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On k-Very Ampleness of Tensor Products
of Ample Line Bundles on Abelian Surfaces (*).

YOSHIAKI FUKUMA (**)

ABSTRACT - In this paper, we study abelian surfaces X and ample line bundles
L1, ... , L, such that L := L1 + ... + Lt is not k-very ample for t = k, k + 1. And
we also study polarized abelian surfaces (X, L) such that ( k - t ) L is not k-
very ample with t ~ 1 under some condition. As corollaries of the above re-
sults, we get the classification of (X, L ) such that ( k - t ) L is not k-very ample
fort=-1,0,1 and 2.

0. Introduction.

Let X be an abelian variety over the complex number field C and let
L be an ample line bundle on X. Then it is well-known that 2L is spanned
and 3L is very ample. (See [LB].) In [BaSzl] and [BaSz2], Bauer and
Szemberg studied a sufficient condition of k-very ampleness of L1 + ... +
+ Lk + 1 for ample line bundles Ll , ... , Lk + 1. In particular, in [BaSz2], as a
corollary, they proved that L1 + ... + Lk + 2 is k-very ample for any ample
line bundles L1, ... , Lk + 2 .

Next the following question arises from the Bauer-Szemberg re-
sult ;
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QUESTION. Let X be an abelian variety X and let L1, ... , L, be ample
line bundles on X for s ~ k + 1. Then classify (X, Li , ... , Ls ) such that
L1 + ... + L, is not k-very ample.

Ohbuchi ([0]) studied polarized abelian varieties (X, L) such that 2L
is not very ample.

In sect. 2, we study abelian surfaces X and ample line bundles

L1, ... , Lt such that L : = L1 + ... + Lt is not k-very ample for t = k,
k+1.

In sect. 3, we study polarized abelian surfaces (X, L) such that (k -
- t) L is not k-very ample with t &#x3E; 1 under some condition. In particular,
we characterize (X, L) such that ( k - t)L is not k-very ample with t =1
or 2. (See Theorem 3.4 and Theorem 3.5.)

We work over the complex number field and we use the customary
notation in algebraic geometry.

Acknowledgment. The author would like to express his hearty thanks
to Professor Tomasz Szemberg for giving him some useful comments
and suggestions. The author also would like to thank the referee for giv-
ing him useful comments.

1. Preliminaries.

DEFINITION 1.1. (See [BeSo].) - Let (X, L) be a polarized surface.
Then L is called k-very ample if for any 0-dimensional subscheme

(Z, with length c9z = k + 1, the map

is surjective.

LEMMA 1.2. Let X be an abelian surface. Assume that X contains a
smooth elliptic curve D. Then there exists an elliptic fibration f: X ~ C
such that C is a smooth elliptic curve, D is a fiber of f, and any fiber of f
is isomorphic to D.

PROOF. By a translation of D, we may assume that D contains the
origin of X and D is an abelian subvariety of X. Then there exist the quo-
tient XID and the surjective homomorphism f: Then XjD is a
smooth elliptic curve and every fiber of f is isomorphic to the fiber over
the origin of XID which is D by construction.
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LEMMA 1.3. Let X be an abelian surface. Assume that there exist a
smooth elliptic curve C and a suryective mor~phism f : X -~ C with con-
nected fibers such that f has a section S. Then X = C x F and f is identi-
fied with the first projection via this isomorphism, and S is a fiber of
the second projection, where F is a fiber of f.

PROOF. We remark that f is an elliptic fibration such that any fiber of
f is smooth since X is an abelian surface. Let S be a section of f. Then by
Lemma 1.2, there exist a smooth elliptic curve C’ and an elliptic fibration
h : X ~ C’ ‘ such that any fiber of h is a smooth elliptic curve and S is a
fiber of h. Moreover any fiber of h (resp. f) is a section of f (resp. h). In
particular C’ = F. Then there exists a morphism such

that and where P, (resp. P2) is the projection
C x C’ 2013&#x3E;C (resp. C x C" 2013&#x3E;C’). We remark that it is bijective by con-
struction. Let F f = f * ( x ) and Fh = h * ( y ), where and Y E C ’. Then

and Then

Hence a is birational. Therefore by Zariski Main Theorem, we obtain
that .7r is an,isomorphism. 0

REMARK 1.3.1. Let (X, L) be a polarized abelian surface, and let D
be an effective divisor on X such that LD = 1. Then D is irreducible and

reduced. By Hodge index Theorem, we get that D 2 = 0. Moreover D is a
smooth elliptic curve since X is an abelian surface and g(D) = 1. By Lem-
ma 1.2, there exists a fiber space f : X- C such that C is a smooth elliptic
curve, D is a fiber of f, and any fiber of f is isomorphic to D. Since
h ° (L) &#x3E; 0 and LD = 1, there exists a section of f. So by Lemma 1.3,
X = C x F for a fiber F of f, and f is identified with the first projection via
this isomorphism.

THEOREM 1.4 (Terakawa). Let (X, L) be a polarized abelian sur-
face. Then L is ample if and only if L 2 ~ 4 k + 6 and there exists
no effective divisor D satisfying the inequalities

PROOF. See Theorem 3.15 in [Te].
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THEOREM 1.5. Let (X, L) be a polarized abelian surface. If g(L) =
= 2, then (X, L) is one of the following:

(I) X = J(B), and L is the class of a translation of the theta divi-
sor, where B is a smooth projective curve of genus two, J(B) is the jaco-
bian variety of B.

(II) X = El x E2 , and L = P1* 6D, Q9 P2* ~2 , where E1 and E2 are
smooth elliptic curves, pi: E1 x E2 --~ Ei is the i-th projection, and E

E Pic (Ei ) with deg (J)1 = deg =1.

PROOF. See [OoU], [BeLP], or [Fil. m

THEOREM 1.6. Let (X, L) be a polarized abelian surface with L 2 ;
; 2 a, where a E l~. Assume that there exists an irreducible reduced curve
D on X such that LD = 2 and D 2 = 0. Then (X, L) satisfies one of the
following:

(1 ) X = E1 x E2 and L = pt ~31 (9 P2* IB2 with deg $1 ~ 1 and deg B2 =

= 2, or deg B1 = 2 and 

(2) There exists a surjective morphism f : X -~ C with connected
fibers such that C is a smooth elliptic curve and any fiber of f is a
smooth elliptic curve, and (X, L) is one of the following:

(2-1) There exists an ample spanned vector bundle 8 of rank two
on C such that 8 = 8’ Q9 J[1 with deg J[1 ~ ~a/2 ~ , X is a double covering
of IE~( ~ ) whose branch locus is smooth and linearly equivalent to

- 2 I~~~ ~ y f = and L = C9(T) Of* 

(2-2) X = J(B) and L = (9x(A) Of* ~1~ such that A is a transla-
tion of the theta divisor, AF = 2 for a fiber F of f, and deg 
~ ~(a -1 )/2 ~ ,

(2-3) X = E1 X E2 and L = P1* 6D, Q9 P2* 6D2 Q9f* ~ such that any
fiber of Pi is a section of f for i = 1, 2, deg (J)1 = deg (J)2 = 1, and

deg ME3 -&#x3E; ~(a - 1 )/2 ~ ,

where in (1) and (2-3) E1 and E2 are smooth elliptic curves, pi: E1 x
x E2 - Ei is the i-th projection, Bi, Di E Pic (Ei) for i = 1, 2, E Pic ( C),
in (2-1) 8’ = oc for 21 E Pic (C) with oc and 2.el -= (9c, 3111 E

E Pic ( C), p: I~( ~ ) -~ C is the natural projection, :Jl: X ~ P( 8) is the

double covering, and T is a smooth elliptic curve with TF = 2 for
a fiber F of f, and in (2-2) B is a smooth projective curve of genus
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two, J(B) is the jacobian variety, and E Pic (C). (For x E R, ~x]
denotes the smallest integer which is greater than or equal to x.)

REMARK 1.6.1. In the case (2-2) in Theorem 1.6, B cannot be gener-
al. Actually if B is general, then the Neron-Severi group NS (X) is gener-
ated by the class of the theta divisor. In particular, X does not contain
any elliptic curve.

PROOF. This can be proved by the same argument as in the proof of
Theorem 2.2 in [Fk]. By assumption, D is a smooth elliptic curve. Hence
by Lemma 1.2, there exists a surjective morphism f : X- C such that C is
a smooth elliptic curve, D is a fiber of f, and any fiber of f is smooth. Since
LF = LD = 2 for any fiber F of f, we get that f * o f * (L ) -~ L is surjective.
Let 8 : = f * L. Then 8 is a locally free sheaf of rank two on C, and there
exists a morphism : X -~ lh( ~ ) such where : P(8) - C is
the bundle map. By construction, Jt is a double covering. Since X is an
abelian surface, the branch locus B is smooth and linearly equivalent to
- 2 Kp(,). Furthermore L = Jt * (H(8)) and 8 is ample with a,
where H(8) is the tautological line bundle on P(8). Since I - I has
a smooth member, by the same argument as in the proof of Proposition
2.3 in [Fkl], we can prove that there exists a vector bundle 8’ on C and a
line bundle J1 on C such that 8 = 8’ (9 M, and 8’ and 311 satisfy one of the
following three types;

(G~ there exists a nontrivial extension

and where c4EPic(C) with 

Let c : IE~( ~ ) -~ Ih( ~’ ) be the isomorphism such that Let
JT 

(1) The case in which 8’ is the type (A) or (B).

Let Co E [ H( 8’ ) [ Then Co is an irreducible reduced curve by Proposi-
tion 2.8 in [Ha, Ch. V]. Let B be the branch locus of We remark that
- 2Kp(8’) &#x3E; = 4 H( ~, ).

Since -2Kp(8’)CO=0, we get Co c B or Co n B = 0.
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(1-1) The case in which Co c B.

Then = 2 B1. Since LF = 2 for a fiber F of f and B1 is not
contained in a fiber of f, B1 is a section of f. Hence by Lemma 1.3, X =
= C x F and f is identified with the first projection, and B1 is a fiber of
the second projection h : C x F ~ F. So we get

where 1P e Pic (F) with deg 1P = 2. Therefore we get the type (1) in Theo-
rem 1.6.

(1-2) The case in which Co n B = 0. Then we obtain one of the

following:

where Bi is an irreducible reduced curve for i = 2, 3, 4 with 
First we consider the case (1-2-1).

PROOF. We remark that B2 is a smooth elliptic curve. Hence by Lem-
ma 1.2, there exists a surjective morphism fl : X - C1 such that C1 is a
smooth elliptic curve and B2 is a fiber of fl . Hence 
= h ° (B2 ) = 1. On the other hand, since 7r’ is a double covering, we have
h ° ((,~’ ) * ( C° ) ) = h ° (H( ~’ ) ). Hence ~(~))=1. Therefore ~’ is the

type (B). This completes the proof of Claim 1.7.

Since L = (jr’)*(Co)0/*~ we obtain the type (2-1) in Theorem 1.6.
We remark that B2 F = 2 for a fiber F of f.

Next we consider the case (1-2-2).
If = B3 + B4 , then we get = 0 and = 0. Since

B3 and B4 are not contained in a fiber of f, we get that B3 F = B4 F = 1 for
a fiber F of f because = 2. Hence B3 and B4 are sections of f.
Hence by Lemma 1.3, we get that X = C x F, f is identified with the first
projection, and Bi is a fiber of the second projection h : X ~ F for i = 3, 4.
Hence by the same argument as the case (1-1), we obtain L f* X 0
® h * ~’, where 0’ E Pic (F) with deg 1P’ = 2.

Therefore we get the type (1) in Theorem 1.6.
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(2) The case in which 8’ is the type (C).

Then H(8’) is ample with H(8’ )2 = 1. We put ox(A) = (Jt ’ )* (H(8’)).
Then AF = 2 for a fiber F of f. Since A 2 = 2 and X is an abelian surface,
we obtain g(A) = 2 and we get that (X, A) is one of the type (I) or (II) in
Theorem 1.5. We remark that L = (jr’ )* (H(~’ ) ) ® f * J1 = Of* 
If (X, A) is the type (II) in Theorem 1.5, then any fiber of f is not con-
tained in a fiber of pi and any fiber of pi is a section of f for i = 1, 2 since
AF = 2. Therefore if (X, A) is the type (I) (resp. (II)) in Theorem 1.5,
then we get the type (2-2) (resp. (2-3)) in Theorem 1.6. This completes
the proof of Theorem 1.6.

DEFINITION 1.8. Let X be an abelian surface and let L, L1, ... , Ln
be ample line bundles on X.

(A) If (X, L) is the type (2-1) (resp. (2-2), (2-3)) in Theorem 1.6
with L 2 ; 2 a, then we say that (X, L) is the type (I; a) (resp. (II; a),
(III; a)).

(B) If X = J(B) and Li = B for a smooth curve B of genus two and
i = 1, ... , n, then we call (X, L1, ... , Ln ) the type (J), where * denotes
numerical equivalence.

(0 If X = El X E2 and L = pt(CD1) ® ~2 ( ~2 ) with (deg(JJ1,
( a , b) or (deg 6D,, ( b , a), then we call (X, L ) the type

(P; {a, 6}), where El and E2 are smooth elliptic curves, pi is the i-th pro-
jection, and for i = 1, 2.

(D) If X = El X E2 and Li = with deg Di = ai , then we
call (X, L) the type (PS; t; aI, ... , an ), where El and E2 are smooth ellip-
tic curves, pt is the t-th projection, Si is a section of pt, and ~2 E Pic (Et)
for i = 1, ... , n.

2. The case in which L1 + ... + Lt is not ample for t = k + 1 or 1~ .

THEOREM 2.1. Let X be an abelian surface, and let L1 and L2 be
ample line bundles on X. We put L : = L1 + L2 . Then L is not very ample
if and only if (X, L1, L2 ) satisfies one of the foLLowing:

(1) (X, the type (J),
(2) (X , L1, L2 ) is the type with a1 &#x3E; 0, a2 &#x3E; 0, and

t = 1, 2.
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PROOF. First we prove the «if» part.
If (X, L1, L2 ) is the type (1), then L 2 = (L1 + L2 )2 = 8 and h ° (L ) _

= L 2 /2 = 4. If L is very ample, then X is a hypersurface of degree 8 in p3.
But this is impossible because X is an abelian surface. Hence L is not
very ample.

If (X, L1, L2 ) is the type (2), then LF, = 2, where F1 is a fiber of pi . If
L is very ample, then F1 = But this is impossible because X is an
abelian surface.

Next we prove the «only if» part. Assume that L is not very ample.
Then L 2 = (L1 + L2 )2 ~ 8 because 2, 2, and 2.

(A) The case in which L 2 = 8.

Then L1 L2 = 2 and L2 = 2. By Hodge index Theorem, we obtain
that Li = L2. Since g(L1 ) = 2, we get that (X, L1 ) is the type (I) or (II) in
Theorem 1.5.

If (X, L1 ) is the type (I), then L2 --- B.
If (X, L1 ) is the type (II), then we can easily prove L2=pi*(Di0

®p2*D’2, where 6D! E Pic (Ei ) with deg D’1 = deg 6D2’ = 1.

(B) The case in which L 2 ; 10.

By Reider’s Theorem, there exists an effective divisor D on X such
that (LD , D 2) = (2, 0) or (1, 0) because the value of D 2 is even. Since
L = L1 + L2 and Li is ample for i = 1, 2, we get (LD , D 2 ) = ( 2 , 0 ). So we
have Li D = 1 for each i. By Remark 1.3.1, there exists a fiber space
f : X- C such that C is a smooth elliptic curve, X = C x F, f is identified
with the first projection via this isomorphism, and D is a fiber of f, where
F is a fiber of f. Since Li F = 1 for each i, we obtain that 
0 for i = 1, 2, where mj E Pic (C) and Si is a section of f. Since Li is
ample, we get Li Si &#x3E; 0. Hence deg 6Di &#x3E; 0 because Si2 = 0. This completes
the proof of Theorem 2.1.

COROLLARY 2.1.1. Let X be an abelian surface and let L be an am-
ple line bundle on X. Then 2L is not very ample if and only if (X, L)
satisfies one of the following:

(1) (X, L) is the type (J),
(2) (X, L) is the type (P; ~ a , b 1) with a &#x3E; 0 and b = 1.



217

PROOF. We put L1= L and L2 = L. Then we get the above result by
Theorem 2.1. We remark that if then we use Lemma

1.3.

THEOREM 2.2. Let X be an abetian surface and let L1, ... , Lk + 1 be
ample line bundles on X. Assume that k ~ 2. We put L : = L1 + ... +
+ Lk + 1. Then L is not k-very ample if and onLy if (X, L1, ... , Lk + 1 ) is the
type (PS; t; ... , ak + 1 ) with ai &#x3E; 0 for any i, and t = 1, 2.

PROOF. First we prove the «if» part. Let Fl be a fiber of Then
+ 1. But by Theorem 1.4, L is not k-very ample.

Next we prove the «only if» part. Then

Assume that L is not k-very ample. Then by Theorem 1.4, there exists an
effective divisor D such that

Because LD = (L1 + ... + Lk + 1 ) D, there exists an ample line bundle Li
such that Li D = 1. We may assume that i = 1. By Remark 1.3.1, there
exists a fiber space f : X - C such that C is a smooth elliptic curve, X =
= C x F, f is identified with the first projection via this isomorphism, and D
is a fiber of f, where F is a fiber of f. On the other hand, by Theorem 1.4,
we get LD ~ k + 1 since g(D) = 1. Hence Li D = 1 for any i. Since D is a
fiber of f and &#x3E; 0 for i = 1, ... , k + 1, we get that Li == f* CDi Q9
Q9 for i = 1, ... , k + 1, where 6Di E Pic ( C), Si is a section of f. Since Li
is ample, we get Li Si &#x3E; 0. Hence deg 6Di &#x3E; 0 because S 2 = 0 for any i. This
completes the proof of Theorem 2.2.

By Theorem 2.2, we can prove the following Corollary.

COROLLARY 2.2.1. Let X be an abelian surface and let L be an am-
ple line bundle on X Then for k ~ 2, (k + 1 ) L is not k-very ample if and
onLy if (X, L) is the type (P; {o, b 1) with a &#x3E; 0 and b = 1.

THEOREM 2.3. Let X be an abelian surface and let L1, ... , Lk be
ample line bundles on X. Assume that k a 3. We put L : = L1 + ... + Lk.
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Then L is not k-very ample if and only if (X, L1, ... , Lk ) is one of the
following:

(1) k = 3 and (X, L 1, L2 , L3 ) is the type (J),
(2) (X, L1, ... , Lk - 1 ) is the type (PS; t; ai , ... , ak _ 1 ), and Lk =

= put* 0 where 6Dk E Pic (Et ) with deg 6Dk 0, pt is the t-th pro-
jection, T is a divisor on X with TFt = 2 for a fiber Ft of pt, ai is a positi-
ve integer for i = 1, ... , k - 1, and t = 1, 2,

(3) the type (PS; t; aI, ... , ak ) with ai &#x3E; 0 for
..., k, and t=1, 2.

PROOF. First we prove the «if» part.
If (X, L1, ... , Lk) is the type (1) in Theorem 2.3, then k = 3, LB =

- (L1 + L2 + L3) B = 6, and g(B) = 2. Then by Theorem 1.4, L is not 3-very
ample.

If (X, L1, ... , Lk ) is the type (2) or (3) in Theorem 2.3, then 
~ k + 1 for a fiber F1 of pi. Then by Theorem 1.4, L is not k-very
ample.

Next we prove the «only if» part.
We calculate L 2 :

Since 1~ ~ 3, we get 2 k 2 ~ 41~ + 6. So we have L2&#x3E;- 4 k + 6. Assume that L
is not k-very ample. Then by Theorem 1.4, there exists an effective divi-
sor D on X such that

We may assume that

Then we obtain that 2. By Hodge index Theorem, we get
D 2  2.

(2.3.1 ) The case in which D 2 = 2.

Then L1 D = 2 and L1= D by Hodge index Theorem. Since g(L1 ) = 2,
we obtain that (X, L1 ) is the type (I) or (II) in Theorem 1.5. On the other
hand, by g(D) = 2, L1 D = 2, and Theorem 1.4, we get
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Hence k = 3 and L1 D = L2 D = L3 D = 2. So by Hodge index Theorem,
we get L1 = L2 = Z.3 = D. Therefore we get the type (1) or (3) in Theorem
2.3.

(2.3.2) The case in which D 2 = 0.
(2.3.2.1) The case in which L1 D = 2.

Then by assumption, we have LD ~ 2 k. Hence by Theorem 1.4, we get
2 k ~ LD ~ 2 g(D ) + 1~ - 1 = l~ + 1. Therefore k 5 1 and this is a contra-
diction.

(2.3.2.2) The case in which L1 D = 1.

By Remark 1.3.1, there exists a fiber space f : X- C such that C is a
smooth elliptic curve, X = C x F, f is identified with the first projection
via this isomorphism, and D is a fiber of f, where F is a fiber of f. Since
k~(L1+...+Lk)D~2g(D)+k-1 =k+1, we get

type (2) in Theorem 2.3, and if (L1 D , ... , Lk _ 1 D , Lk D ) _ ( 1, ... , 1, 1),
then (X, L1, ... , Lk) is the type (3) in Theorem 2.3 by using the same ar-
gument as in the proof of the above Theorems. This completes the proof
of Theorem 2.3.

THEOREM 2.4. Let X be an abelian surface and let L be an ample
Line bundles on X. Then for k ~ 2, kL is not k-very ample if and only if
(X, L) is one of the following:

(1) k = 2 or 3, and (X, L) is the type (J),
(2) (X, L) is the type (P; {a, b 1) with a &#x3E; 0 and b = 1.

PROOF. For k a 3, this is a corollary of Theorem 2.3. Assume that
k = 2. By the same argument as in the proof of Theorem 2.3, we can
prove the «if» part. So we prove the «only if» part. Assume that L is not
2-very ample.

(2.4.1) The case in which L 2 ~ 4.

Then ( 2 L )2 ~ 16, and by Theorem 1.4, there exists an effective divisor
D on X such that (2L) D ~ 2g(D) + 1 ~ 5. If D 2 &#x3E; 0, then by Hodge in-
dex Theorem, we get LD ~ 3 and this is impossible. Hence D 2 = 0 and
g(D) = 1. Therefore 2 LD ~ 3, that is, we obtain LD = 1. So D is a smooth
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elliptic curve. By Lemma 1.2 and Lemma 1.3, we can prove that (X, L ) is
the type (P; ~ a , b 1) with a &#x3E; 0 and b = 1.

(2.4.2) The case in which L 2 = 2.

Then (X, L) is one of the type in Theorem 1.5.
This completes the proof of Theorem 2.4.

3. The case in which (n - t) L is not k-very ample for t =1 and 2.

THEOREM 3.1. Let (X, L) be a polarized abelian surface. Let (k, t)
be a pair of integer which satisfies the following inequalities;

(A) k ; 3t + 1,
(B) t ~ 1.

Then ( k - t)L is not k-very ample if and only if one of the following
types holds;

(1) (k, t) = (4, 1), (5, 1 ), or (7,2), and (X, L) is the the type (J),
(2) (X, L) is the type (P; {a, b 1) with a &#x3E; 0 and b = 1.

PROOF. First we remark that ( k - t )2 L 2 ; 4 k + 6 unless (L 2 , k , t ) =

- (2, 4, 1 ).
We prove the «if» part of Theorem 3.1. If (X, L) is the type (1) in

Theorem 3.1, then ( k - t) LB ~ 2g(B) + k - 1 ~ 2 k + 1. Hence by Theo-
rem 1.4, L is not k-very ample. If (X, L) is the type (2) in Theorem 3.1,
then (k - 2g(Fl ) + k - 1 ~ 2k + 1 for any fiber F1 of Pl. Hence L
is not k-very ample by Theorem 1.4.

Next we prove the «only if» part.

(3.1.1 ) The case in which L 2 ~ 4.

Since (k - t)2 L 2 ~ 4 k + 6, by Theorem 1.4, there exists an effective
divisor D on X such that ( k - t) LD ~ 2 g(D ) + k - 1 ~ 2 k + 1.

Assume that D 2 &#x3E; 0. Then, by Hodge index Theorem, we get LD ~ 3.
Hence 3(k-t)~(k-t)LD~2k+1, and we obtain k~3t+1. By hy-
pothesis we have k = 3 t + 1 and LD = 3. So we get D 2 = 2 and g(D) = 2.
By Theorem 1.4, we have 3( 2 t + 1) = (k - t) LD ~ k + 3 =

= 3 t + 4, and so we have t  1 /3. But this is a contradiction.
Hence D 2 = 0 and g(D) = 1. By Theorem 1.4, we obtain ( k - t ) LD ~

~k+ 1.
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Assume that LD ~ 2. Then we get k - 1 ~ 2 t. Since k ~ 3 t + 1,
we get 3 t ~ 2 t. This is impossible because t ~ 1. Hence LD = 1.

Therefore D is a smooth elliptic curve and by the same method as in
the proof of the above theorems, we get that (X, L) is the type
(P; {a, with a &#x3E; 0 and b = 1.

(3.1.2) The case in which L 2 = 2.

Then by Theorem 1.5, we get that (X, L ) is one of the types in Theo-
rem 1.5.

In order to prove Theorem 3.1, it is sufficient to study the case in
which X = J(B) and L = B, where B is a smooth projective curve of genus
2 and J(B) is its jacobian variety. If ( k , t) = (4, 1), then ( k - t )2 L 2 
 4 k + 6 and ( k - t ) L is not k-very ample by Theorem 1.4. So we assume
that ( k , t ) ~ ( 4 , 1 ). Then ( k - t )2 L 2 ~ 4 k + 6. Then by Theorem 1.4,
there exists an effective divisor D on X such that ( k - t) LD ~ 2g(D) +
+ k - 1 ~ 2 k + 1. Here we remark that we can prove LD ~ 2 by Remark
1.3.1 since L * B.

(3.1.2.1) The case in which LD ~ 3.

Then 3k-3t; (k-t)LD~2k+1. So we have k~3t+1. By hy-
pothesis, we get k = 3 t + 1 and LD = 3. Since L 2 = 2, we obtain D 2 ; 4.
Hence2k-5 ~3t. and 4. Be-
cause k = 3 t + 1, we obtain (k, t) = (4, 1 ) and this is a contradiction.

(3.1.2.2) The case in which LD = 2.

If D~ = 0, then g(D) = 1. So by Theorem 1.4, we get 2(k - t) _
= (k - t) LD ~ k + 1. Hence k - 1 ~ 2 t. Since k ~ 3 t + 1, this is impossi-
ble because t ~ 1.

If D 2 &#x3E; 0, then L = D since LD = 2 and L 2 = 2. By Theorem 1.4, we
get 2(k-t) _ (k-t)LD~k+3. Hence k-3 ~2t. Since k~3t+1, we
get 3 t - 2 ~ 2 t. Therefore t S 2.

If t = 1, then 2(k -1 ) _ (k - t) LD ~ k + 3. Hence k ~ 5. Because
4 = 3 t + 1; k, we get k = 5 by the assumption that (k, t) # (4, 1 ).

If t = 2, then 2(k - 2 ) _ (k - t) LD ~ k + 3. Hence k ~ 7. Because

7=3t+1 ;k, we get k=7.
This completes the proof of Theorem 3.1.

THEOREM 3.2. Let (X, L) be a polarized abetian surface. Let ( k , t)
be a pair of integers with 3 t ; k ~ 2 t + 1, t ~ 1, and ( k , t ) ~ ( 3 , 1 ). Then
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(k - t) L is not k-very ample if and only if one of the following
holds:

and tg ~ 3, and (X, L) is the the type (J),
(2) (X, L) is the type (P; {a, b ~ ) with a ~ 1 and b = 1,
(3) k = 2 t + 1 and (X , L ) is the type (P; ~ a , b 1) with a ~ 1 and

b = 2,
(4) k = 2 t + 1 and (X, L) is one of the type (I; 2), (II; 2), or

(III; 2).

PROOF. First we prove the «if» part. If (X, L) is the type (1) in Theo-
rem 3.2, then ( k - t ) LB ~ 2 g(B ) + k - 1 ~ 2 k. Hence L is not k-very am-
ple by Theorem 1.4. If (X, L) is the type (2) or (3) in Theorem 3.2, then
(k - t) 2g(Fl) + k - 1 ~ 2k for a fiber F1 of pl. Hence L is not k-
very ample by Theorem 1.4. If (X, L) is the type (4) in Theorem 3.2, then
(k - t ) LF ~ 2 g(F) + k - 1 ; 2 k for a fiber F of f. Hence L is not k-very
ample by Theorem 1.4.

Next we prove the «only if» part.

(A) The case in which L 2 ~ 4.

First we remark that (k - t)2 L 2 ; 4 k + 6 by assumption. Hence by
Theorem 1.4 there exists an effective divisor D on X such that

(k - t) LD  2g(D) + k -1  2k + 1.
If LD ~ 4, then 4(k - t) ~ 2 k + 1, that is, 2 k ~ 4 t + 1. Since k ~ 2 t +

+ 1, we get that 4 t + 1 ; 2 k ~ 4 t + 2. But this is impossible. Hence
LD~3.

If LD = 3, then D 2 ~ 2 since L 2 ~ 4. Therefore 3(k - t) =
= (k - t) LD £ k + 3 because g(D ) ~ 2. So we have 2 k ~ 3 t + 3. Since k ; 2 t + 1,
we obtain that 3 t + 3 ~ 4 t + 2. Since t ~ 1, we have t = 1 and k = 3. But
by assumption this is a contradiction. Hence LD ~ 2 and D 2 = 0.

If LD = 1, or LD = 2 such that D is not an irreducible reduced curve,
then there exists an irreducible reduced curve B such that LB = 1. Then

by Lemma 1.2 and Lemma 1.3, we get the type (2) in Theorem 3.2.
If LD = 2 such that D is an irreducible curve, then D is a smooth el-

liptic curve. Then 2(k - t ) = ( k - t ) LD ~ 2 g(D ) + k - 1 = k + 1. Hence
k ~ 2 t + 1. By assumption k = 2 t + 1 in this case. Then by Theorem 1.6,
we get the type (3) or (4) in Theorem 3.2.

(B) The case in which L 2 = 2.
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Then (X, L) is the type (I) or (II) in Theorem 1.5. If (X, L) is the type
(II) in Theorem 1.5, then (X, L) is the type (2) in Theorem 3.2. So it is
sufficient to study the case in which (X, L ) is the type (I) in Theorem
1.5.

Assume that X = J(B) and L is the class of a translation of the theta
divisor, where B is a smooth projective curve of genus 2 and J(B) is its
jacobian variety. Then we remark that ( k - t )2 L 2 ~ 4 k + 6 (resp.
( k - t )2 L 2  4 k + 6) if t ~ 4 (resp. t ~ 3). If t ~ 3, then we get that ( k - t ) L
is not k-very ample by Theorem 1.4. Since 3 t ~ k ; 2 t + 1 and (k, t ) ~
~ ( 3 , 1 ), we get that ( k , t) = (9, 3),(8, 3),(7, 3),(6, 2) or ( 5 , 2 ).

Assume that t ~ 4. Then by Theorem 1.4, there exists an effective di-
visor D on X such that ( k - t) LD ~ 2 g(D ) + k -1 ~ 2 k + 1.

IfLD ~ 4, then this is impossible by the same argument as in the case
(A). Hence LD ~ 3. We remark that LD ~ 2 since L is the class of a
translation of the theta divisor. Since L 2 = 2, we get that D 2 ~ 4 and
g(D) ~ 3.

If LD = 3, then 3(k - t ) ~ k + 5. Hence 2 k ~ 3 t + 5. Since k ; 2 t + 1,
we get 4 t + 2 ~ 2 k ~ 3 t + 5, that is, t ~ 3. But this is a contradiction.

If LD = 2, then D 2- 2. If D 2= 2, then g(D) = 2 and 2(k - ~) ~ + 3.
Thus we have k ~ 2 t + 3. Hence k = 2 t + 1, 2 t + 2, and 2 t + 3.

If D 2 = 0, then g(D) = 1 and 2(k - t) ~ k + 1. Hence k ~ 2 t + 1. Since
k;2t+1, we get k=2t+1.

This completes the proof of Theorem 3.2.

COROLLARY 3.3. Let (X, L) be a polarized abelian surface. Assume
that k a 2 t + 4 for ( k , t) E ~T®2. Then ( k - t) L is not k-very if and
only if (X, L) is the type (P; ~ a , b 1) with a &#x3E; 0 and b =1.

PROOF. This is obtained by Theorem 3.1 and Theorem 3.2.

THEOREM 3.4. Let (X, L) be a polarized abelian surface. Assume
with k ~ 3. Then (k - 1 )L is not k-very ample if and only if

one of the following holds:

( 1 ) k = 3, 4, or 5, and (X, L) is the type (J),
(2) (X, L) is the type (P; I a,, a2 1) with a1 &#x3E; 0 and a2 = 1,
(3) k = 3 and (X, L) is the type b2 ~ ) with and

b2=2,
(4) k = 3 and (X, L) is one of the type (1; 2), (II; 2), or (III; 2),
(5) k=3 and L2=4.
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PROOF. We can easily prove the «if» part by Theorem 1.4. So we

prove the «only if» part. If k ~ 4, then this is a corollary of Theorem 3.1,
and (X, L) is one of the type (1) or (2) in Theorem 3.4. So we may assume
that k = 3.

(A) The case in which L 2 ; 6.

Then 4 L 2 = ( k -1 )2 L 2 ;18 = 4 k + 6. Hence by Theorem 1.4, there
exists an effective divisor D on X such that 2 LD ~ 2g(D) + 2 ~ 7. Hence
LD  3. Since L 2 ~ 6 we get that D 2 = 0 and g(D ) = 1. Therefore 2 LD ~
~ 4, that is, LD ~ 2.

If LD = 1, or LD = 2 and D is not irreducible and reduced, then there
exists an irreducible and reduced curve B on X such that LB = 1. Hence

by Lemma 1.2 and Lemma 1.3, we get that (X, L) is the type (2) in Theo-
rem 3.4.

If LD = 2 and D is irreducible and reduced, then by Theorem 1.6 we
get that (X, L) is one of the type (3) or (4) in Theorem 3.4.

(B) The case in which L 2 = 2.

Then by Theorem 1.5, we get that (X, L ) is one of the type (1) or (2) in
Theorem 3.4.

(0 The case in which L 2 = 4.

Then (X, L) is the type (5) in Theorem 3.4.
This completes the proof of Theorem 3.4.

THEOREM 3.5. Let (X, L) be a polarized abelian surface. Assume
with k ~ 4. Then (k - 2 ) L is not k-very ample if and only if

one of the following holds:

( 1 ) k = 4 , 5 , 6, or 7, and (X, L) is the type (J),
(2) (X, L) is the type (P; I a,, a2 1) with a1 &#x3E; 0 and ct2 = 1,
(3) k = 4 or 5, and (X, L) is the type b2 ~ ) with and

b2 = 2,
(4) k = 4 or 5, and (X, L) is one of the type (I; 2), (II; 2), or

(III; 2),
(5) k=4 and L2=4.

PROOF. We can easily prove the «if» part by Theorem 1.4. So we

prove the «only if» part. If k ; 7, then this is a corollary of Theorem 3.1,
and (X, L) is one of the type (1) or (2) in Theorem 3.5.
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If 6 ~ k a 5, then this is a corollary of Theorem 3.2, and (X, L) is one
of the type (1), (2), (3) or (4) in Theorem 3.5. So we assume k = 4.

(A) The case in which L 2 ~ 6.

Then 4 L 2 = (k - 2 )2 L 2 ~ 22 = 41~ + 6. Hence by Theorem 1.4, there
exists an effective divisor D on X such that 2 LD 5 2g(D) + 3 ~ 9. Hence
LD ~ 4. Since L 2 ~ 6 we get that D 2 ~ 2 and g(D ) ~ 2. Therefore 2 LD ~
; 7, that is, LD ~ 3.

If LD = 3, then D 2 = 0 since L 2 ~ 6. Hence 2 LD ~ 5, that is, LD ~ 2.
This is a contradiction. Hence LD ~ 2 and D 2 = 0.

If LD = 1, or LD = 2 and D is not irreducible and reduced, then there
exists an irreducible and reduced curve B on X such that LB = 1. Hence

by Lemma 1.2 and Lemma 1.3, we get that (X, L) is the type (2) in Theo-
rem 3.5.

If LD = 2 and D is irreducible and reduced, then by Theorem 1.6 we
get that (X, L ) is one of the type (3) or (4) in Theorem 3.5.

(B) The case in which L 2 = 2.

Then by Theorem 1.5, we get that (X, L) is one of the type (1) or (2) in
Theorem 3.5.

(G~ The case in which L 2 = 4.

Then (X, L) is the type (5) in Theorem 3.5.
This completes the proof of Theorem 3.5.

In general, we can prove the following Theorem.

THEOREM 3.6. Let (X, L) be a polarized abelian surface. Let

(k, t , u) E with u ; 2 and 1~ ~ ~ (u + 3 ) t + 1 ~ /(u + 1). Assume that
( k - t)2L 2 -&#x3E; 41~ + 6. t ) L is not ample, then L is not u-very
ample,.

PROOF. If L 2  4 u + 6, then by Theorem 1.4, L is not u-very ample.
Hence we may assume that L 2 ~ 4 u + 6.

By assumption and Theorem 1.4, there exists an effective divisor D
on X such that ( 1~ - t ) LD ~ 2g(D) + 2 k + 1. We remark that

g(D) ~ 1.
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Since

-1~2~+1. Therefore L is not u-very ample.
Assume that g(D) ~ 2. Then

On the other hand,

Therefore LD ~ 2g(D) + ~c -1.
Hence it is sufficient to prove that 2 g(D ) + u - 1 ~ 2 ~c + 1.
If D 2 ~ u, then 2g(D) + ~c - 1 ~ 2 u + 1. Hence we may assume that

D 2 &#x3E; u. Since L 2 ; 4 u + 6, we get

Hence LD~2(~+!)+!.
On the other hand,
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Hence

But this is impossible. Therefore LD ~ 2 g(D ) + u - 1 ~ 2 u + 1. By The-
orem 1.4, we get that L is not u-very ample.
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