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A Note on the Fixed Point

for the Polynomials of a Boolean Algebra
with an Operator of Endomorphism.

GIULIANA GNANI - GIULIANO MAZZANTI (*)

SUMMARY - We study fixed point problem for Boolean algebras with an endomor-
phism operator k . In particular we prove that in every finite algebra of this
kind there exist polynomials f (x) (in which x only occurs within the scope of k)
without fixed point. Some examples of Boolean algebras with endomorphism
operator k in which every polynomial f (x) (in which x only occurs within the
scope of k) has a fixed point are also given. Also we establish some properties
of the algebras of this kind.

0. Introduction.

Let we call k-algebra a Boolean algebra a = (A , +, ., - , 0 , 1, k ), en-
dowed with an endomorphism k (see [4] for notations and terminology).

In this note we study the problem of the existence of fixed points for
the polynomials f ( x ) of the k-algebras in which x only occurs within the
scope of k.

A similar question has been studied for the r-algebras (or diagonaliz-
able algebras), that is Boolean algebras (A, + , ~ , ~ , 0, 1, r) endowed
with an operator T such that r1 = 1, i(p.q) = r(rp2013&#x3E;p) ~ rp for
every p, q E A .

In [1], [12], [16] the existence and uniqueness of a fixed point
for those polynomials has been proved. Moreover the relationship

(*) Indirizzo delgli AA.: Dipartimento di Matematica, via Macchiavelli 35,
Ferrara.
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between diagonalizable algebras and fixed point algebras (introduced
by C. Smorynski in [17]) have been studied in [9].

It is obvious that there are k-algebras that do not have the fixed point
property: it suffices to consider a Boolean algebra with the identity as an
endomorphism.

Therefore the problem has to be posed in different terms: we study
the problem of the existence of k-algebras with the fixed point
property.

In this note we prove that every finite k-algebra contains polynomials
which do not have any fixed point and we give examples of k-algebras
whose polynomials f (x) (in which x only occurs within the scope of k)
have fixed point. We study also some properties of those algebras.

1. Boolean algebras with additional operations.

Boolean algebras endowed with additional operations have been

widely studied (see [8] and [15]). In this context modal algebras and di-
agonalizable algebras are of particular interest. We remember that
modal algebras are boolean algebras ~A , + I --l ~ 0 , 1, r) with an unary
operation T having the property that for any p , q E A , and
z1 = 1, and that diagonalizable algebras (introduced by R. Magari in
[12]) are modal algebras where r has the property that r(rp ~p) ~ for

every p e A .
- In some cases, these algebras have been introduced to deal with
problems in logic with algebraic tools.

In particular in Peano arithmetic, let A(x) be a PA extensional formu-
la (that is such that if then in the Linden-
baum algebra BpA of the sentences we may introduce an unary operation
A defining = [A(p) ]PA (where [p]pA denote the equivalence class
of p with respect to the provability equivalence relation). We obtain a
Boolean algebra with an additional unary operation; moreover if A(x) =
= (x) (i.e. the provability predicate for PA) this algebra is diagonaliz-
able.

For a complete study of the problems related to these ideas see [1],
[13], [14], [16].

Given a diagonalizable algebra A it is possible to construct a Boolean
algebra B in such a way that (A , B) is a fixed point algebra. By this we
mean a couple of Boolean algebras (A, B) where each element of B is a
function from A to A and
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i) B contains every function which is constant on A,

ii) the Boolean operations are defined «pointwise» on A,

iii) B is closed under composition,

iv) each a E B has a fixed point a e A .

The existence of such an algebra B can be proved using fixed point
theorems for particular polynomials of the diagonalizable algebra A (see
[17]).

The algebraic approach to the study of some problems in logic has, in
some cases, the advantage of translating some «metamathematical» the-
orems in simple form, and to allow applying the methods of universal al-
gebra. On the other hand this approach has the disadvantage that A(x),
in order to be applicable, has to be an extensional formula.

As already noted, the operator r in a diagonalizable algebra trans-
lates in algebraic terms the provability predicate.

On the other hand it is well known that it is not possible to introduce
a truth predicate in arithmetics.

Some authors have proposed some formal theories in which they add
to PA a predicate T which embodies some aspect of the truth predicate
(see [6] and [7]).

In our opinion k-algebras may constitute a possible answer to this
problem, since the properties of the unary operator k may simulate in al-
gebraic terms the main properties of the intuitive meaning of

« truth » .
It is in this regard that study the fixed point problem becomes rele-

vant. Moreover k-algebras are in the «intersection» of modal algebras
and of Boolean algebras with additive operators (see [10] and [11]) and
this is another reasons for their interest.

We mention that the results regarding provability in PA which have
been obtained with an algebraic approach, may be proved also through
the study of some suitable modal logics (see [3], [18], [19]).

2. Finite k-algebras.

In this paragraph we will be dealing with the problem of the fixed
point for the polynomials of finite k-algebras.

Let’s begin with the following simple
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LEMMA 2.1. Let a be a k-algebra. Let’s suppose that there exists an
element a E A such ka = a . Then for each natural number n dif-
ferent from 0 you have:

PROOF. From the hypothesis you have: = = a.

Now, if n is even kna = (k2 0 ... o k2)a = a. 80 ,kna = ,a.
If n is odd, by exploiting the previous part, we get

that is to say -,kna = a.

LEMMA 2.2. Let cr be a k-algebra. The polynomials --i have a

fixed point if and only if the same is true for the polynomials I k (2’) X
(n , m natural numbers and n different from 0).

PROOF. Let us consider - k n x . If n is odd and a is a fixed point for
~ k ~2~~ x, then, by the previous lemma, it is also a fixed point for

-,knx.
If n is even, then there exist two numbers p, q with q odd, so that

n = 2P q . By hypothesis, the polynomial I k (2p) x has a fixed point. Let’s
put k (2p) = h . Obviously h is an endomorphism and k n x = h q x . If a is a
fixed point of 7 k (2P) x , then (as in the Lemma 2.1), being 7 ha = a , we
have 7 h q a = a . That is to say a is a fixed point of 7 

The opposite is obvious.

THEOREM 2.1. Let a be a If n ~ m (n , ~n natural num-
bers different from 0 ), each fixed point of 7 k (2n) x Zs different from each
fixed point of 7 k (2’) x (if the fixed points exist).

PROOF. Let’s assume n &#x3E; m that is n = m + c for a suitable c . Posing
k (2m) = h we have m k ~2’~~ X =7 h (2’) x . Let a be a fixed point of 7 k (2m) X =
= 7 hx . Being -i ha = a , we have from Lemma 2.1 I h (2C) a = m a that
is I k ~2n~ a = I a. Therefore a is not a fixed point for 7 k (2n) x. (Let’s
assume that the Boolean algebra a is not degenerate, that is

a;e 7 a).
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COROLLARY 2.1. Let C‘z be a finite k-algebra. Then there exists a
natural number n, different from zero, such that the polynomial --i k n x
does not have a fixed point (in a).

PROOF. Obvious.

REMARK. In order to obtain the previous results it is sufficient to
consider a set A with an unary operation m so that for each element a of A
we and an endomorphism (with respect to --i).

3. - Infinite k-algebras.

We have seen, in the previous paragraph, that in each finite k-algebra
there exists at least one polynomial of the which does not

have a fixed point. In this paragraph we will give examples of k-algebras
where every polynomial of the type m has a fixed point and examples
where every polynomial has a fixed point.

EXAMPLE 1. Let’s indicate with the free Boolean algebra gener-
ated by a numerable set. Let be a family of free
generators for f3’ (N is the set of natural numbers).

Let’s indicate with k the endomorphism of which extends the fol-

lowing function f from X to f3’:

if i=2n-1 (for a suitable and 

otherwise.

Let ~3 the k-algebra formed by and 1~ .

We claim that, relatively to the k-algebra ~3, each polynomial of the
kind m k n x has a fixed point. In fact, due to Lemma 2.2, it is sufficient to
prove that each polynomial of the type m k (2m) X has a fixed point and one
can easily prove that x2~ is a fixed point for -~ k ~2m~ x .

EXAMPLE 2. Let’s indicate now with Z the set of integers numbers
and let’s consider the Boolean algebra e’ = ~~(Z), U , n , 7, Z, Ø)
(where by 7 we indicate the operation of complementation).

Let k : be the function defined by

It can be easily proved that k is an endomorphism of ~’ .
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We observe that in the corresponding k-algebras every polynomial of
the type --, k n x has a set A n of fixed points, where:

EXAMPLE 3. We will demonstrate now that the Lindenbaum’s alge-
bra of the Peano’s arithmetics can be endowed with an endomorphism k
in such a way that, relatively to the k-algebra thus obtained, each polyno-
mial f(x) (in which x only occurs within the scope of 1~) has a fixed

point.
Referring to the Theorem 3.17 of [5] we can obtain the following re-

sults (we express it in the notations of [5]):

It makes sense then to define a function k on the Lindenbaum’s alge-
bra of Peano’s arithmetics posing:

The mentioned conditions can then be translated in the following
(0, 1,~, ~, ... have the usual meaning):

These imply:

In fact from 1’ ) and 2’) it follows the monotony of 1~ .

Let a ; b then a -~ b =1 therefore = ka £ kb . From the

monotony of k we have easily 1~( a ~ b ). On the other hand ka ~ kb ~
Therefore 5’) is true.

From 5’) and 4’) we have = 0 that is 6’).
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From 3’) and 6’) it obviously follows 7’).
1~ is therefore an endomorphism.
Let’s now consider the k-algebra constitued by the Lindenbaum’s al-

gebra of Peano’s arithmetics and by the endomorphism 1~ which we have
just defined. From the theorem of the fixed point relative to Peano’s
arithmetics it follows that each polynomial f ( x ) (in which x only occurs
within the scope of 1~) has a fixed point.

EXAMPLE 4. Let Let’s consider the algebra

and let’s define We notice that

Therefore K * is not an homomorphism in ,~(Z - ).
Let’s consider in P(Z - ) the relation = thus defined: X = Y if and

only if X 2013 Y is finite.
It is easy to see that = is a congruence relation in (P(Z - ), U , n ,

-i , K * ) and that in the Boolean algebra quotient the operator K defined
by = [ K * X ] - is an homomorphism. So we obtain a k-algebra.

Let us prove that every polynomial f ( x ) (in which x only occurs within
the scope of 1~) has a fixed point. It is sufficient to prove that every poly-
nomial of ~P(Z - ), U , n , ~ , K * ~ has a fixed point.

First of all let’s consider the following lemmas.

I) Given a polynomial f(r) and X c Z - , in order to see if x belongs
to f(X) or not it is sufficient to decide if for every y ~ x. In particular
if in f(x) x only occurs within the scope of k, one gets the property:

II) In order to establish if x E f(X) it is sufficient to know if y E X
for every y &#x3E; x.

From this results it follows that, reasoning on the structure of f(x),
we can build a fixed point X for it as follows: from the composition of the
polynomial we can decide whether 0 belongs to f (X ) or not, whatever X
may be; so, according to the answer, we can pose 0 in X or not.
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Let’s suppose we have established for every i ~ n if ( - i) E X or not,
at this point we can decide that ( - i ) E X if and only if ( - i ) If we

set i = n + 1, we can decide if - n -1 belongs to f(X) or not according to
Lemma II.

4. - Filters and congruences.

Let V denote the variety of the k-algebras. Let us give two

definitions.

DEFINITION 4.1. A k-filter of cr E V is a Boolean filter F such
that

DEFINITION 4.2. A k-ideal of is a Boolean ideal J such
that

The link between congruences of ~1 and k-filters (or k-ideals) is com-

pletely determined by the following

THEOREM 4.1. The variety V of the k-algebras admits a good theory
of the ideals.

PROOF. The result is easily obtainable with elementary procedings
(like in [4]) or by applying the process of A. Ursini [22] to V. We notice
that in this case the 1-ideals and the 0-ideals are respectively the k-fil-
ters and the k-ideals.

Let’s now examine some properties of the k-filters of an algebra
a e V with the property of the fixed point for the polynomials.

THEOREM 4.2. a) Each proper k-filter of a does not contccin any
fixed point for the polynomials of the kind --i k n x(n = 0 );

b) Each proper k-filter of a is extendable to a maximal k-fil-
ter ;

c) The Boolean ultrafilters of a are not k-filters;
d) The maximal k-filters are not (Boolean) ultrafilters.
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PROOF. a) Let F be a k-filter on Ct and let p be an element of F that
is a fixed point for the polynomial for a suitable n ;,-’ 0. Then

belongs to F (because F is closed with regard to k), F is
therefore the total filter.

b) it follows from Zorn’s lemma.

c) Let p be a fixed point for m kx and let U be a Boolean ultrafilter
of a. If p belonged to U, and if U were closed with regard to 1~ , then kp =
= --, p would belong to U, and this is absurd. If p did not belong to U, then
m p would belong to U, so k(-i p) = p would belong to U, and this is also
absurd.

d) it follows from c).

Referring to Example 2 of Paragraph 3 we can make the following
remarks.

REMARK 1. The filter of the cofinites is a k-filter.

REMARK 2. Let’s indicate with F the k-filter generated by
X c Z . It can be seen that if X is finite then F is the total filter and if X is
cofinite then F is a proper k-filter. In this case moreover F does not coin-
cide with the Boolean filter generated by X.kX (differently from what
happens for the r-algebras, see [12]).

5. - The class of the k-algebras with properties of fixed point.

Let’s indicate with x the subclass of V constituted by the k-algebras
whose polynomials have a fixed point. The principal properties of x are
summarised in the following:

THEOREM 5.1. a) lll is not 

b) Each is infinite.
c) its closed with regard to the operator P .

d) x is closed with regard to the operator H.

e) x is not closed with regard to the operator S .
is not equationally definibLe.

PROOF. a) follows from example 3.

b) follows from the Corollary 2.1.
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c) Let a = fl ai and let cri be an algebra belonging to X. Let p(x)
ieI

be a polynomial. Let ai denote the fixed points of the realizations of p(r)
in ai , it is easy to see that the element a of cr that has as i th-component ai
is a fixed point of the realization of in a.

d) It can be proved as c).

e) It is sufficient to observe that each endomorphism k in a

Boolean algebra is the identity in { 0, I}, therefore ({0,1}, + , ~ ,
I , 0, 1, k ~ is a subalgebra of each algebra of x and obviously does not
belongs to 

f ) It is obvious.
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