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On Positive Solutions of Some Periodic Parabolic

Eigenvalue Problem with a Weight Function.

T. GODOY (*)(**) - A. GUERIN (*)(***) - S. PACZKA (*)(***)

ABSTRACT - Let SZ be a bounded domain in R n and let m be a T-periodic function
such that its restriction to ,S~ x ( o, T) is in L r(Q x ( o, T) ) for some r &#x3E; n + 2.
We find necessary and sufficient conditions, on m , for the existence, unique-
ness and simplicity of the principal eigenvalue for the Dirichlet and Neumann
periodic parabolic eigenvalue problem with weight m.

1. Introduction.

Let Q be a bounded domain in gin with boundary (0  0  1),
and two families of (e, 8/2)-Holder
continuous and T-periodic in t functions on 32 x 91. We also assume that

i and that for some c &#x3E; 0 and all

Let m(x, t) be a T-periodic in t real function on S~ x ffi. Our aim is to
consider, in a suitable weak sense, the following periodic parabolic
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versidad Nacional de C6rdoba, Ciudad Universitaria, 5000 Cordoba, Argentina.

(**) Partially supported by CONICOR and SECYTUNC.
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(***) Partially supported by CONICOR and SECYTUNC.
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eigenvalue problem on ,~ x 91

where either B(u) = u ap (Dirichlet condition) or B( u) = x w

(Neumann condition). If and Bel-
tramo and Hess, in [B-H], found necessary and sufficient conditions on
m for the existence, uniqueness and simplicity of the positive principal
eigenvalue of the above problem. Beltramo extended these results to
more general boundary conditions (that include the Neumann condition)
in [B]. The case m continuous and B(u) = is studied in [P]
and the case treated in [G-L-P] under the additional
hypothesis 1  i , j  n .. Our purpose is to obtain, under

this additional assumtion, similar results if

2. Notation and preliminaries.

Let ,S~ , ai, j, aj; be as above with 1 ~ i , j ~ n . We fix,
for the whole paper, p, q and r such that n + 2  ~  q  r. We consider,
for where A(x, t, D) u =
= - 2:ai,j(x, t) 2:aj(x, t) 

Let E be a vector space of functions on S~ x 91, we set

where D(B) is the domain of the boundary condition. For 1 ~ let
denote the space of the measurable functions , f : Q 

such that f(x, t) = f(x, t + T) a.e. (x, t) e Q x ffi and Ilflls  00, where

bounded operator from x 91) into we write IISllp, q for
the norm operator with respect to the above norms. If a is a real or com-
plex valued function on S~ we still denote by a the operator multipli-
cation by a.

Let If a(x, t ) is a T periodic function in C e ~ e~2 ( ,S~ 
and satisfies a ; 0 if and a ; 0, if B(u) =
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= (8u/8v) x 91, we WB2, c L P ( Q ) - defined by
Aa(t)u =A(., t, D)u+a(., t)u. Once we fix I~ &#x3E; 1 we put

and for a e [0, 1 ]-let A a be defined as in [H,l]. Let Xa be
the domain of A °‘ . Then Xa is a Banach space with the norm lIX11a =
= We have Xo = Xl = Wz1,P(Q) and whenever

0 ~ ~3  a ; 1, the inclusion being compact. Moreover, for 1/2 + 
 a  1, we have Xa c for some y = y( a )  1 and this inclusion is com-

pact (see [H,l] or [A]).
For cv &#x3E; 0 , f E C a ( [ o , T + cv ], X ), (7~(0,1] the linear evolution

equation

has a unique solution u E C( [ o , T + cv , ], X) n C~((0, T + cv ], X) if uo E Xo
and if u0 E X1. This solution is given by

where i ) is the associated evolution operator. The change u(t) =
reduces the problem

to the above problem and gives us

REMARK 2.1. For the rest of the paper we fix a E (1/2 + n/2p,
1 - 1/p), let k be as above and set

Let Cf(ffi, Xa ), and C~~~ Y*(Q denote the subspace
of T-periodic functions in Xa ), C(Q and C# + Y * ’ Y * (D re-

spectively. We identify Lf(Q x with in the obvious

way. Then, if a is as above, (see e.g. [G-L-P], lemma 3.1), there exists
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y E (0, 1) such that the operator
T + cv ], defined by

is injective, positive and bounded. Moreover ,Sa(g) has a unique T-peri-
odic extension to S~ x ffi, still denoted by such that for 

is a compact operator. Moreover, for some y*E(0, 1 ), the same is true
for

This follows from the observation that the following inclusions are con-
tinuous and that the second is compact

REMARK 2.2. We now take A&#x3E;0 and define 
and L: x 91) by L = S~ 1- ~,I . Then W and L do not depend
on ~, (see e.g. [G-L-P], remark 3.5), L is an extension of L and

(L + ~, ) -1: Lf (Q a positive operator (see e.g. [G-L-P] Lem-
ma 3.7). Note that, if we consider on W the topology induced by

then L is a closed operator.

LEMMA 2.3.

PROOF. For d &#x3E; 0, we have For g E
E X 0 ~ r £ T, we set G3 (i) = e’5’g(,r), Hölder inequality gives
us

For 0 ~ t ~ T we have

where



5

and

reasoning as in lemma 3.1 in [G-L-P], we get

So

The maximum principle implies

then

and the lemma follows. *

REMARK 2.4. By lemma 2.3 there exists a non increasing function
such set W =

Note that W q does not depend on the choice of A. ,
moreover W = WP . We have

LEMMA 2.5. and then

i) (L + a + is a bijection between W q and x 9t).

ii) ((L + a + d ) ~ yyq ) -1: a compact op-
erator, moreover it is positive if a ~ 0.
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PROOF. To see that L+a+3 is injective we note that (Z+a+(5)’
. w = 0, w E W q, implies (I + (L + ~ ) -1 a) w = 0 (since L + 6 is injective).
Now Lemma 2.3 give us the injectivity. Note also that, for W E Wq,
u E (L + a + 3 ) w = u is equivalent to

then Lemma 2.3 implies that for this equation has an
unique solution w in Moreover, the solution is given by

then w E W q and so (L + a + 3 ) j wq is bijective. On the other hand, H61der
inequality gives us  1. Therefore

has a bounded inverse. Since (L + x is a compact operator on
x 91), the first statement of (ii) follows from the identity

Now we take a of nonnegative and T periodic H61der
continuous functions with support contained in ,S~ x 91 that converges
to a in then the sequence ((L + aj + d ) ~ Wq ) -1 converges to
((L + a + ~ ) ~ Wq ) -1 1 in the norm topology on Indeed

Since each ((L + a~ + d ) ~ yyq ) -1 is a positive operator, the lemma fol-

lows. 

LEMMA 2.6. Let (k1, k2) be an open interval with k1 &#x3E; 0 . Suppose
and let So=~o(~i~2)~)==(l/~i)~o(l/(4~2!!~!!oo,t.)),

where d o is defined as in 2.4. Then for ~~(~1,~2) and s &#x3E; so we

have
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pact and positive operator.

PROOF. We write, as usual, m = m ’ - m - where m ’ = max {m, 0 )
and m - 0 1. Suppose that (Z+~(s2013m))~==0 for some

then and so w = 0, since

By Lemma 2.5 ((L +A(s + 2 m - ) ) I wq ) -1 is a compact and positive op-
erator on x We have that

Then 1- ((L +~,(s +2m-))~W4)-1 I m I, as operator on x has
a bounded inverse. Since

this inverse is positive.
If u E let

Then

Thus W E Wand (L +~,(s - m)) w = u. Therefore (i) holds. From (2.8),
(2.9) and (2.7), we obtain (ii). The compactness stated in (iii) follows from
(2.8), since (by Lemma 2.5) (( L +A(s + 2 m - ) ) ~ Wq ) -1 is a compact opera-
tor on x 9t)..

REMARK 2.10. If m is a T-periodic function in then
for s large enough, is a bounded operator on
CT (Q x ffi) . Let Q denote its spectral radius and let p m : be de-
fined as in [H,1 ], p. 38, then u m ().) is the unique real number
such that there exists u~, &#x3E; 0 , satisfying +
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+ ,u m (~, ) ~c~,, therefore

DEFINITION 2.11. Let S be a bounded operator on L x [ 0 , T])
and let E be a measurable subset of Q x [ 0, T]. As in [S], we say that E
is invariant relative to S if sf = 0 a. e. in E whenever f = 0 a. e. on E and
that S is irreducible if there are no nontrivial invariant subsets rela-
tive to S.

In the following we identify L T I (S2 with x [ 0 , T]).

LEMMA 2.12. (i) Suppose a E L r(Q x [ 0 , T]) and let 6 be a positive
real number as in lemma 2.5, then ((L + a + 3) 1 Wq) -1 is irreducible on
L q(Q x [0, T])

(ii) Let (A 1, ~, 2 ) be a finite open interval with A &#x3E; 0 . Suppose
m x ffi) and let So = so(Â1, Â2, in) be defined as in lemma 2.6.
Then for Â E (Â 1, A2) and s &#x3E; so

is irreducible on L x [ 0, T]).

PROOF. To prove (i) we take b E CT (Q x 9t) such that

and note that

Then invariant relative to ((L + a is also
invariant relative to ((L + b ) ~ j,yq ) -1. But this last operator on 
is irreducible, indeed, pick C E R such that b  c . and

f &#x3E; 0 then (L + b) -1 f ~ (L the right hand side of this inequal-
ity is positive a.e.

To prove (ii) we take b E LT (Q such that lib - mll,  1. Then, for
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then (ii) follows from (i) and the identity

COROLLARY 2.13. Let so (m, À1, À2) be as in Lemma 2.6, suppose
s &#x3E; Â 1, ~, 2 ), and consider the operator S = (( L + À(s - m) ) ~ Wq ) -1 1
on L q(Q X ( 0 , T ) ) , then its spectral radius o is an algebraically simple
positive eigenvalue which has an a. e. positive eigenfunction, and no
other eigenvalue has a positive eigenfunction. Moreover it is also an
eigenvalue with an a. e. positive eigenfunction for the adj oint opera-
tor.

PROOF. S is compact, irreducible and positive and so is its adjoint
S*: L q’(S2 X ( 0 , x ( 0 , T ) ) . Then the spectral radius of S
and S * are positive (See [Z], p. 410) and the theorem follows from theo-
rem 8 and lemma 16 in [S]..

DEFINITION 2.14. Given and A &#x3E; 0. Pick À1, ~, 2 such
that 0  Â 1  A  À2. Let so (m , À 1, À2) be as in Lemma 2.6 and pick
s &#x3E; so (m, À 1, A 2)- We define by 1 I(As + ,u(~, ) ) = Q, where o is the
spectral radius of

It is easy to check that ,u m (~, ) does not depend on the particular A 1, A 2
and s chosen. Additionally we define ~c m ( 0 ) = 0 for the Neumann
boundary condition andu m ( 0 ) equal to the principal eigenvalue of L -1 1

for the Dirichlet boundary condition.

REMARK 2.15. Suppose B(u) = Let Ào &#x3E; 0 be the principal
eigenvalue of L and let uo &#x3E; 0 be such that Luo = À 0 uo . Consider L -1 as
operator on x 91). Then (see [S], Theorem 8), À01 is a simple eigen-
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value of L -1 * : x ffi) with a unique positive eigen-
function satisfying f = 1. Similarly, for the Neumann con-

dition, let be the positive eigenfunction of (L +1)-1*: Lq’T (Q x ffi) -

2013&#x3E;L~ (~2 x R) with eigenvalue 1 satisfying

LEMMA 2.16. 0  A  Â 2 and 1 be a sequence in

CTOO(Q such that mj converges to m in Then 1

converges to ,u m uniformly on [A 1, A 2 ].

PROOF. We choose s &#x3E; 2 A 2). For each j E N and A E
E [A 1, 2 A 21 there exists U j, A E C 2 ~ x 91), uj, A real analytic in A, &#x3E; 0

in S~ x 91 such that

(see [H,1], Lemma 15.1). Since is positive, we
have ,u m~ (~, ) ; - ~,s . Suppose the Dirichlet condition an let WD be as in
remark 2.15. We derive with respect to ~, at ~, = 0 the identity

to obtain WD) where uo is a positive
eigenfunction of L with eigenvalue A 0. Analogously we get

0/ N) for the Neumann case. In either
case the 1 is bounded from above. Also, since

is concave and satisfies on [A 19 2 A 2 it is easy to see
that 1 is bounded from below. Then

is bounded, so, by the Ascoli-Arzela theorem
there exists subsequence that converges uniformly on

Hi, A 2]. Let = lim Itm. (A), then 
= a(A) for A E [A 19 Â2]. In-

deed, let 

and since is compact, there exists an

convergent Let we

note Taking limits in (2.17) we = L -1 (o(k) + 
and so, Corollary 2.13 implies = t7(~). Finally we observe that the
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above argument shows that any subsequence of ~~c m~ (~, ) ~ has a subse-
quence that converges to and so the sequence itself converges to

um(k).

LEMMA 2.18. If then continuous on

[0, 00) and analytic on (0, 00).

PROOF. 1 be a sequence in that converges to

m in we pick s &#x3E; ~,1, Â 2). By lemma 2.14 is continu-

ous on ( o , 00). The continuity at 0 follows from the facts that is

the pointwise limit of a sequence of concave functions and that

has an upper bound.

It remains to see the analyticity. Let J be the inclusion from W~ into
x 9t). We consider W q as a Banach space, with the topology inher-

ited from the graph norm, then L + Â( s - m): W~2013~L~(G x is a Ba-

nach space isomorphism and L + À( s - m) - (Âs + p m (£) ) J is a compact
perturbation of it, therefore it is a Fredholm operator of index 0,
then

Corollary 2.13 implies that ~,s + ,u m (~, ) is a J simple eigenvalue of

L + A(s - m). It follows from Lemma 1.3 in [C-R] that there exists E &#x3E; 0

such that if and IlL + ~,( s - m) - uti  E then U
has an unique eigenvalue e(U) satisfying o( U) - (~,s + ,u ~ (~,) ) ~  ~ .
Moreover, e(U) is a J simple eigenvalue and the application ~72013~(~7) is
analytic. For ~, ’ close enough to A, A’s + ,u m (~, ’ ) is a J simple eigenvalue
of the operator L + ~, ’ ( s - m ). Since Ilm is continuous on (0, 00) we must
have + ~, ’ ( s - m ) ) _ ,u m ( ~, ’ ), so the analyticity follows.

REMARK 2.19. For let 
T

= ess sup m(x, t), m * (t) = ess inf m(x, t), and P(m) = m(t) dt. If m isxeS2 xES2 
0 

~ 

independent of x, then Indeed, this is true
if in addition m e x ffi) (see [H,1], Lemma 15.3) and so, by Lemma
2.16, for an arbitrary X gi).
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3. - The Main results.

LEMMA 3.1. Let ml &#x3E; m2 be functions in Then

um1(k)  um2(k), for all k &#x3E; 0.

PROOF. If ~&#x3E;0 we pick ~i,A2&#x3E;0 such that ~iA~2/2. We
also pick We set T1, T2 :

defined by Then

T1 and T2 are positive operators and, by (iii) of Lemma 2.6

Thus Suppose for contradiction that and

let Q denote this value. Let u &#x3E; 0 such that then

u(x, t) &#x3E; 0 a. e. (x, t) x 91 (see [S], Lemma 16) and then

Thus Contradiction.

Let T E S~ ) be a T-periodic curve in Q and domain in ffin
with C °° boundary such that for every We de-
fine

and

THEOREM 3.2. Let Q) be a T-periodic curve in Q and Qo
a domain in ffin with C 00 boundary such that r( t) + Q 0 c S~ for every
t E ffi. Suppose m E Assume in addition that ai, j has contin-
uous spacial derivates 8ai,j/8xü 1 ~ i, j ~ n. Then we have

(i) If Pr, Do o (m ) &#x3E; 0, then there exists AD &#x3E; 0 and solution

of the periodic eigenvalue Dirichlet problem L u = Amu in Q x ffi,
= 0.

(ii) Suppose the Neumann boundary condition and m * . Let
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be defined as in remark 2.15. If Pr, Do(m) &#x3E; 0 m)  0 then
there exists A~&#x3E;0 and u N &#x3E; 0 that solve the problem Lu = Àmu in

·

PROOF. We pick c E R such that Pr, &#x3E; c &#x3E; 0. Let be a

sequence of functions in such that supp 
lim mj = m in x lll ). Without lost of generality we can assume that

j - oo

Pr, for the Neumann case we can also assume that
 0 and Let Âf, u D (Âf, the principal eigen-

value and the corresponding positive eigenvector for the Dirichlet (Neu-
mann) boundary condition (see [H,l], Theorems 16.1 and 16.3) corre-

sponding to the weight mj such that = 1, = 1 ).
We first consider the Dirichlet case. We introduce the change of co-

ordinates given by W : where ~( w , t ) = (w - T( t ), t). In
the new coordinates the equation on becomes

L ° uj° = £ j on where m.ø = mj 04&#x3E;-1 and 
0 ’¥ .

Take aj &#x3E; 0 and vj &#x3E; 0 satisfying = on peri-
odic = 0 and = 1. Since and

j &#x3E; c we can apply proposition 3.1 in [H,2] to obtain that the se-
Doxffi
quence ~a~j ~ is bounded. Reasoning as in [H,l] Lemma 15.4, we see that
Âj  aj and so ~, j ~ c for some c &#x3E; 0 and all j E N. Then we can find a sub-
sequence (which we still denote ~ ~, j ~ ) that converges to some ~~0.
Use is bounded in 
and that L -1 is a compact operator on to con-

clude that there exists a subsequence ujD that converges to some U D
in Then Moreover, ~, D &#x3E; 0, otherwise
(L + 1 ) -1 would have 2 positive eigenvalues with positive eigenfunctions.

Let’s consider the Neumann case. It follows from  Àfthat there
exists a convergent subsequence Â Jfc. Let À N = lim Moreover, we can
assume that ujN converges (in x ?)) to some Then we get, as
above, UN E W and L u N = To see that À N &#x3E; 0 assume for contra-

diction that L u N = 0. Then uN = 1, and we have

Thus q¡N) = 0 and then (m, WN) = 0. Contradiction.
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THEOREM 3.3. Let rand Qo be as above and 
We have

(i) Assume the Dirichlet Boundary condition and Pr, &#x3E; 0 .

Then there exists at most one ~, D &#x3E; 0 such that = 0 .

(ii) Suppose the Neumann boundary condition, 
~ ~N, in)  0 and m ~ m * then there exists at most one Â N &#x3E; 0 such that

um (kN) = 0

PROOF. (i) follows from the facts that is concave on [0, 00) and

,~ m ( o ) &#x3E; 0 . To see (ii) suppose that there exist ~.1 &#x3E; 0 , Â 2 &#x3E; 0 such that

~ m (~ 1 ) _ ~ m (~ 2 ) =0. Since Il m is concave and analytic we must have
Il = 0 on [0, (0). Since m * = ri2, m  m then given E &#x3E; 0 there exists
h E 0 such that m + h  m and  e . Moreover we can

choose h such that m + h it is not function of t alone. For E small enough
we must have P(m + h) &#x3E; 0 m + h)  0 so by theorem 3.2 there
exists ~&#x3E;0 such that pm+~(£) = 0, but by Lemma 3.1 

 ,u m (~, ) = 0 . Contradiction.

REMARK 3.4. Let m, ai,j 1 ~ i, j ~ n be as in Theorem 3.2 and let
1 be a sequence in CT (Q x ffi), sup p inj x 9t for some compact

subset Kj c Q j. Then the of principal eigenvalues associat-
ed to the weights inj converges to the principal eigenvalue Â correspond-
ing to the weight m. Indeed, for every we can prove,
as in theorem 3.2, that there exists a subsequence convergent to
some £ satisfying ,u m (~, ) = 0 . So the assertion follows from lemma 3.8. A
diagonal process gives us the following

COROLLARY 3.5. Let m, ai,j 1 ~ as in Theorem 3.2 and
be a sequence in such that m~ converges to m in

x ffi). Then the of principal eigenvalues associated
to the weights mj converges to the principal eigenvalue Â corresponding
to the weight m.

We set yr: ffin defined by 
we put If we define for 6&#x3E;0, ,S~ a =
= dist (x, aS~) &#x3E; d }.

LEMMA 3.6. Suppose that has an upper bound and
b

that Suppose also that d &#x3E; 0 is such that Qd = 0. Then
a
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there exists a finite of pairwise disj oints congruent
open cubes with edges of length 1 and parallel to the coordinate axis
such that

(2) The family 1 is pairwise disjoint.

PROOF. Without lost of generality we can assume 1. Let rn~
defined as in remark 2.19. It is easy to see that mj is a measurable func-
tion on [ a, b]. Also and lim = m(t). Then we can

b j- °°

fix k large such S~ ~ /2 and k ; 1 /~ .
a

For 0  8  3  p we define

then on E’(~9). Let be the set of the

points (x, t) (j) such that (x, t) is a Lebesgue point for t) -
-(mk(t) - n) and, for r &#x3E; 0, let E (’) (17, (j) be the set of the points
(x, t) in (j) such that

holds for every open cube Q with edges parallel to the coordinate
axis with diameter less that 1 /r containing (x, t ). E ~r~ ( r~ , 8 ) is a

measurable set. Note that E ~r~ ( ~ , 8 ) C E ~s~ ( r~ , s. Also E d ( r~ , 8 ) c
c U E(r)(n, 0). Moreover, from |E(r)(n, 0)t| 0 a.e. t E [ a , b ] it follows

Given E &#x3E; 0 we fix r &#x3E; 2 k such that B ) ) ~ ; b - a - ~ ,
also we choose 0  1  1 /r(n + 1) such that Nl = b - a for some natural
number N. be the partition of [a, b] given by ti = a + iL,
i = 0, ... , N. Let I be the set of the indices i, 0 ~ i ~ N such that
the strip ( ti -1, ti ) intersects E ~r~ ( ~ , 8 ) and let I ~ be its com-
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plement. For i E I we choose a cube Qi such that Qi n E (r) ()7, 
and ,n( Qi ) _ ( ti -1, ti ). Since and diam (Qi) 
 1/2k n + 1 we have that Since

with r’ defined by + 1 /r’ - 1. To cover ffin we use cubes with vertices
on the points of the lattice Let Q1*’ ... , ~M be the cubes in the mesh
meeting so Since IQI [ [ then
M~ ~~/(2D. Since

we have, for some s , 1 ~ s ~ M that

We define, for Then, for i E I

Then

Since we get
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and cl n for n, 0, and E small enough.

Now, reasoning as in remarks 4.2, 4.3 and lemma 4.4 of [G-L-P], we
obtain

REMARK 3.7. Suppose that x 91) is bounded from above
T

and dt &#x3E; 0. Then there exists a T-periodic curve y E Q)
o

and a domain with smooth boundary such that

(i) y ( t ) + for every t E 91.

THEOREM 3.8. Let m, 1 ~ i, j ~ n be as in Theorem 3.2. 
pose that there exists A &#x3E; 0 , u E D(L) u &#x3E; 0 solution of the periodic
eigenvalue problem L u = Amu, B(u) = 0, where either B(u) = UlaD x m or
B(u) = 8u/8v laD x m. If B(u) = 8u/8v x m we also assume that m ~ R, if
B(u) = 8u/8vlaDXm. Then there exists a T-periodic curve Q)
and a domain Q 0 with smooth boundary satisfying y(t) + Q o c S~, t E=- 91
and such that &#x3E; 0. Moreover, if B(u) = 8u/8vlaDxm, we also
have (W’, in)  0 .

PROOF. Taking into account lemma 3.1 and remark 2.1’l and reason-
ing as in the regular case (see [H,1], Lemma 15.6) we obtain, in both
cases, P(m) &#x3E; 0. Then lemma 3.6 gives us the first assertion of the theo-
rem. To see that (tpN, we choose such

that mj converges to m in Lf(Q We pick À  A. Then Itm (~,1 ) &#x3E; 0 ,
therefore, by lemma 2.16, ,u m~ (~,1 ) &#x3E; ,u m (~ 1 )/2 for all large enough j.
Therefore 

and then (~m)~ -(/~i)/2Ai)0. *

REMARK 3.9. Let m, ai, j 1 ~ i, j ~ n be as in Theorem 3.2 and let M
be the operator multiplication by m . Suppose either the Dirichlet condi-
tion or the Neumann condition. Taking into account corollary 2.13 and
lemma 2.18 we have, with the same proof as in the regular case, (see
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[H,1], Lemma 16.9) that the positive principal eigenvalue is an M simple
eigenvalue of L. -
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