma 2 imply that there exists a
positive constant yo) such that for every n E N and i = 1, 2
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From the above it follows that

Collecting these results, we immediately obtain (38)..

Reasoning as in the proof of Theorem 5 and using Lemmas 1 - 3 and
Lemma 11, we can prove

THEOREM 6. Let 
ql, q2 with some q1, q2 &#x3E; 0 . The (38) holds for

every (x, y ) i = 1, 2 .

3.3. Now we shall give the Bernstein type inequality for the opera-
tors 

THEOREM 7. Suppose that fEC1;pl’P2 with some Pl, P2ENo and
Then there exists a positive constant 

== M 26 (PI, ~2 ~ 81, s2 ) such that for all m, n E N and i = 1, 2

PROOF. Let i = 1 and s1, s2 E No. From (8)-(11) we deduce that
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But, using Lemma 6 and by (1), (2), we get

for every (x, y) and m, n E N. Hence there exists a positive con-
stant M26 ?2~ Sl, S2) such that for all m, n E N and (x, y) E

which yields (39) for i = 1. The proof of (39) for i = 2 is identical.

Analogously, applying Lemma 7, we can prove the following

THEOREM 8. Suppose that q1, q2 , r1, r2 , sl , S2 are fixed numbers
such that ql &#x3E; r1 &#x3E; 0 , q2 &#x3E; r2 &#x3E; 0 and sl , s2 E No . Then exist a positive
constant M29 = q2 , r1, r2 , s 1, S2) and natural numbers mo and
no satisfying the conditions (20) such that

for every and for all n &#x3E; no and i = 1, 2 .
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