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On Positive Solutions of Some Periodic Parabolic
Eigenvalue Problem with a Weight Function.

T. GopoY (*)(**) - A. GUERIN (¥)(***) - S, PACZKA (*)(*,.*)

ABSTRACT - Let 2 be a bounded domain in R" and let m be a T-periodic function
such that its restriction to 2 x (0, T)isin L"(Q x (0, T)) for some r > n + 2.
We find necessary and sufficient conditions, on m, for the existence, unique-
ness and simplicity of the principal eigenvalue for the Dirichlet and Neumann
periodic parabolic eigenvalue problem with weight m.

1. Introduction.

Let 2 be a bounded domain in R" with C%*? boundary (0 <8 <1),
and {a; ;(x, t)}1<i j<n {0;(x, t)}1<j<, two families of (6, 6/2)-Holder
continuous and T-periodic in ¢ functions on Q xR. We also assume that
@;,;=0;; and that ¢ X £2< X a; (%, t) §;&; for some ¢>0 and all

— ? 1, J

(,t) e 2 xR, €1y oo &) e R
Let m(x, t) be a T-periodic in ¢ real function on Q X R. Our aim is to
consider, in a suitable weak sense, the following periodic parabolic
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(**) Partially supported by CONICOR and SECYTUNC.
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eigenvalue problem on 2 x R

* o
CLAN SRS \PCI .
ot i, 7 ow;0x; ox;
B(u) =

w(x,t) =u(x,t+7T),

where either B(u) = u 5o x» (Dirichlet condition) or B(u) = (0u/3v) 50 x
(Neumann condition). If meC®%2(Q xR) and B(u) = usgxn, Bel-
tramo and Hess, in [B-H], found necessary and sufficient conditions on
m for the existence, uniqueness and simplicity of the positive principal
eigenvalue of the above problem. Beltramo extended these results to
more general boundary conditions (that include the Neumann condition)
in [B]. The case m continuous and B(u) = (0u/9v) 50 x % is studied in [P]
and the case me L * (2 x R) is treated in [G-L-P] under the additional
hypothesis a; ;& C'(2 xR), 1 <4, j <n.. Our purpose is to cil?rtain, under

this additional assumtion, similar results if J [m|"|] < oo.
Qx(0,T)

2. Notation and preliminaries.

Let 2, a; ;, a;; be as above with a; ;e C'(Q x®), 1 <4, j <n. We fix,
for the whole paper, p, ¢ and r such that » + 2 <p < ¢ <r. We consider,
for ueC®1(Q xNR), L(u) = ou/dt + A(x, t, D)u where A(x,t, D)u=
= -2a; (x,t) D; ju— 2a;(x, t) Du.

Let E be a vector space of functions on 2 X R, we set

Ep={ueEND®B): Bu=0},

where D(B) is the domain of the boundary condition. For 1 < s < o, let
L{(2 x R) denote the space of the measurable functions f: 2 x R—C
such that f(x, t) = g/x, t+7T) ae. (x,t)eRX xR and |f]|; < o, where
I£lls = ( j I7]*] ifs< o and||f]l.= esssup |f(x t)|.IfSisa

2%, ) (x,t)eR2x (0, T
bounded operator from LE(2 x R) into LF(Q x R), we write [|S|,,, f
the norm operator with respect to the above norms. If @ is a real or com-
plex valued function on 2 x R, we still denote by a the operator multipli-
cation by a.
Let X=L?(Q). If a(x, t) is a T periodic function in C?% 2(Q x R)
and satisfies a=0 if B(u) =ujpoxn and a=0, a=0 if B(u)=
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= (Ou/dv)|s0 x », We consider A, (¢): WEP(2)cLP(Q)— LP(Q)defined by
A,()u=A(, t, D)u+a(-, t)u. Once we fix ke R, k> 1+ |al .., we put
A=A,.,(0) and for ae[0, 1]-let A be defined as in [H,1]. Let X, be
the domain of A®. Then X, is a Banach space with the norm ||, =
=||A % 4||,»q). We have X, = LP(Q), X; = W5 P(Q) and X, c X; whenever
0 < B < a <1, the inclusion being compact. Moreover, for 1/2 + n/2p <
<a<1,wehaveX,cC}*”forsomey = y(a) < 1 and this inclusion is com-
pact (see [H,1] or [A]).

For w>0, feC’([0, T+ w], X), ge(0,1] the linear evolution
equation

d
d_’t‘ F A, ) u®) =F1),  w(0) =u,

has a unique solution v € C([0, T + w,], X) N C*((0, T + w], X) if uge X,
and u e C1([0, T + w], X) if uoeX;. This solution is given by

12

u(t) = Uy ilt, 0o+ [ Uy sty 7) f(2) dr,

0

where U, . (t, 7) is the associated evolution operator. The change u(t) =
= ¢ ~"y(t) reduces the problem

% +A4,(@) v(@®) =f(®), v(0) =wuy

to the above problem and gives us
t
wt) = Uglt, 0) o + [ Uy(t, ) fl2) dr
0

where U,(t, ) = e* =2 U, . (¢, 7).

REMARK 2.1. For the rest of the paper we fix ae (1/2 + n/2p,
1-1/p), let k be as above and set

K,=U,(T, 0)|x,: X,—X,.

Let C}(R, X,), Cr(2 xR) and C} 7™ 7" (2 xR) denote the subspace
of T-periodic functions in C?(R, X,), C(Q xR) and C3*7" 7" (Q x R) re-
spectively. We identify LF(Q2 x R) with LE(R, L?(£2)) in the obvious
way. Then, if a is as above, (see e.g. [G-L-P], lemma 3.1), there exists
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ye(0,1) such that the operator S,: LP(2 x [0, T+ w])—>C"([0,
T + w], X,) defined by

T t
(S (@)(@®) = U, (¢, 0)J - Ka)“fUa(T, 7) 9(7) dv + [Ua(t, 1) 9(1) dt
0 0

is injective, positive and bounded. Moreover S,(g) has a unique T-peri-
odic extension to 2 x R, still denoted by S,(g) such that for ¢ =p

Sa(@Lu@xm: LE(Q x R) > LI(Q x R)

is a compact operator. Moreover, for some y* e (0, 1), the same is true
for

Sa(@chry v @xm: C1g" (@ xR) > CH "7 (@ xR).

This follows from the observation that the following inclusions are con-
tinuous and that the second is compact

Ct(R, X,)cC """ (@ XxR)cCr(@ xR)c LI X R).

REMARK 2.2. We now take A >0 and define W=_S,(L{(2 xXR))
and L: W—LE(Q xR) by L =8, —AI. Then W and L do not depend
on A (see e.g. [G-L-P], remark 3.5), L is an extension of L and
(L+A)71: LP(Q x R) — W is a positive operator (see e.g. [G-L-P] Lem-
ma 3.7). Note that, if we consider on W the topology induced by
C#g™ 7" (@ xR), then L is a closed operator.

Lemma 23, lim L +6)" |, =0.

ProoF. For 6 >0, we have U,(t,7)=e%t"2U,,s(, 7). For ge
eL{i(Q xR),0<t<T, we set Gs(r) = ¢ g(r), Holder inequality gives
us

1G5 lleco x 0,1 < €6 =P~ 1@ e lgllLoc x 10, 1y
For 0<t<T we have (L+6+1)"1(g)t) =SP(g)t)+SP(g)t),

where

t
SM(g)(t) =e j U,(t, 7) Gy() dr
0
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and

t
S@(g)(t) = e D UL(¢, 0)I — e ‘”Kl)“J'Ul(T, 1) Go(7) dr

0

reasoning as in lemma 3.1 in [G-L-P], we get
”S(l)(g)(t)“l,”(sz) <SP (@B < ce ~*[Gs "LF(Q x(0,1) S
<ed =M 1llgllLecg 1o, 7)-
So
ISV @D =2 0, ) < €0 =P~ llgll 0o o, -
The maximum principle implies
101, Ollo@y, can <1, 1K e, cam <1,

then

¢
e 0+ (¢, 0)(I — e ‘5TK1)_IIU1(T, 7) Go(7) dr

0

<
L (2% (0,T)

<ce T <

L= (2% (0, 1))

t
j U(T, 1) Gy(7) dr

0

T
j U,(T, )Gy () de

0

<ce T o <6 "D % gll 00w 1o, )

and the lemma follows. =

REMARK 2.4. By lemma 2.3 there exists a non increasing function
d9: B>°—>R>% such that (L +0)7,, » <& if 6> ¢(e). We set W=
=8; (L#(2 x R)). Note that W? does not depend on the choice of 4. ,
moreover W= WP, We have

LEMMA 25. If aeLi(Q xR) and deR, 6> 6,(1/all,), then

i) (L+a+ O)\we is a bijection between W and L{(Q x R).

i) (L+a+0)w) ™ LF(Q x R) = LHRL X R) is a compact op-
erator, moreover it is positive if a = 0.
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ProOF. To see that L+a+¢d is injective we note that (L+a+0)
cw=0, we W?, implies (I + (L +6)'a)w=0 (since L +0 is injective).
Now Lemma 2.3 give us the injectivity. Note also that, for we W,
ueL{(2 xNR), (L+a+06)w=mwu is equivalent to

w+ L +8) Y aw) =L +6)1u
then Lemma 2.3 implies that for u e L#(2 x R) this equation has an
unique solution w in Ls (2 X R). Moreover, the solution is given by
=L +06) u— (L +9)  (aw)
then we W% and so (L +a + ) we is bijective. On the other hand, Holder
inequality gives us (L +90)~ alloo » < 1. Therefore
I+ (L +0) @) cpoxm: Cr(2 X R)—>Cr(2 x R)

has a bounded inverse. Since (L +0)j3exm Is a compact operator on
L{(2 x R), the first statement of (ii) follows from the identity

(L +a+0)w) = +@L+0)" @) cpaxn) T +8)7".

Now we take a sequence {a,};cn of nonnegative and T periodic Hélder
continuous functions with support contained in Q xR that converges
to a in L3(2 x RN), then the sequence (L +a; + (5)|Wq) converges to
(L +a+ 8)ywe)~! in the norm topology on B(L7F (22 x R)). Indeed

|I((E+a+6)|wq)_l_((E+a]+6)|wq)_1”qus
< (@ +a+ 8)w) . o lla; = allw, T +a;+ O)wa) Iy, w <

< 2”((2; ta+ d)|W‘1)_1 ”r, q”a'j - a’”'r”((Z +a)|W")_l ”q, o

Since each ((L +a;+ 6)|Wq)‘1 is a positive operator, the lemma fol-
lows. =

LEMMA 2.6. Let (11, A5) be an open interval with A, > 0. Suppose
meLi(Q xR) and let so=350(Ay, Az, m) = (1/A1) 6o (1/(4Az ]| ),
where O is defined as in remark 2.4. Then for A e (41, A5) and s > s, we
have

@ (L +Ms - m))we: Wi—L{(Q2 X R) is a bijection.

@) L+ = m))ywe) " o, » < 4IE +28) ) e -
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(i) (L +A(s—m))|we) 1 LI XR) > LI xR) is a com-
pact and positive operator.

Proor. We write, as usual, m=m * — m~ where m * = max{m, 0}
and m~ = —min {'n}, 0}. Suppose that (L +A(s —m))w =0 for some
weW, then (I — AL +As)"'m)w =0 and so w= 0, since

M +28) " mle, o <AL +48) 7L, w Il < 1.
By Lemma 2.5 (L +A(s +2m ~ ))jwe) " is a compact and positive op-
erator on L{(2 x R). We have that

. . 1
@D @ +is+2m ) w) ! m| |l . <@ +28),w) 7 m] || . < 3

Then I — (L +A(s +2m ))jwe) " |m/|, as operator on L7 (2 x &), has
a bounded inverse. Since

@8) (I— (L +as+2m ) " m|) =

= (((Z +A(s +2m’))|w<l)_1 |m|)j

IEY)

this inverse is positive.
If ue LF(Q2 xR), let

2.9) w=(1—((Z+/1(s+2m—)),Wq)‘l|m|)_1((i+/1(s+2m-))|Wq)-1u.
Then
w— (L +As+2m 7)) (m|w) = (L +A(s +2m 7)) jwe) .

Thus we W and (L +A(s — m))w = u. Therefore (i) holds. From (2.8),
(2.9) and (2.7), we obtain (ii). The compactness stated in (iii) follows from
(2.8), since (by Lemma 2.5) (L +A(s +2m ~ ))jwe) " is a compact opera-
tor on LE(Q2 xNR). =

REMARK 2.10. If m is a T-periodic function in C*(2 X R) then
for s large enough, (L + A(s “m))fclexm) is a bounded operator on
Cr(2 xR) . Let o denote its spectral radius and let u,,: R—NR be de-
fined as in [H,1], p. 38, then for A e R, u (1) is the unique real number
such that there exists u; > 0, u; e C* (2 x R) satisfying Lu, = Aimu, +
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+ p  (A) uy, therefore

1
s tund)  °

DEFINITION 2.11. Let S be a bounded operator on LY(2 x [0, T])
and let E be a measurable subset of Q X [0, T). As in [S], we say that E
1s tnvariant relative to S if Sf= 0 a.e. in E whenever f=0 a.e. on E and
that S is irreducible if there are mo nontrivial invariant subsets rela-
tive to S.

In the following we identify L#(£ x R) with LY(Q x [0, T1).

LEMMA 2.12. (i) Suppose aeLT(Q X [0, T1) and let 6 be a positive
real number as in lemma 2.5, then (L +a + 6)w+)~" is irreducible on
LY(Rx[0,T])

(ii) Let (1, 45) be a finite open interval with A,>0. Suppose
meLi(Q2 X R) and let sy=5y(A1, A2, m) be defined as in lemma 2.6.
Then for e (A1, 13) and s> s,

(L +Ms—=m)|ws) L LEQ X R) > LI x R)
is irreducible on L1(Q x [0, T]).
Proor. To prove (i) we take be Cr (2 X R) such that
b6 —a-0dl,< (& +a+0)w) %
and note that

(L +b)we) ' =
= Lé‘,o(—l)j(((i +a+0)w) (b—a- 6))1] (L +a+06)w)".

Then if Ec 2 X [0, T] is invariant relative to (L +a + 6)+) it is also
invariant relative to (L +b)we)~". But this last operator on L#(£2 x &)
is irreducible, indeed, pick ce R such that b<c. If fe LF(Q2 x R) and
f>0then (L +b)"'f= (L +¢)"'f and the right hand side of this inequal-
ity is positive a.e.

To prove (i) we take b e L" (2 x R) such that [|b — m||, < 1. Then, for
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AelAy, Azl, we have |JA((L +A(s —m))we) || » <1/2. Thus

(L+AMs=b))ywe) "t =

= io( 1) (((E +A¢s — m))lwa)_l(m - b))j((Z +A(s — m)),Wq)’l.

j=

then (ii) follows from (i) and the identity

(L +As)we)~t =
= S0 ((E +As - D)) B (E +as— b))t m

COROLLARY 2.13. Let sy(m, Ay, Ap) be as in Lemma 2.6, suppose
§>sy(m, Ay, A3), and consider the operator S= ((L +A(s — m))qu)‘l
on LY(Q % (0, T)), then its spectral radius o is an algebraically simple
positive eigenvalue which has an a.e. positive eigenfunction, and no
other eigenvalue has a positive eigenfunction. Moreover it is also an
eigenvalue with an a.e. positive eigenfunction for the adjoint opera-
tor.

Proor. S is compact, irreducible and positive and so is its adjoint
S*: L7 (2 x (0, T))—L? (2 x (0, T)). Then the spectral radius of S
and S* are positive (See [Z], p. 410) and the theorem follows from theo-
rem 8 and lemma 16 in [S]. =

DEFINITION 2.14. Given meLj(Q2 X R) and A > 0. Pick Ay, A, such
that 0 <A; <A <Ay. Let sy(m, A1, A5) be as in Lemma 2.6 and pick
8> sy(m, A1, A3). We define u,,(A) by 1/(As + u(1)) = o, where g is the
spectral radius of

(L +A(s —m))we) e BLARQ X R)).

It is easy to check that u.,(1) does not depend on the particular A, A,
and s chosen. Additionally we define u,,(0) =0 for the Neumann
boundary condition and p,(0) equal to the principal eigenvalue of L ~*
for the Dirichlet boundary condition.

REMARK 2.15. Suppose B(%) =% sgxn- Let o> 0 be the principal
eigenvalue of L and let u, > 0 be such that Lu, = A,u,. Consider L™! as
operator on L (2 X R). Then (see [S], Theorem 8), 15! is a simple eigen-
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value of L™ LE (@ x ®) —» LE (2 x N) with a unique positive eigen-
function ¥ satisfying I ¥, =1. Similarly, for the Neumann con-

2x[0,T] - . .
dition, let ¥y be the pos?tive eigenfunction of (L +1)"1": L{ (2 x R) —
SLE(2 x R) with eigenvalue 1 satisfying j wy=1.

Qx[0,T]

LEMMA 2.16. Suppose 0 <A; <A and let {m;};_, be a sequence in
Cr* (2 X R) such that m; converges to m in Li(2 X R). Then {um }~,
converges to u,, uniformly on [1,, A,]

Proor. We choose s> so(|mll,, A1, 245). For each jeN and ie
€ [41, 24,] there exists u; ;€ C* (2 xR), u;, ; real analyticin 4, u; ; >0
in 2 xR such that

{ (L + l(s - m]))u]’l = (ls +ﬂmj(/1))uj,,{,
Buj(l) =0 ’ ”uj’,{”m =1

(see [H,1], Lemma 15.1). Since ((L + A(s —m;))we) " is positive, we
have u,, (4) = —A4s. Suppose the Dirichlet condition an let ¥, be as in
remark 2.15. We derive with respect to 4 at A =0 the identity

<uj,l7 WD) = <L _l(llmj +,um].(/1))uj’,1, lI’p)

to obtain du,,/dA|;-o= —{(m;ug, ¥p)ue, ¥p) Where u, is a positive
eigenfunction of L with eigenvalue A,. Analogously we get
A /A =0 = —(my, PN)1, ¥y) for the Neumann case. In either
case the sequence {du,/dA |;-o};~; is bounded from above. Also, since
Hom, is concave and satisfies /,cmj(l) = —Ason [A,24,], it is easy to see
that  {du,/dA|,-1,};~1 is bounded from  below. Then
{(du m;/dA)A) };e N, 1e 12y, 1,1 18 Dounded, so, by the Ascoli-Arzeld theorem
there exists subsequence {u g, }een that converges uniformly on
[A1, 2] Let o(A) = kli_r)r; Hm;, (A1), then u,, (1) = o(4) for A €[4, A,]. In-

deed, let ’ij 1= ujy ,1/||qu 2 ”m . From

2.17) v, 2= L7 (D) + Am;)v;

and since L1 LE(Q2 X R)—>Cp(R2 xR) is compact, there exists an
Cr(2 x RN) convergent subsequence {vj, 1}xen. Let v; = klim Vj,, 1 We

note that v; = 0. Taking limits in (2.17) we get v, = L' (o(1) + Am) v;,
and so, Corollary 2.13 implies u«,,(1) = o(4). Finally we observe that the
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above argument shows that any subsequence of {u,,(4)} has a subse-
quence that converges to u,,(1) and so the sequence itself converges to

Um(A). ®

LEMMA 2.18. If meL; (2% (0, T)) then u,, is continuous on
[0, ) and analytic on (0, «).

ProoF. Let {m;};Z; be a sequence in C7" (2 xR) that converges to
m in L7(2 x N), we pick s > sy(m, 4,, A,). By lemma 2.14 u, is continu-
ous on (0, ). The continuity of 4., at 0 follows from the facts that u,, is
the pointwise limit of a sequence of concave functions and that
{duy,/dA|;-0};~1 has an upper bound.

It remains to see the analyticity. Let J be the inclusion from W? into
L#(2 x R). We consider W7 as a Banach space, with the topology inher-
ited from the graph norm, then L +A(s — m): W'—L(2 x R) is a Ba-
nach space isomorphism and L +A(s — m) — (As + (1)) J is a compact
perturbation of it, therefore it is a Fredholm operator of index 0,
then

dim Ker (L +A(s —m) — (As + u,(1))) =

=co dim (Im (L +A(s — m) — (As + u (A)))) .

Corollary 2.13 implies that As+u, (1) is a J simple eigenvalue of
L +A(s — m). It follows from Lemma 1.3 in [C-R] that there exists ¢ > 0
such that if Ue BW?, LE(Q2 x R)) and | L +4(s —m) — Ul| < & then U
has an unique eigenvalue o(U) satisfying |o(U) — (As +u,,(1))| <e.
Moreover, o(U) is a J simple eigenvalue and the application U— o(U) is
analytic. For 1’ close enough to 4, A's + u,,(1") is a J simple eigenvalue
of the operator L +1'(s — m). Since u,, is continuous on (0, ©) we must
have o(L +A'(s —m)) = un,(A"), so the analyticity follows. m

REMARK 2.19. For meLi(QxR) and teR, let m(t)=
T

= ess sup m(x, t), m*(t) = ess inf m(x, ¢), and P(m) = j (t) dt. If m is

reQ & 0
independent of x, then u,,(1) = u,,(0) — A(P(m)/T). Indeed, this is true
if in addition m € Cy° (2 X R) (see [H,1], Lemma 15.3) and so, by Lemma
2.16, for an arbitrary m e L7(Q x 3R).
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3. — The Main results.

LEMMA 8.1. Let m;>my be functions in L7(Q2xR). Then
Pmy(A) <, (A), for all 2> 0.

Proor. If A>0 we pick A;,1,>0 such that 1, <iA<21,/2. We
also pick s> max{sy(m, A, A3), So(mg, A1, 12)}. We set Ty, Ty:
LR x R) > Li(Q x R) defined by T;=((L +A(s — m;))jws)~". Then
T, and T, are positive operators and, by (iii) of Lemma 2.6

Ty — Ty = A((L +A(s - my))we) " (my — mg) (L +A(s — ma))ywe) 1> 0.

Thus o(T,) = o(T,). Suppose for contradiction that o(T;) = o(T;) and
let o denote this value. Let ue W? % >0 such that Tou = ou, then
wx,t)>0a.e.(x,t) e 2 XN (see [S], Lemma 16) and then

iu=(1: +A(s—my))u=
o

=(L+Ms—m))u+Amy —mg) u> (L +A(s —my))u.
Thus T;u > ou. Contradiction. =

Let I'e C2(R, Q) be a T-periodic curve in 2 and 2, a domain in R
with C* boundary such that I(t) + Q,c 2 for every te . We de-
fine

Br o, ={I®) +w, t): we 2, te [0, T}

and

Pr,go(m)’—' I m.

BI',Q()

THEOREM 3.2. Let I'e C3(R, Q) be a T-periodic curve in Q and 2,
a domain in R" with C* boundary such that I(t) + Q,c Q2 for every
teR. Suppose m e LF(Q2 X R). Assume in addition that a; ; has contin-
uous spacial derivates da; ;/9x;, 1 <1i,j<n. Then we have
() If Pr, g,(m) >0, then there exists A” > 0 and u®? >0, solution
of the periodic eigenvalue Dirichlet problem Lu=Amu in Q xR,
Ujagxn = 0.
(ii) Suppose the Neumann boundary condition and m = m*. Let
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Yy be defined as in remark 2.15. If Pr, o (m) >0 and ('I’Nl m) <0 then
there exists AN >0 and u™ >0 that solve the problem Lu=imu in
Q X ER, au/avngm =0.

Proor. We pick c e R such that Pr o (m) >c>0. Let {m,};cy be a
sequence of functions in C7 (R" X R) such that supp m;c Q2 xR,
lim m; =m in L7 (2 X R). Without lost of generality we can assume that

JP,—, @,(m;) > c for all j € N. In the Neumann case we can also assume that
(¥, m;j) <0 and m;#m*. Let A7, u” (1Y, u")be the principal eigen-
value and the corresponding positive eigenvector for the Dirichlet (Neu-
mann) boundary condition (see [H,1], Theorems 16.1 and 16.3) corre-
sponding to the weight m; such that 4P| =1, (Juf . =1).

We first consider the Dirichlet case. We introduce the change of co-
ordinates given by @: 2 x R —R" x R where d(w, t) = (w — (%), t). In
the new coordinates the equation Lu;=A;m;ju; on 2 xR becomes
L?u®=4;m®u® on &(QxR), where m®=m;o® ! and u®=
= uj o® -1 .

Take 0, > 0 and v; > 0 satisfying L ®v; = o;m;v; on 2, x R, v; T peri-
odic and vjjs0,xm =0 and |lvll. =1. Since da; ;/0x;e C(Q xR) and

m;® > ¢ we can apply proposition 3.1 in [H,2] to obtain that the se-

QoxR
quence {o;} is bounded. Reasoning as in [H,1] Lemma 15.4, we see that

Aj<ojand soA; < c for some ¢ >0 and all j e N. Then we can find a sub-
sequence (which we still denote {4,}) that converges to some 1” = 0.
Use that {A?m;uf};.y is bounded in L7(2 X R), uf =L 1 (A;m;u)
and that "' is a compact operator on L7(2 X R) = Cr(2 x NR) to con-
clude that there exists a subsequence ujf that converges to some u?
in L (2 xN). Then u? =L ' (AP muP). Moreover, 1 > 0, otherwise
(L+1)"! would have 2 positive eigenvalues with positive eigenfunctions.

Let’s consider the Neumann case. It follows from A} < APthat there
exists a convergent subsequence A}. Let AY = lim 1. Moreover, we can
assume that ujlkv converges (in L (2 X R)) to some u”. Then we get, as
above, V¥ e W and Zu™ = A¥ mu”. To see that ¥ > 0 assume for contra-
diction that Zu” = 0. Then uy =1, and we have

(W, V) =(C+D7' A m+ D uf, ¥) = A mpul, W) + (uf, ¥).

Thus (m;u, ¥V) =0 and then (m, ¥V) = 0. Contradiction. =
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THEOREM 38.3. Let I and 2, be as above and meLi(Q2 x R).
We have

(i) Assume the Dirichlet Boundary condition and Pr, o ,(m) > 0.
Then there exists at most one AP >0 such that u,,(A°) =0.

(ii) Suppose the Newmann boundary condition, Pr o (m)>0,
(PN, m) <0 and m = m* then there exists at most one AN > 0 such that
Um(AN) =0.

Proor. (i) follows from the facts that u,, is concave on [0, ) and
Un(0)>0. To see (ii) suppose that there exist 1; >0, 1, > 0 such that
Um(A1) =pun(Ay) =0. Since u,, is concave and analytic we must have
u=0 on [0, »). Since m* # m, m < m then given ¢ >0 there exists
heL#(Q x R), h > 0 such that m + k < m and |||, < . Moreover we can
choose & such that m + h it is not function of ¢ alone. For ¢ small enough
we must have P(m + k) >0 and (¥, m + k) <0 so by theorem 3.2 there
exists A >0 such that u,,,(A) =0, but by Lemma 3.1 u, ,,(1) <
<u,n(A)=0. Contradiction. =

REMARK 34. Let m, a;; 1<¢t,j<n be as in Theorem 3.2 and let
{m;};2, be a sequence in C7" (2 x R), sup pm;c K; xR for some compact
subset K;c 2;. Then the sequence {4,} of principal eigenvalues associat-
ed to the weights m; converges to the principal eigenvalue A correspond-
ing to the weight m. Indeed, for every subsequence {4, } we can prove,
as in theorem 3.2, that there exists a subsequence {4;, } convergent to
some A satisfying u,,(1) = 0. So the assertion follows from lemma 3.8. A
diagonal process gives us the following

COROLLARY 3.5. Let m, a;; 1 <1,j<mn be as in Theorem 3.2 and
let {m;}7_ be a sequence in Li(22 x R) such that m; converges to m in
L7(2 X R). Then the sequence {1;} of principal eigenvalues associated
to the weights m; converges to the principal eigenvalue A corresponding
to the weight m.

We set m: R" x R— R defined by n(x, t) =t. f BcR"x RandteR
we put B;= {xeR":(x, t) e B}. If QcR" we define for 6 >0, Q;=
= {xeQ: dist(x, 3Q) > o}

LEMMA 3.6. Suppose that m e L7(2 X R) has an upper bound and
b
that I m(t) dt > c. Suppose also that >0 is such that Qs+ 0. Then
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there exists a finite family {Q,} <»<n of pairwise disjoints congruent
open cubes with edges of length | and parallel to the coordinate awxis
such that

1) I<(02n+1)) and Q.CR4sp % [a, b] for 1 <r<N.

(2) The family {n(Q,)}-, is pairwise disjoint.
N
3) Tgl |7(Q,) | =b—a.
J m>cl”.

ProoF. Without lost of generality we can assume that m < 1. Let m;
defined as in remark 2.19. It is easy to see that m; is a measurable func-
tion on [a, b]. Also m;(t) < m,,(t) and lim ,(t) = m(t). Then we can

b ] — 0

fix k large such that [;(t) dt > ¢, | 24| > |Q|/2 and k=1/6.
For 0<f0<6< nawe define
E(n, 6) = {(x, t) e 2.4 x [a, b]: m(x, t) = m;(t) —n + 0}

then m — (m —n)=6 on E(y,0). Let E%(n, 0) be the set of the
points (x, t) € E(n, 6) such that (x, t) is a Lebesgue point for m(x, t) —
— (M (t) — n) and, for r>0, let E™(y, 6) be the set of the points
(2, t) in E%(n, ) such that

1 - 6
me(m_ (m—n))= 3

holds for every open cube @ with edges parallel to the coordinate
axis with diameter less that 1/r containing (x,t). E™(y, 0) is a
measurable set. Note that E™ (5, ) cE® (5, ) if r <s. Also E%(y, ) C
C U E’(’)(n 6). Moreover, from |E ™ (5, 6),| #0 a.e. t e [a, b] it follows

that |n(E%(n, 6))] =b—a. Then
lim |2(E(q, )| = |E*(n, 0))| =b-a.

Given £¢>0 we fix r>2k such that |z(E"(y, 6))|=2b—-a—¢,
also we choose 0 <! <1/r(n + 1) such that Nl =b — a for some natural
number N. Let {¢;}o<;<y be the partition of [a, b] given by t;=a + il,
1=0 , N. Let I be the set of the indices 7, 0 <i¢ <N such that
the strlp R* X (t;_1, t;) intersects E™(n, @) and let I° be its com-
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plement. For iel we choose a cube Q; such that @;NE™ (5, ) = ¢
and m(Q;) = (t;_1,t). Since ET (5,0 cR,, and diam(Q;) <
<12k\n+1 we have that Qic 1/ X (Ei-1, L) Since
|7E ™ (y, 0)| =b—a—¢,I° satisfies X (t;—t;-,)<e Let F=
= Utioy, t), then |Q X F| <e|Q]. Nk’

[ 1m] <lmll, )@ x F|'" < e |ml, | 2]
QxF

with ' defined by 1/r + 1/r’' = 1. To cover :R" we use cubes with vertices
on the points of the lattice [Z™". Let Q{*, ..., @;f be the cubes in the mesh
meeting Q, so Q*c2, 1sj<sM. Since || <2|Q,|<2MI", then
M= |Q|/(21"). Since

M
el et Q1" = [ |m|= 3 [ |m]

QXF Q*xF
we have, for some s, 1 <s<M that
[ Im] <lmlle¥ |21 Mt <20 fmll e | 2] 7.
X F

We define, for 1el°, Q; =Q,*. Then, for iel

b
jma jm—n|Q,.| +0]Qi|/2=l"( jmk(t)dt—nnez/z).
Qi Q

Then

t-1

2

t.
’ 0l Card (1
ZI jm?l”(zl j?%,c(t)dt—nlCard(I)~ L())Z
1€ Qi 1€ tlvl
Y b—a
=" fﬁk(t)dt—l"(n(b—a)+0 )
ie1, 2

J-m‘ <20"||ml, e | 2|V we get
@

Since >
1el’

N b —
> jmaz” > jmk<t>dt—n<b-a>—eu—2||m||re”’“|9|‘”"
i=1Qi ieIt 2

-1
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N
and so I m=cl" for 5, 0, and ¢ small enough. =
=1

Now, reasoning as in remarks 4.2, 4.3 and lemma 4.4 of [G-L-P], we
obtain

REMARK 3.7. Suppose that m e L7(Q X R) is bounded from above
T
and that J'fﬁ(t) dt > 0. Then there exists a T-periodic curve y e C2(R, Q)

0
and a domain £, with smooth boundary such that
@ y)+ Qyc Q2 for every teR.
(i) Pr,o,(m)>0.

THEOREM 3.8. Let m, a;; 1 <1t,j<mn be as in Theorem 3.2. Sup-
pose that there exists A >0, ueD(L) u>0 solution of the periodic
eigenvalue problem Lu = Amu, B(u) = 0, where either B(u) = Ujs2 xR OT
B(u) = 0u/dv |30 x - If B(u) = du/dv |50 «  we also assume that m #= m, if
B(u) = 0u/ov |30 x - Then there exists a T-periodic curve y € Ci(R, Q)
and a domain Q , with smooth boundary satisfying y(t) + 2,cQ,teR
and such that Pr o (m) > 0. Moreover, if B(u) = Ou/0v 50 xn, we also
have (¥N, m) <0.

Proor. Taking into account lemma 3.1 and remark 2.17 and reason-
ing as in the regular case (see [H,1], Lemma 15.6) we obtain, in both
cases, P(m) > 0. Then lemma 3.6 gives us the first assertion of the theo-
rem. To see that (¥V, m) <0 we choose m;eC,°r(2 x R), je N, such
that m; converges to m in L7 (2 x R). We pick 4; <A. Then p,,(4,) >0,
therefore, by lemma 2.16, p,,(4,) > p,,(1,)/2 for all large enough j.
Therefore

/Am]()[,l) > /"m('ll)

and then (¥Y, m) < —(u,,(41)/24,)<0. =

— (PN, my) = u, (0) =2

REMARK 3.9. Letm,a; ;1<1,j<mnbeasin Theorem 3.2 and let M
be the operator multiplication by m. Suppose either the Dirichlet condi-
tion or the Neumann condition. Taking into account corollary 2.13 and
lemma 2.18 we have, with the same proof as in the regular case, (see
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[H,1], Lemma 16.9) that the posmve principal eigenvalue is an M simple
eigenvalue of L.
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