Rendiconti

del
 SEminario Matematico della Università di Padova

T. GODOY
A. GUERIN
S.PACZKA

On positive solutions of some periodic parabolic eigenvalue problem with a weight function

Rendiconti del Seminario Matematico della Università di Padova, tome 101 (1999), p. 1-18
http://www.numdam.org/item?id=RSMUP_1999_101__1_0
© Rendiconti del Seminario Matematico della Università di Padova, 1999, tous droits réservés.
L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

On Positive Solutions of Some Periodic Parabolic Eigenvalue Problem with a Weight Function.

T. Godoy $\left({ }^{*}\right)\left({ }^{* *}\right)-\operatorname{A} . \operatorname{Guerin}\left({ }^{*}\right)\left({ }^{* * *}\right)-\operatorname{S.} \operatorname{Paczka}\left({ }^{*}\right)\left({ }^{*}{ }^{*}\right)$

AbStract - Let Ω be a bounded domain in R^{n} and let m be a T-periodic function such that its restriction to $\Omega \times(0, T)$ is in $L^{r}(\Omega \times(0, T))$ for some $r>n+2$. We find necessary and sufficient conditions, on m, for the existence, uniqueness and simplicity of the principal eigenvalue for the Dirichlet and Neumann periodic parabolic eigenvalue problem with weight m.

1. Introduction.

Let Ω be a bounded domain in \Re^{n} with $C^{2+\theta}$ boundary $(0<\theta<1)$, and $\left\{a_{i, j}(x, t)\right\}_{1 \leqslant i, j \leqslant n}\left\{a_{j}(x, t)\right\}_{1 \leqslant j \leqslant n}$ two families of $(\theta, \theta / 2)$-Hölder continuous and T-periodic in t functions on $\bar{\Omega} \times \mathfrak{R}$. We also assume that $a_{i, j}=a_{j, i}$ and that $c \sum_{i} \xi_{i}^{2} \leqslant \sum_{i, j} a_{i, j}(x, t) \xi_{i} \xi_{j}$ for some $c>0$ and all $(x, t) \in \bar{\Omega} \times \mathfrak{R},\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathfrak{R}^{n}$.

Let $m(x, t)$ be a T-periodic in t real function on $\Omega \times \Re$. Our aim is to consider, in a suitable weak sense, the following periodic parabolic
(*) Indirizzo degli AA.: Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Cordoba, Argentina.
(**) Partially supported by CONICOR and SECYTUNC.
(***) Partially supported by CONICOR.
$\left({ }^{*}{ }^{*}\right)$ Partially supported by CONICOR and SECYTUNC.
eigenvalue problem on $\Omega \times \mathfrak{R}$

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\sum_{i, j} a_{i, j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}-\sum_{j} a_{j} \frac{\partial u}{\partial x_{j}}=\lambda m u \\
B(u)=0 \\
u(x, t)=u(x, t+T)
\end{array}\right.
$$

where either $B(u)=u_{\mid \partial \Omega \times \Re}$ (Dirichlet condition) or $B(u)=(\partial u / \partial v)_{\mid \partial \Omega \times \Re}$ (Neumann condition). If $m \in C^{\theta, \theta / 2}(\bar{\Omega} \times \Re)$ and $B(u)=u_{\mid \partial \Omega \times \Re}$, Beltramo and Hess, in [B-H], found necessary and sufficient conditions on m for the existence, uniqueness and simplicity of the positive principal eigenvalue of the above problem. Beltramo extended these results to more general boundary conditions (that include the Neumann condition) in [B]. The case m continuous and $B(u)=(\partial u / \partial v)_{\mid \partial \Omega \times \Re}$ is studied in [P] and the case $m \in L^{\infty}(\Omega \times \Re)$ is treated in [G-L-P] under the additional hypothesis $a_{i, j} \in C^{1}(\bar{\Omega} \times \Re), 1 \leqslant i, j \leqslant n$.. Our purpose is to obtain, under this additional assumtion, similar results if $\left(\int_{\Omega \times(0, T)}|m|^{r}\right)^{1 / r}<\infty$.

2. Notation and preliminaries.

Let $\Omega, a_{i, j}, a_{j}$; be as above with $a_{i, j} \in C^{1}(\bar{\Omega} \times \mathfrak{R}), 1 \leqslant i, j \leqslant n$. We fix, for the whole paper, p, q and r such that $n+2<p<q<r$. We consider, for $u \in C^{2,1}(\bar{\Omega} \times \Re), L(u)=\partial u / \partial t+A(x, t, D) u$ where $A(x, t, D) u=$ $=-\sum a_{i, j}(x, t) D_{i, j} u-\sum a_{j}(x, t) D_{j} u$.

Let E be a vector space of functions on $\Omega \times \mathfrak{R}$, we set

$$
E_{B}=\{u \in E \cap D(B): B u=0\}
$$

where $D(B)$ is the domain of the boundary condition. For $1 \leqslant s \leqslant \infty$, let $L_{T}^{s}(\Omega \times \mathfrak{R})$ denote the space of the measurable functions $f: \Omega \times \mathfrak{R} \rightarrow C$ such that $f(x, t)=f(x, t+T)$ a.e. $(x, t) \in \Omega \times \mathfrak{R}$ and $\|f\|_{s}<\infty$, where $\|f\|_{s}=\left(\int_{\Omega \times(0, T)}|f|^{s}\right)^{1 / s}$ if $s<\infty$ and $\|f\|_{\infty}={\operatorname{ess} \sup _{(x, t) \in \Omega \times(0, T)}|f(x, t)| \text {. If } S \text { is a }}^{\operatorname{en}}$ bounded operator from $L_{T}^{p}(\Omega \times \mathfrak{R})$ into $L_{T}^{q}(\Omega \times \mathfrak{R})$, we write $\|S\|_{p, q}$ for the norm operator with respect to the above norms. If a is a real or complex valued function on $\Omega \times \Re$, we still denote by a the operator multiplication by a.

Let $X=L^{p}(\Omega)$. If $a(x, t)$ is a T periodic function in $C^{\theta, \theta / 2}(\Omega \times \mathfrak{R})$ and satisfies $a \geqslant 0$ if $B(u)=u_{\mid \partial \Omega \times \Re}$ and $a \geqslant 0, a \neq 0$ if $B(u)=$
$=(\partial u / \partial v)_{\mid \partial \Omega \times \Re}$, we consider $A_{a}(t): W_{B}^{2, p}(\Omega) \subset L^{p}(\Omega) \rightarrow L^{p}(\Omega)$ defined by $A_{a}(t) u=A(\cdot, t, D) u+a(\cdot, t) u$. Once we fix $k \in \Re, k>1+\|a\|_{\infty}$, we put $A=A_{a+k}(0)$ and for $\alpha \in[0,1]$-let A^{α} be defined as in [H,1]. Let X_{α} be the domain of A^{α}. Then X_{α} is a Banach space with the norm $\|x\|_{\alpha}=$ $=\left\|A^{\alpha} x\right\|_{L^{p}(\Omega)}$. We have $X_{0}=L^{p}(\Omega), X_{1}=W_{B}^{2}, p(\Omega)$ and $X_{\alpha} \subset X_{\beta}$ whenever $0 \leqslant \beta<\alpha \leqslant 1$, the inclusion being compact. Moreover, for $1 / 2+n / 2 p<$ $<\alpha<1$, we have $X_{\alpha} \subset C_{B}^{1+\gamma}$ for some $\gamma=\gamma(\alpha)<1$ and this inclusion is compact (see [H,1] or [A]).

For $\omega>0, f \in C^{\sigma}([0, T+\omega], X), \sigma \in(0,1]$ the linear evolution equation

$$
\frac{d u}{d t}+A_{a+k}(t) u(t)=f(t), \quad u(0)=u_{0}
$$

has a unique solution $u \in C([0, T+\omega], X,) \cap C^{1}((0, T+\omega], X)$ if $u_{0} \in X_{0}$ and $u \in C^{1}([0, T+\omega], X)$ if $u_{0} \in X_{1}$. This solution is given by

$$
u(t)=U_{a+k}(t, 0) u_{0}+\int_{0}^{t} U_{a+k}(t, \tau) f(\tau) d \tau
$$

where $U_{a+k}(t, \tau)$ is the associated evolution operator. The change $u(t)=$ $=e^{-k t} v(t)$ reduces the problem

$$
\frac{d v}{d t}+A_{a}(t) v(t)=f(t), \quad v(0)=u_{0}
$$

to the above problem and gives us

$$
v(t)=U_{a}(t, 0) u_{0}+\int_{0}^{t} U_{a}(t, \tau) f(\tau) d \tau
$$

where $U_{a}(t, \tau)=e^{k(t-\tau)} U_{a+k}(t, \tau)$.
Remark 2.1. For the rest of the paper we fix $\alpha \in(1 / 2+n / 2 p$, $1-1 / p)$, let k be as above and set

$$
K_{a}=\left.U_{a}(T, 0)\right|_{X_{a}}: X_{\alpha} \rightarrow X_{\alpha}
$$

Let $C_{T}^{\gamma}\left(\mathfrak{R}, X_{\alpha}\right), C_{T}(\bar{\Omega} \times \mathfrak{R})$ and $C_{T, B}^{1+\gamma^{*}, \gamma^{*}}(\bar{\Omega} \times \mathfrak{R})$ denote the subspace of T-periodic functions in $C^{\gamma}\left(\mathfrak{R}, X_{\alpha}\right), C(\bar{\Omega} \times \mathfrak{R})$ and $C_{B}^{1+\gamma^{*}, \gamma^{*}}(\bar{\Omega} \times \mathfrak{R})$ respectively. We identify $L_{T}^{p}(\Omega \times \mathfrak{R})$ with $L_{T}^{p}\left(\mathfrak{R}, L^{p}(\Omega)\right)$ in the obvious way. Then, if a is as above, (see e.g. [G-L-P], lemma 3.1), there exists
$\gamma \in(0,1)$ such that the operator $S_{a}: L^{p}(\Omega \times[0, T+\omega]) \rightarrow C^{\gamma}([0$, $T+\omega], X_{\alpha}$) defined by

$$
\left(S_{a}(g)\right)(t)=U_{a}(t, 0)\left(I-K_{a}\right)^{-1} \int_{0}^{T} U_{a}(T, \tau) g(\tau) d \tau+\int_{0}^{t} U_{a}(t, \tau) g(\tau) d \tau
$$

is injective, positive and bounded. Moreover $S_{a}(g)$ has a unique T-periodic extension to $\Omega \times \mathfrak{R}$, still denoted by $S_{a}(g)$ such that for $q \geqslant p$

$$
S_{a}(g)_{\mid L_{T}^{q}(\Omega \times \Re)}: L_{T}^{q}(\Omega \times \Re) \rightarrow L_{T}^{q}(\Omega \times \Re)
$$

is a compact operator. Moreover, for some $\gamma^{*} \in(0,1)$, the same is true for

$$
S_{a}(g)_{\mid C_{T, B}^{1+\gamma^{*}, \gamma^{*}}(\bar{\Omega} \times \Re)}: C_{T, B}^{1+\gamma^{*}, \gamma^{*}}(\bar{\Omega} \times \Re) \rightarrow C_{T, B}^{1+\gamma^{*}, \gamma^{*}}(\bar{\Omega} \times \Re) .
$$

This follows from the observation that the following inclusions are continuous and that the second is compact

$$
C \not \approx\left(\Re, X_{\alpha}\right) \subset C_{T, B}^{1+\gamma^{*}, \gamma^{*}(\bar{\Omega} \times \Re) \subset C_{T}(\bar{\Omega} \times \mathfrak{R}) \subset L_{T}^{q}(\Omega \times \Re) .}
$$

Remark 2.2. We now take $\lambda>0$ and define $W=S_{\lambda}\left(L_{R}^{p}(\Omega \times \Re)\right)$ and $\tilde{L}: W \rightarrow L_{T}^{p}(\Omega \times \Re)$ by $\tilde{L}=S_{\lambda}^{-1}-\lambda I$. Then W and \tilde{L} do not depend on λ (see e.g. [G-L-P], remark 3.5), \tilde{L} is an extension of L and $(\tilde{L}+\lambda)^{-1}: L_{T}^{p}(\Omega \times \Re) \rightarrow W$ is a positive operator (see e.g. [G-L-P] Lemma 3.7). Note that, if we consider on W the topology induced by $C_{T, B^{*}}^{1+\gamma^{*}}(\bar{\Omega} \times \Re)$, then \tilde{L} is a closed operator.

Lemma 2.3. $\lim _{\delta \rightarrow+\infty}\left\|(\tilde{L}+\delta)^{-1}\right\|_{r, \infty}=0$.
Proof. For $\delta>0$, we have $U_{a}(t, \tau)=e^{\delta(t-\tau)} U_{a+\delta}(t, \tau)$. For $g \in$ $\in L_{T}^{q}(\Omega \times \mathfrak{R}), 0 \leqslant \tau \leqslant T$, we set $G_{\delta}(\tau)=e^{\delta \tau} g(\tau)$, Hölder inequality gives us

$$
\left\|G_{\delta}\right\|_{L^{p}(\Omega \times[0, t])} \leqslant c \delta^{-(1 / p-1 / q)} e^{\delta t}\|g\|_{L^{q}(\Omega \times[0, t])} .
$$

For $0 \leqslant t \leqslant T$ we have $(\tilde{L}+\delta+1)^{-1}(g)(t)=S^{(1)}(g)(t)+S^{(2)}(g)(t)$, where

$$
S^{(1)}(g)(t)=e^{-\delta t} \int_{0}^{t} U_{1}(t, \tau) G_{\delta}(\tau) d \tau
$$

and

$$
S^{(2)}(g)(t)=e^{-\delta(t+T)} U_{1}(t, 0)\left(I-e^{-\delta T} K_{1}\right)^{-1} \int_{0}^{t} U_{1}(T, \tau) G_{\delta}(\tau) d \tau
$$

reasoning as in lemma 3.1 in [G-L-P], we get

$$
\begin{aligned}
&\left\|S^{(1)}(g)(t)\right\|_{L^{\infty}(\Omega)} \leqslant c\left\|S^{(1)}(g)(t)\right\|_{\alpha} \leqslant c e^{-\delta t}\left\|G_{\delta}\right\|_{L^{p}(\Omega \times(0, t))} \leqslant \\
& \leqslant c \delta^{-(1 / p-1 / q)}\|g\|_{L^{q}(\Omega \times[0, T])}
\end{aligned}
$$

So

$$
\left\|S^{(1)}(g)(t)\right\|_{L^{\infty}(\Omega \times(0, T))} \leqslant c \delta^{-(1 / p-1 / q)}\|g\|_{L^{q}(\Omega \times(0, T))} .
$$

The maximum principle implies

$$
\left\|U_{1}(t, 0)\right\|_{C(\Omega), C(\Omega)} \leqslant 1, \quad\left\|K_{1}^{-1}\right\|_{C(\Omega)}, C(\Omega) \leqslant 1
$$

then

$$
\begin{aligned}
& \left\|e^{-\delta(t+T)} U_{1}(t, 0)\left(I-e^{-\delta T} K_{1}\right)^{-1} \int_{0}^{t} U_{1}(T, \tau) G_{\delta}(\tau) d \tau\right\|_{L^{\infty}(\Omega \times(0, T))} \leqslant \\
& \quad \leqslant c e^{-\delta T}\left\|\int_{0}^{t} U_{1}(T, \tau) G_{\delta}(\tau) d \tau\right\|_{L^{\infty}(\Omega \times(0, T))} \leqslant \\
& \leqslant c e^{-\delta T}\left\|\int_{0}^{T} U_{1}(T, \tau) G_{\delta}(\tau) d \tau\right\|_{\alpha} \leqslant c \delta^{-(1 / p-1 / q)} e^{\delta t}\|g\|_{L^{q}(\Omega \times[0, T])}
\end{aligned}
$$

and the lemma follows.
Remark 2.4. By lemma 2.3 there exists a non increasing function $\delta_{0}: \mathfrak{R}^{>0} \rightarrow \mathfrak{R}^{>0}$ such that $\left\|(\tilde{L}+\delta)^{-1}\right\|_{r, \infty}<\varepsilon$ if $\delta>\delta_{0}(\varepsilon)$. We set $W^{q}=$ $=S_{\lambda}\left(L_{T}^{q}(\Omega \times \Re)\right)$. Note that W^{q} does not depend on the choice of λ., moreover $W=W^{p}$. We have

Lemma 2.5. If $a \in L_{T}^{r}(\Omega \times \mathfrak{R})$ and $\delta \in \mathfrak{R}, \delta>\delta_{0}\left(1 /\|a\|_{r}\right)$, then
i) $(\widetilde{L}+a+\delta)_{\mid W^{q}}$ is a bijection between W^{q} and $L_{T}^{q}(\Omega \times \mathfrak{R})$.
ii) $\left((\widetilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}: L_{T}^{q}(\Omega \times \mathfrak{R}) \rightarrow L_{T}^{q}(\Omega \times \mathfrak{R})$ is a compact operator, moreover it is positive if $a \geqslant 0$.

Proof. To see that $\tilde{L}+a+\delta$ is injective we note that $(\tilde{L}+a+\delta)$. $\cdot w=0, w \in W^{q}$, implies $\left(I+(\widetilde{L}+\delta)^{-1} a\right) w=0$ (since $\widetilde{L}+\delta$ is injective). Now Lemma 2.3 give us the injectivity. Note also that, for $w \in W^{q}$, $u \in L_{T}^{q}(\Omega \times \Re),(\tilde{L}+a+\delta) w=u$ is equivalent to

$$
w+(\tilde{L}+\delta)^{-1}(a w)=(\tilde{L}+\delta)^{-1} u
$$

then Lemma 2.3 implies that for $u \in L_{T}^{q}(\Omega \times \mathfrak{R})$ this equation has an unique solution w in $L_{T}^{\infty}(\Omega \times \Re)$. Moreover, the solution is given by

$$
w=(\tilde{L}+\delta)^{-1} u-(\tilde{L}+\delta)^{-1}(a w)
$$

then $w \in W^{q}$ and so $(\tilde{L}+a+\delta)_{\mid W^{q}}$ is bijective. On the other hand, Hölder inequality gives us $\left\|(\tilde{L}+\delta)^{-1} a\right\|_{\infty, \infty}<1$. Therefore

$$
I+\left((\tilde{L}+\delta)^{-1} a\right)_{\mid C_{T}(\Omega \times \Re)}: C_{T}(\Omega \times \Re) \rightarrow C_{T}(\Omega \times \Re)
$$

has a bounded inverse. Since $(\tilde{L}+\delta)_{\mid L T(\Omega \times \Re)}^{-1}$ is a compact operator on $L_{T}^{q}(\Omega \times \Re)$, the first statement of (ii) follows from the identity

$$
\left((\tilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}=\left(\left(I+(\tilde{L}+\delta)^{-1} a\right)_{\mid C_{T}(\Omega \times \Re)}\right)^{-1}(\tilde{L}+\delta)^{-1} .
$$

Now we take a sequence $\left\{a_{j}\right\}_{j_{\in N}}$ of nonnegative and T periodic Hölder continuous functions with support contained in $\Omega \times \mathfrak{R}$ that converges to a in $L_{T}^{r}(\Omega \times \Re)$, then the sequence $\left(\left(\widetilde{L}+a_{j}+\delta\right)_{\mid W^{q}}\right)^{-1}$ converges to $\left((\tilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}$ in the norm topology on $B\left(L_{T}^{q}(\Omega \times \mathfrak{R})\right)$. Indeed

$$
\begin{aligned}
& \left\|\left((\tilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}-\left(\left(\tilde{L}+a_{j}+\delta\right)_{\mid W^{q}}\right)^{-1}\right\|_{q, q} \leqslant \\
& \left.\quad \leqslant \|(\tilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}\left\|_{r, q}\right\| a_{j}-a\left\|_{\infty, r}\right\|\left(\left(\tilde{L}+a_{j}+\delta\right)_{\mid W^{q}}\right)^{-1} \|_{q, \infty} \leqslant \\
& \left.\left.\quad \leqslant 2 \|(\tilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}\left\|_{r, q}\right\| a_{j}-a\left\|_{r}\right\|(\tilde{L}+\delta)_{\mid W^{q}}\right)^{-1} \|_{q, \infty} .
\end{aligned}
$$

Since each $\left(\left(\tilde{L}+a_{j}+\delta\right)_{\mid W^{q}}\right)^{-1}$ is a positive operator, the lemma follows.

Lemma 2.6. Let $\left(\lambda_{1}, \lambda_{2}\right)$ be an open interval with $\lambda_{1}>0$. Suppose $m \in L_{T}^{r}(\Omega \times \Re)$ and let $s_{0}=s_{0}\left(\lambda_{1}, \lambda_{2}, m\right)=\left(1 / \lambda_{1}\right) \delta_{0}\left(1 /\left(4 \lambda_{2}\|m\|_{\infty, r}\right)\right)$, where δ_{0} is defined as in remark 2.4. Then for $\lambda \in\left(\lambda_{1}, \lambda_{2}\right)$ and $s>s_{0}$ we have
(i) $(\tilde{L}+\lambda(s-m))_{\mid W^{q}}: W^{q} \rightarrow L_{T}^{q}(\Omega \times \Re)$ is a bijection.
(ii) $\left\|\left((\tilde{L}+\lambda(s-m))_{\mid W^{q}}\right)^{-1}\right\|_{\infty, \infty} \leqslant 4\left\|\left((\tilde{L}+\lambda s)_{\mid W^{q}}\right)^{-1}\right\|_{\infty, \infty}$.
(iii) $\left(\left.(\tilde{L}+\lambda(s-m))\right|_{W^{q}}\right)^{-1}: L_{T}^{q}(\Omega \times \mathfrak{R}) \rightarrow L_{T}^{q}(\Omega \times \mathfrak{R})$ is a compact and positive operator.

Proof. We write, as usual, $m=m^{+}-m^{-}$where $m^{+}=\max \{m, 0\}$ and $m^{-}=-\min \{m, 0\}$. Suppose that $(\tilde{L}+\lambda(s-m)) w=0$ for some $w \in W$, then $\left(I-\lambda(\widetilde{L}+\lambda s)^{-1} m\right) w=0$ and so $w=0$, since

$$
\lambda\left\|(\tilde{L}+\lambda s)^{-1} m\right\|_{\infty, \infty} \leqslant \lambda\left\|(\tilde{L}+\lambda s)^{-1}\right\|_{r, \infty}\|m\|_{\infty, r}<1 .
$$

By Lemma $2.5\left(\left(\widetilde{L}+\lambda\left(s+2 m^{-}\right)\right)_{\mid W^{q}}\right)^{-1}$ is a compact and positive operator on $L_{T}^{q}(\Omega \times \mathfrak{R})$. We have that

$$
\begin{equation*}
\left\|\left(\left(\tilde{L}+\lambda\left(s+2 m^{-}\right)\right)_{\mid W^{q}}\right)^{-1}|m|\right\|_{\infty, \infty} \leqslant 2\left\|\left((\tilde{L}+\lambda s)_{\mid W^{q}}\right)^{-1}|m|\right\|_{\infty, \infty}<\frac{1}{2} \tag{2.7}
\end{equation*}
$$

Then $I-\left(\left(\tilde{L}+\lambda\left(s+2 m^{-}\right)\right)_{\mid W^{q}}\right)^{-1}|m|$, as operator on $L_{T}^{\infty}(\Omega \times \mathfrak{R})$, has a bounded inverse. Since

$$
\begin{align*}
&\left(I-\left(\left(\tilde{L}+\lambda\left(s+2 m^{-}\right)\right)_{\mid W^{q}}\right)^{-1}|m|\right)^{-1}= \tag{2.8}\\
&=\sum_{j \geqslant 0}\left(\left(\left(\widetilde{L}+\lambda\left(s+2 m^{-}\right)\right)_{\mid W^{q}}\right)^{-1}|m|\right)^{j}
\end{align*}
$$

this inverse is positive.
If $u \in L_{T}^{q}(\Omega \times \mathfrak{R})$, let

$$
\begin{equation*}
w=\left(I-\left(\left(\widetilde{L}+\lambda\left(s+2 m^{-}\right)\right)_{\mid W^{q}}\right)^{-1}|m|\right)^{-1}\left(\left(\tilde{L}+\lambda\left(s+2 m^{-}\right)\right)_{\mid W^{q}}\right)^{-1} u \tag{2.9}
\end{equation*}
$$

Then

$$
w-\left(\left(\tilde{L}+\lambda\left(s+2 m^{-}\right)\right)_{\mid W^{q}}\right)^{-1}(|m| w)=\left(\left(\tilde{L}+\lambda\left(s+2 m^{-}\right)\right)_{\mid W^{q}}\right)^{-1} u
$$

Thus $w \in W$ and $(\widetilde{L}+\lambda(s-m)) w=u$. Therefore (i) holds. From (2.8), (2.9) and (2.7), we obtain (ii). The compactness stated in (iii) follows from (2.8), since (by Lemma 2.5) $\left(\left(\widetilde{L}+\lambda\left(s+2 m^{-}\right)\right)_{\mid W^{q}}\right)^{-1}$ is a compact operator on $L_{T}^{q}(\Omega \times \mathfrak{R})$.

REMARK 2.10. If m is a T-periodic function in $C^{\infty}(\Omega \times \mathfrak{R})$ then for s large enough, $(L+\lambda(s-m))_{\left.\right|_{T}(\Omega \times \Re)}^{-1}$ is a bounded operator on $C_{T}(\Omega \times \mathfrak{R})$. Let ϱ denote its spectral radius and let $\mu_{m}: \mathfrak{R} \rightarrow \mathfrak{R}$ be defined as in $[\mathrm{H}, 1], \mathrm{p} .38$, then for $\lambda \in \mathfrak{R}, \mu_{m}(\lambda)$ is the unique real number such that there exists $u_{\lambda}>0, u_{\lambda} \in C^{2,1}(\Omega \times \mathfrak{R})$ satisfying $L u_{\lambda}=\lambda m u_{\lambda}+$
$+\mu_{m}(\lambda) u_{\lambda}$, therefore

$$
\frac{1}{\lambda s+\mu_{m}(\lambda)}=\varrho
$$

Definition 2.11. Let S be a bounded operator on $L^{q}(\Omega \times[0, T])$ and let E be a measurable subset of $\Omega \times[0, T]$. As in [S], we say that E is invariant relative to S if $S f=0$ a.e. in E whenever $f=0$ a.e. on E and that S is irreducible if there are no nontrivial invariant subsets relative to S.

In the following we identify $L_{T}^{q}(\Omega \times \mathfrak{R})$ with $L^{q}(\Omega \times[0, T])$.
Lemma 2.12. (i) Suppose $a \in L^{r}(\Omega \times[0, T])$ and let δ be a positive real number as in lemma 2.5, then $\left((\widetilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}$ is irreducible on $L^{q}(\Omega \times[0, T])$
(ii) Let $\left(\lambda_{1}, \lambda_{2}\right)$ be a finite open interval with $\lambda_{1}>0$. Suppose $m \in L_{T}^{r}(\Omega \times \Re)$ and let $s_{0}=s_{0}\left(\lambda_{1}, \lambda_{2}, m\right)$ be defined as in lemma 2.6. Then for $\lambda \in\left(\lambda_{1}, \lambda_{2}\right)$ and $s>s_{0}$

$$
\left(\left.(\tilde{L}+\lambda(s-m))\right|_{W^{q}}\right)^{-1}: L_{T}^{q}(\Omega \times \mathfrak{R}) \rightarrow L_{T}^{q}(\Omega \times \Re)
$$

is irreducible on $L^{q}(\Omega \times[0, T])$.
Proof. To prove (i) we take $b \in C_{T}^{\infty}(\Omega \times \Re)$ such that

$$
\|b-a-\delta\|_{r}<\left\|\left((\widetilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}\right\|_{r, \infty}^{-1}
$$

and note that

$$
\begin{aligned}
& \left((\tilde{L}+b)_{\mid W^{q}}\right)^{-1}= \\
& \quad=\left[\sum_{j=0}^{\infty}(-1)^{j}\left(\left((\widetilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}(b-a-\delta)\right)^{j}\right]\left((\widetilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}
\end{aligned}
$$

Then if $E \subset \Omega \times[0, T]$ is invariant relative to $\left((\tilde{L}+a+\delta)_{\mid W^{q}}\right)^{-1}$ it is also invariant relative to $\left((\widetilde{L}+b)_{\mid W^{q}}\right)^{-1}$. But this last operator on $L_{T}^{q}(\Omega \times \mathfrak{R})$ is irreducible, indeed, pick $c \in \mathfrak{R}$ such that $b \leqslant c$. If $f \in L_{T}^{q}(\Omega \times \mathfrak{R})$ and $f>0$ then $(\widetilde{L}+b)^{-1} f \geqslant(\widetilde{L}+c)^{-1} f$ and the right hand side of this inequality is positive a.e.

To prove (ii) we take $b \in L_{T}^{\infty}(\Omega \times \Re)$ such that $\|b-m\|_{r}<1$. Then, for
$\lambda \varepsilon\left[\lambda_{1}, \lambda_{2}\right]$, we have $\left\|\lambda\left((\tilde{L}+\lambda(s-m))_{\mid W^{q}}\right)^{-1}\right\|_{\infty, \infty} \leqslant 1 / 2$. Thus

$$
\begin{aligned}
& \left((\tilde{L}+\lambda(s-b))_{\mid W^{q}}\right)^{-1}= \\
& \quad=\sum_{j=0}^{\infty}(-1)^{j} \lambda^{j}\left(\left((\tilde{L}+\lambda(s-m))_{\mid W^{q}}\right)^{-1}(m-b)\right)^{j}\left((\tilde{L}+\lambda(s-m))_{\mid W^{q}}\right)^{-1}
\end{aligned}
$$

then (ii) follows from (i) and the identity

$$
\begin{aligned}
& \left((\tilde{L}+\lambda s)_{\mid W^{q}}\right)^{-1}= \\
& \quad=\sum(-1)^{j} \lambda^{j}\left(\left((\tilde{L}+\lambda(s-b))_{\mid W^{q}}\right)^{-1} b\right)^{j}\left((\tilde{L}+\lambda(s-b))_{\mid W^{q}}\right)^{-1}
\end{aligned}
$$

Corollary 2.13. Let $s_{0}\left(m, \lambda_{1}, \lambda_{2}\right)$ be as in Lemma 2.6, suppose $s>s_{0}\left(m, \lambda_{1}, \lambda_{2}\right)$, and consider the operator $S=\left((\tilde{L}+\lambda(s-m))_{\mid W^{q}}\right)^{-1}$ on $L^{q}(\Omega \times(0, T))$, then its spectral radius ϱ is an algebraically simple positive eigenvalue which has an a.e. positive eigenfunction, and no other eigenvalue has a positive eigenfunction. Moreover it is also an eigenvalue with an a.e. positive eigenfunction for the adjoint operator.

Proof. S is compact, irreducible and positive and so is its adjoint $S^{*}: L^{q^{\prime}}(\Omega \times(0, T)) \rightarrow L^{q^{\prime}}(\Omega \times(0, T))$. Then the spectral radius of S and S^{*} are positive (See [Z], p. 410) and the theorem follows from theorem 8 and lemma 16 in [S].

Definition 2.14. Given $m \in L_{T}^{r}(\Omega \times \mathfrak{R})$ and $\lambda>0$. Pick λ_{1}, λ_{2} such that $0<\lambda_{1}<\lambda<\lambda_{2}$. Let $s_{0}\left(m, \lambda_{1}, \lambda_{2}\right)$ be as in Lemma 2.6 and pick $s>s_{0}\left(m, \lambda_{1}, \lambda_{2}\right)$. We define $\mu_{m}(\lambda)$ by $1 /(\lambda s+\mu(\lambda))=\varrho$, where ϱ is the spectral radius of

$$
\left((\tilde{L}+\lambda(s-m))_{\mid W^{q}}\right)^{-1} \in B\left(L_{T}^{q}(\Omega \times \Re)\right) .
$$

It is easy to check that $\mu_{m}(\lambda)$ does not depend on the particular λ_{1}, λ_{2} and s chosen. Additionally we define $\mu_{m}(0)=0$ for the Neumann boundary condition and $\mu_{m}(0)$ equal to the principal eigenvalue of L^{-1} for the Dirichlet boundary condition.

REmARK 2.15. Suppose $B(u)=u_{\mid \partial \Omega \times \Re}$. Let $\lambda_{0}>0$ be the principal eigenvalue of L and let $u_{0}>0$ be such that $L u_{0}=\lambda_{0} u_{0}$. Consider \widetilde{L}^{-1} as operator on $L_{T}^{q}(\Omega \times \mathfrak{R})$. Then (see [S], Theorem 8), λ_{0}^{-1} is a simple eigen-
value of $\tilde{L}^{-1^{*}}: L_{T}^{q^{\prime}}(\Omega \times \mathfrak{R}) \rightarrow L_{T}^{q^{\prime}}(\Omega \times \mathfrak{R})$ with a unique positive eigenfunction Ψ_{D} satisfying $\int \Psi_{D}=1$. Similarly, for the Neumann con$\Omega \times[0, T]$
dition, let Ψ_{N} be the positive eigenfunction of $(\tilde{L}+1)^{-1^{*}}: L_{T}^{q^{\prime}}(\Omega \times \mathfrak{R}) \rightarrow$ $\rightarrow L_{T}^{q^{\prime}}(\Omega \times \Re)$ with eigenvalue 1 satisfying $\int_{\Omega \times[0, T]} \Psi_{N}=1$.

Lemma 2.16. Suppose $0<\lambda_{1}<\lambda_{2}$ and let $\left\{m_{j}\right\}_{j=1}^{\infty}$ be a sequence in $C_{T}^{\infty}(\bar{\Omega} \times \mathfrak{R})$ such that m_{j} converges to m in $L_{T}^{r}(\Omega \times \mathfrak{R})$. Then $\left\{\mu_{m_{j}}\right\}_{j=1}^{\infty}$ converges to μ_{m} uniformly on $\left[\lambda_{1}, \lambda_{2}\right.$].

Proof. We choose $s>s_{0}\left(\|m\|_{r}, \lambda_{1}, 2 \lambda_{2}\right)$. For each $j \in N$ and $\lambda \in$ $\in\left[\lambda_{1}, 2 \lambda_{2}\right]$ there exists $u_{j, \lambda} \in C^{2,1}(\bar{\Omega} \times \mathfrak{R}), u_{j, \lambda}$ real analytic in $\lambda, u_{j, \lambda}>0$ in $\Omega \times \mathfrak{R}$ such that

$$
\left\{\begin{array}{l}
\left(L+\lambda\left(s-m_{j}\right)\right) u_{j, \lambda}=\left(\lambda s+\mu_{m_{j}}(\lambda)\right) u_{j, \lambda} \\
B u_{j}(\lambda)=0, \quad\left\|u_{j, \lambda}\right\|_{\infty}=1
\end{array}\right.
$$

(see $[\mathrm{H}, 1]$, Lemma 15.1). Since $\left(\left(L+\lambda\left(s-m_{j}\right)\right)_{\mid W^{q}}\right)^{-1}$ is positive, we have $\mu_{m_{j}}(\lambda) \geqslant-\lambda s$. Suppose the Dirichlet condition an let Ψ_{D} be as in remark 2.15. We derive with respect to λ at $\lambda=0$ the identity

$$
\left\langle u_{j, \lambda}, \Psi_{D}\right\rangle=\left\langle L^{-1}\left(\lambda m_{j}+\mu_{m_{j}}(\lambda)\right) u_{j, \lambda}, \Psi_{D}\right\rangle
$$

to obtain $d \mu_{m_{j}} /\left.d \lambda\right|_{\lambda=0}=-\left\langle m_{j} u_{0}, \Psi_{D}\right\rangle /\left\langle u_{0}, \Psi_{D}\right\rangle$ where u_{0} is a positive eigenfunction of L with eigenvalue λ_{0}. Analogously we get $d \mu_{m_{j}} /\left.d \lambda\right|_{\lambda=0}=-\left\langle m_{j}, \Psi_{N}\right\rangle /\left\langle 1, \Psi_{N}\right\rangle$ for the Neumann case. In either case the sequence $\left\{d \mu_{m_{j}} / d \lambda \mid \lambda=0\right\}_{j=1}^{\infty}$ is bounded from above. Also, since $\mu_{m_{j}}$ is concave and satisfies $\mu_{m_{j}}(\lambda) \geqslant-\lambda s$ on $\left[\lambda_{1}, 2 \lambda_{2}\right]$, it is easy to see that $\left\{d \mu_{m_{j}} /\left.d \lambda\right|_{\lambda=\lambda_{2}}\right\}_{j=1}^{\infty}$ is bounded from below. Then $\left\{\left(d \mu_{m_{j}} / d \lambda\right)(\lambda)\right\}_{j \in N, \lambda \in\left[\lambda_{1}, \lambda_{2}\right]}$ is bounded, so, by the Ascoli-Arzelà theorem there exists subsequence $\left\{\mu_{m_{j k}}\right\}_{k \in N}$ that converges uniformly on $\left[\lambda_{1}, \lambda_{2}\right.$]. Let $\sigma(\lambda)=\lim _{k \rightarrow \infty} \mu_{m_{j_{m}}}(\lambda)$, then $\mu_{m}(\lambda)=\sigma(\lambda)$ for $\lambda \in\left[\lambda_{1}, \lambda_{2}\right]$. Indeed, let $v_{j, \lambda}=u_{j, \lambda} /\left\|u_{j, \lambda}\right\|_{\infty}$. From

$$
\begin{equation*}
v_{j, \lambda}=L^{-1}\left(\mu_{m_{j}}(\lambda)+\lambda m_{j}\right) v_{j, \lambda} \tag{2.17}
\end{equation*}
$$

and since $\tilde{L}^{-1}: L_{T}^{p}(\Omega \times \mathfrak{R}) \rightarrow C_{T}(\Omega \times \mathfrak{R})$ is compact, there exists an $C_{T}(\Omega \times \Re)$ convergent subsequence $\left\{v_{j_{k}, \lambda}\right\}_{k \in N}$. Let $v_{\lambda}=\lim _{k \rightarrow \infty} v_{j_{k}, \lambda}$, we note that $v_{\lambda} \neq 0$. Taking limits in (2.17) we get $v_{\lambda}=\tilde{L}^{-1}(\sigma(\lambda)+\lambda m) v_{\lambda}$, and so, Corollary 2.13 implies $\mu_{m}(\lambda)=\sigma(\lambda)$. Finally we observe that the
above argument shows that any subsequence of $\left\{\mu_{m_{j}}(\lambda)\right\}$ has a subsequence that converges to $\mu_{m}(\lambda)$ and so the sequence itself converges to $\mu_{m}(\lambda)$.

Lemma 2.18. If $m \in L_{T}^{r}(\Omega \times(0, T))$ then μ_{m} is continuous on $[0, \infty)$ and analytic on $(0, \infty)$.

Proof. Let $\left\{m_{j}\right\}_{j=1}^{\infty}$ be a sequence in $C_{T}^{\infty}(\bar{\Omega} \times \mathfrak{R})$ that converges to m in $L_{T}^{r}(\Omega \times \mathfrak{R})$, we pick $s>s_{0}\left(m, \lambda_{1}, \lambda_{2}\right)$. By lemma $2.14 \mu_{m}$ is continuous on $(0, \infty)$. The continuity of μ_{m} at 0 follows from the facts that μ_{m} is the pointwise limit of a sequence of concave functions and that $\left\{d \mu_{m_{\jmath}} /\left.d \lambda\right|_{\lambda=0}\right\}_{j=1}^{\infty}$ has an upper bound.

It remains to see the analyticity. Let J be the inclusion from W^{q} into $L_{T}^{q}(\Omega \times \mathfrak{R})$. We consider W^{q} as a Banach space, with the topology inherited from the graph norm, then $\tilde{L}+\lambda(s-m): W^{q} \rightarrow L_{T}^{q}(\Omega \times \mathfrak{R})$ is a Banach space isomorphism and $\tilde{L}+\lambda(s-m)-\left(\lambda s+\mu_{m}(\lambda)\right) J$ is a compact perturbation of it, therefore it is a Fredholm operator of index 0 , then
$\operatorname{dim} \operatorname{Ker}\left(\tilde{L}+\lambda(s-m)-\left(\lambda s+\mu_{m}(\lambda)\right)\right)=$

$$
=\mathrm{co} \operatorname{dim}\left(\operatorname{Im}\left(\widetilde{L}+\lambda(s-m)-\left(\lambda s+\mu_{m}(\lambda)\right)\right)\right)
$$

Corollary 2.13 implies that $\lambda s+\mu_{m}(\lambda)$ is a J simple eigenvalue of $\tilde{L}+\lambda(s-m)$. It follows from Lemma 1.3 in [C-R] that there exists $\varepsilon>0$ such that if $U \in B\left(W^{q}, L_{T}^{q}(\Omega \times \Re)\right)$ and $\|\tilde{L}+\lambda(s-m)-U\|<\varepsilon$ then U has an unique eigenvalue $\varrho(U)$ satisfying $\left|\varrho(U)-\left(\lambda s+\mu_{m}(\lambda)\right)\right|<\varepsilon$. Moreover, $\varrho(U)$ is a J simple eigenvalue and the application $U \rightarrow \varrho(U)$ is analytic. For λ^{\prime} close enough to $\lambda, \lambda^{\prime} s+\mu_{m}\left(\lambda^{\prime}\right)$ is a J simple eigenvalue of the operator $\tilde{L}+\lambda^{\prime}(s-m)$. Since μ_{m} is continuous on $(0, \infty)$ we must have $\varrho\left(\widetilde{L}+\lambda^{\prime}(s-m)\right)=\mu_{m}\left(\lambda^{\prime}\right)$, so the analyticity follows.

REmARK 2.19. For $m \in L_{T}^{r}(\Omega \times \mathfrak{R})$ and $t \in \mathfrak{R}$, let $\tilde{m}(t)=$ $=\underset{x \in \Omega}{\operatorname{ess} \sup } m(x, t), m^{*}(t)=\underset{x \in \Omega}{\operatorname{ess} \inf } m(x, t)$, and $P(m)=\int_{0} \tilde{m}(t) d t$. If m is independent of x, then $\mu_{m}(\lambda)=\mu_{m}(0)-\lambda(P(m) / T)$. Indeed, this is true if in addition $m \in C_{T}^{\infty}(\Omega \times \Re)$ (see [H,1], Lemma 15.3) and so, by Lemma 2.16, for an arbitrary $m \in L_{T}^{r}(\Omega \times \mathfrak{R})$.

3. - The Main results.

Lemma 3.1. Let $m_{1}>m_{2}$ be functions in $L_{T}^{r}(\Omega \times \mathfrak{R})$. Then $\mu_{m_{1}}(\lambda)<\mu_{m_{2}}(\lambda)$, for all $\lambda>0$.

Proof. If $\lambda>0$ we pick $\lambda_{1}, \lambda_{2}>0$ such that $\lambda_{1}<\lambda<\lambda_{2} / 2$. We also pick $s>\max \left\{s_{0}\left(m_{1}, \lambda_{1}, \lambda_{2}\right), s_{0}\left(m_{2}, \lambda_{1}, \lambda_{2}\right)\right\}$. We set T_{1}, T_{2} : $L_{T}^{q}(\Omega \times \mathfrak{R}) \rightarrow L_{T}^{r}(\Omega \times \mathfrak{R})$ defined by $T_{i}=\left(\left(\widetilde{L}+\lambda\left(s-m_{i}\right)\right)_{\mid W^{q}}\right)^{-1}$. Then T_{1} and T_{2} are positive operators and, by (iii) of Lemma 2.6
$T_{1}-T_{2}=\lambda\left(\left(\tilde{L}+\lambda\left(s-m_{1}\right)\right)_{\mid W^{q}}\right)^{-1}\left(m_{1}-m_{2}\right)\left(\left(\tilde{L}+\lambda\left(s-m_{2}\right)\right)_{\mid W^{q}}\right)^{-1}>0$.
Thus $\varrho\left(T_{1}\right) \geqslant \varrho\left(T_{2}\right)$. Suppose for contradiction that $\varrho\left(T_{1}\right)=\varrho\left(T_{2}\right)$ and let ϱ denote this value. Let $u \in W^{q} u>0$ such that $T_{2} u=\varrho u$, then $u(x, t)>0$ a.e. $(x, t) \in \Omega \times \mathfrak{R}$ (see [S], Lemma 16) and then

$$
\begin{aligned}
& \frac{1}{\varrho} u=\left(\tilde{L}+\lambda\left(s-m_{2}\right)\right) u= \\
& \\
& \quad=\left(\tilde{L}+\lambda\left(s-m_{1}\right)\right) u+\lambda\left(m_{1}-m_{2}\right) u>\left(\tilde{L}+\lambda\left(s-m_{1}\right)\right) u
\end{aligned}
$$

Thus $T_{1} u>\varrho u$. Contradiction.
Let $\Gamma \in C^{2}(\Re, \Omega)$ be a T-periodic curve in Ω and Ω_{0} a domain in \Re^{n} with C^{∞} boundary such that $\Gamma(t)+\Omega_{0} \subset \Omega$ for every $t \in \mathfrak{R}$. We define

$$
B_{\Gamma, \Omega_{0}}=\left\{(\Gamma(t)+w, t): w \in \Omega_{0}, t \in[0, T]\right\}
$$

and

$$
P_{\Gamma, \Omega_{0}}(m)=\int_{B_{\Gamma, \Omega_{0}}} m
$$

THEOREM 3.2. Let $\Gamma \in C^{2}(\Re, \Omega)$ be a T-periodic curve in Ω and Ω_{0} a domain in \mathfrak{R}^{n} with C^{∞} boundary such that $\Gamma(t)+\Omega_{0} \subset \Omega$ for every $t \in \Re$. Suppose $m \in L_{T}^{r}(\Omega \times \Re)$. Assume in addition that $a_{i, j}$ has continuous spacial derivates $\partial a_{i, j} / \partial x_{i}, 1 \leqslant i, j \leqslant n$. Then we have
(i) If $P_{\Gamma, \Omega_{0}}(m)>0$, then there exists $\lambda^{D}>0$ and $u^{D}>0$, solution of the periodic eigenvalue Dirichlet problem $\tilde{L} u=\lambda m u$ in $\Omega \times \mathfrak{R}$, $u_{\mid \partial \Omega \times \Re}=0$.
(ii) Suppose the Neumann boundary condition and $\widetilde{m} \neq m^{*}$. Let
Ψ_{N} be defined as in remark 2.15. If $P_{\Gamma, \Omega_{0}}(m)>0$ and $\left\langle\Psi^{N}, m\right\rangle<0$ then there exists $\lambda^{N}>0$ and $u^{N}>0$ that solve the problem $\widetilde{L} u=\lambda m u$ in $\Omega \times \mathfrak{R}, \partial u / \partial \nu_{\mid \partial \Omega \times \Re}=0$.

Proof. We pick $c \in \mathfrak{R}$ such that $P_{\Gamma, \Omega_{0}}(m)>c>0$. Let $\left\{m_{j}\right\}_{j \in N}$ be a sequence of functions in $C_{T}^{\infty}\left(\mathfrak{R}^{n} \times \mathfrak{R}\right)$ such that supp $m_{j} \subset \Omega \times \mathfrak{R}$, $\lim _{j \rightarrow \infty} m_{j}=m$ in $L_{T}^{r}(\Omega \times \mathfrak{R})$. Without lost of generality we can assume that $P_{\Gamma, \Omega_{0}}\left(m_{j}\right)>c$ for all $j \in N$. In the Neumann case we can also assume that $\left\langle\Psi, m_{j}\right\rangle<0$ and $\widetilde{m}_{j} \equiv m_{j}^{*}$. Let $\lambda_{j}^{D}, u_{j}^{D}\left(\lambda_{j}^{N}, u_{j}^{N}\right)$ be the principal eigenvalue and the corresponding positive eigenvector for the Dirichlet (Neumann) boundary condition (see [H,1], Theorems 16.1 and 16.3) corresponding to the weight m_{j} such that $\left\|u_{j}^{D}\right\|_{\infty}=1,\left(\left\|u_{j}^{N}\right\|_{\infty}=1\right)$.

We first consider the Dirichlet case. We introduce the change of coordinates given by $\Phi: \Omega \times \mathfrak{R} \rightarrow \mathfrak{R}^{n} \times \mathfrak{R}$ where $\Phi(w, t)=(w-\Gamma(t), t)$. In the new coordinates the equation $L u_{j}=\lambda_{j} m_{j} u_{j}$ on $\Omega \times \mathfrak{R}$ becomes $L^{\Phi} u_{j}^{\Phi}=\lambda_{j} m_{j}^{\Phi} u_{j}^{\Phi}$ on $\Phi(\Omega \times \mathfrak{R})$, where $m_{j}^{\Phi}=m_{j} \circ \Phi^{-1}$ and $u_{j}^{\Phi}=$ $=u_{j} \circ \Phi^{-1}$.

Take $\sigma_{j}>0$ and $v_{j}>0$ satisfying $L^{\Phi} v_{j}=\sigma_{j} m_{j} v_{j}$ on $\Omega_{0} \times \mathfrak{R}, v_{j} T$ periodic and $v_{j \mid \partial \Omega_{0} \times \Re}=0$ and $\left\|v_{j}\right\|_{\infty}=1$. Since $\partial a_{i, j} / \partial x_{i} \in C(\bar{\Omega} \times \mathfrak{R})$ and $\int_{\Omega_{0} \times \Re} m_{j}^{\Phi}>c$ we can apply proposition 3.1 in $[\mathrm{H}, 2]$ to obtain that the sequence $\left\{\sigma_{j}\right\}$ is bounded. Reasoning as in [H,1] Lemma 15.4, we see that $\lambda_{j}<\sigma_{j}$ and so $\lambda_{j} \leqslant c$ for some $c>0$ and all $j \in N$. Then we can find a subsequence (which we still denote $\left\{\lambda_{j}\right\}$) that converges to some $\lambda^{D} \geqslant 0$. Use that $\left\{\lambda_{j}^{D} m_{j} u_{j}^{D}\right\}_{j \in N}$ is bounded in $L_{T}^{r}(\Omega \times \mathfrak{R}), u_{j}^{D}=L^{-1}\left(\lambda_{j} m_{j} u_{j}^{D}\right)$ and that \tilde{L}^{-1} is a compact operator on $L_{T}^{r}(\Omega \times \mathfrak{R}) \rightarrow C_{T}(\Omega \times \mathfrak{R})$ to conclude that there exists a subsequence $u_{j_{k}}^{D}$ that converges to some u^{D} in $L_{T}^{\infty}(\Omega \times \mathfrak{R})$. Then $u^{D}=\widetilde{L}^{-1}\left(\lambda^{D} m u^{D}\right)$. Moreover, $\lambda^{D}>0$, otherwise $(\widetilde{L}+1)^{-1}$ would have 2 positive eigenvalues with positive eigenfunctions.

Let's consider the Neumann case. It follows from $\lambda_{j}^{N}<\lambda_{j}^{D}$ that there exists a convergent subsequence $\lambda_{j k}^{N}$. Let $\lambda^{N}=\lim \lambda_{j_{k}}^{N}$. Moreover, we can assume that $u_{j_{k}}^{N}$ converges (in $L_{T}^{\infty}(\Omega \times \mathfrak{R})$) to some u^{N}. Then we get, as above, $u^{N} \in W$ and $\widetilde{L} u^{N}=\lambda^{N} m u^{N}$. To see that $\lambda^{N}>0$ assume for contradiction that $\widetilde{L} u^{N}=0$. Then $u_{N} \equiv 1$, and we have

$$
\left\langle u_{j}^{N}, \Psi\right\rangle=\left\langle(\tilde{L}+1)^{-1}\left(\lambda_{j}^{N} m_{j}+1\right) u_{j}^{N}, \Psi\right\rangle=\left\langle\lambda_{j}^{N} m_{j} u_{j}^{N}, \Psi\right\rangle+\left\langle u_{j}^{N}, \Psi\right\rangle
$$

Thus $\left\langle m_{j} u_{j}^{N}, \Psi^{N}\right\rangle=0$ and then $\left\langle m, \Psi^{N}\right\rangle=0$. Contradiction.

Theorem 3.3. Let Γ and Ω_{0} be as above and $m \in L_{T}^{r}(\Omega \times \mathfrak{R})$. We have
(i) Assume the Dirichlet Boundary condition and $P_{\Gamma, \Omega_{0}}(m)>0$. Then there exists at most one $\lambda^{D}>0$ such that $\mu_{m}\left(\lambda^{D}\right)=0$.
(ii) Suppose the Neumann boundary condition, $P_{\Gamma, s_{0}}(m)>0$, $\left\langle\Psi^{N}, m\right\rangle<0$ and $\widetilde{m} \neq m^{*}$ then there exists at most one $\lambda^{N}>0$ such that $\mu_{m}\left(\lambda^{N}\right)=0$.

Proof. (i) follows from the facts that μ_{m} is concave on [$0, \infty$) and $\mu_{m}(0)>0$. To see (ii) suppose that there exist $\lambda_{1}>0, \lambda_{2}>0$ such that $\mu_{m}\left(\lambda_{1}\right)=\mu_{m}\left(\lambda_{2}\right)=0$. Since μ_{m} is concave and analytic we must have $\mu \equiv 0$ on $[0, \infty)$. Since $m^{*} \neq \widetilde{m}, m<\tilde{m}$ then given $\varepsilon>0$ there exists $h \in L_{T}^{r}(\Omega \times \mathfrak{R}), h>0$ such that $m+h<\tilde{m}$ and $\|h\|_{r}<\varepsilon$. Moreover we can choose h such that $m+h$ it is not function of t alone. For ε small enough we must have $P(m+h)>0$ and $\langle\Psi, m+h\rangle<0$ so by theorem 3.2 there exists $\lambda>0$ such that $\mu_{m+h}(\lambda)=0$, but by Lemma $3.1 \mu_{m+h}(\lambda)<$ $<\mu_{m}(\lambda)=0$. Contradiction.

Remark 3.4. Let $m, a_{i, j} 1 \leqslant i, j \leqslant n$ be as in Theorem 3.2 and let $\left\{m_{j}\right\}_{j=1}^{\infty}$ be a sequence in $C_{T}^{\infty}(\Omega \times \Re)$, sup p $m_{j} \subset K_{j} \times \mathfrak{R}$ for some compact subset $K_{j} \subset \Omega_{j}$. Then the sequence $\left\{\lambda_{j}\right\}$ of principal eigenvalues associated to the weights m_{j} converges to the principal eigenvalue λ corresponding to the weight m. Indeed, for every subsequence $\left\{\lambda_{j_{k}}\right\}$ we can prove, as in theorem 3.2, that there exists a subsequence $\left\{\lambda_{j_{k_{s}}}\right\}$ convergent to some λ satisfying $\mu_{m}(\lambda)=0$. So the assertion follows from lemma 3.8. A diagonal process gives us the following

Corollary 3.5. Let $m, a_{i, j} 1 \leqslant i, j \leqslant n$ be as in Theorem 3.2 and let $\left\{m_{j}\right\}_{j=1}^{\infty}$ be a sequence in $L_{T}^{r}(\Omega \times \mathfrak{R})$ such that m_{j} converges to m in $L_{T}^{r}(\Omega \times \mathfrak{R})$. Then the sequence $\left\{\lambda_{j}\right\}$ of principal eigenvalues associated to the weights m_{j} converges to the principal eigenvalue λ corresponding to the weight m.

We set $\pi: \mathfrak{R}^{n} \times \mathfrak{R} \rightarrow \mathfrak{R}$ defined by $\pi(x, t)=t$. If $B \subset \Re^{n} \times \mathfrak{R}$ and $t \in \mathfrak{R}$ we put $B_{t}=\left\{x \in \mathfrak{R}^{n}:(x, t) \in B\right\}$. If $\Omega \subset \mathfrak{R}^{n}$ we define for $\delta>0, \Omega_{\delta}=$ $=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>\delta\}$.

Lemma 3.6. Suppose that $m \in L_{T}^{r}(\Omega \times \mathfrak{R})$ has an upper bound and that $\int_{a}^{b} \widetilde{m}(t) d t>c$. Suppose also that $\delta>0$ is such that $\Omega_{\delta} \neq \emptyset$. Then
there exists a finite family $\left\{Q_{r}\right\}_{1 \leqslant r \leqslant N}$ of pairwise disjoints congruent open cubes with edges of length l and parallel to the coordinate axis such that
(1) $l \leqslant(\delta / 2(n+1))$ and $Q_{r} \subseteq \Omega_{\delta / 2} \times[a, b]$ for $1 \leqslant r \leqslant N$.
(2) The family $\left\{\pi\left(Q_{r}\right)\right\}_{r=1}^{N}$ is pairwise disjoint.
(3) $\sum_{r=1}^{N}\left|\pi\left(Q_{r}\right)\right|=b-a$.
(4) $\int m>c l^{n}$.

$$
\bigcup_{1 \leqslant r \leqslant N} Q_{r}
$$

Proof. Without lost of generality we can assume that $m \leqslant 1$. Let \widetilde{m}_{j} defined as in remark 2.19. It is easy to see that \widetilde{m}_{j} is a measurable function on $[a, b]$. Also $\widetilde{m}_{j}(t) \leqslant \widetilde{m}_{j+1}(t)$ and $\lim _{j \rightarrow \infty} \widetilde{m}_{j}(t)=\widetilde{m}(t)$. Then we can fix k large such that $\int_{a} \tilde{m}_{j}(t) d t>c,\left|\Omega_{k}\right| \geqslant|\Omega| / 2$ and $k \geqslant 1 / \delta$.

For $0<\theta<\delta<\eta$ we define

$$
E(\eta, \theta)=\left\{(x, t) \in \Omega_{1 / k} \times[a, b]: m(x, t) \geqslant \tilde{m}_{k}(t)-\eta+\theta\right\}
$$

then $m-(\widetilde{m}-\eta) \geqslant \theta$ on $E(\eta, \theta)$. Let $E^{d}(\eta, \theta)$ be the set of the points $(x, t) \in E(\eta, \theta)$ such that (x, t) is a Lebesgue point for $m(x, t)-$ $-\left(\tilde{m}_{k}(t)-\eta\right)$ and, for $r>0$, let $E^{(r)}(\eta, \theta)$ be the set of the points (x, t) in $E^{d}(\eta, \theta)$ such that

$$
\frac{1}{|Q|} \int_{Q}(m-(\tilde{m}-\eta)) \geqslant \frac{\theta}{2}
$$

holds for every open cube Q with edges parallel to the coordinate axis with diameter less that $1 / r$ containing $(x, t) . E^{(r)}(\eta, \theta)$ is a measurable set. Note that $E^{(r)}(\eta, \theta) \subseteq E^{(s)}(\eta, \theta)$ if $r<s$. Also $E^{d}(\eta, \theta) \subseteq$ $\subseteq \bigcup_{r \in N} E^{(r)}(\eta, \theta)$. Moreover, from $\left|E^{(r)}(\eta, \theta)_{t}\right| \neq 0$ a.e. $t \in[a, b]$ it follows that $\left|\pi\left(E^{d}(\eta, \theta)\right)\right|=b-a$. Then

$$
\lim _{r \rightarrow \infty}\left|\pi\left(E^{(r)}(\eta, \theta)\right)\right| \geqslant\left|\pi\left(E^{d}(\eta, \theta)\right)\right|=b-a
$$

Given $\varepsilon>0$ we fix $r>2 k$ such that $\left|\pi\left(E^{(r)}(\eta, \theta)\right)\right| \geqslant b-a-\varepsilon$, also we choose $0<l<1 / r(n+1)$ such that $N l=b-a$ for some natural number N. Let $\left\{t_{i}\right\}_{0 \leqslant i \leqslant N}$ be the partition of $[a, b]$ given by $t_{i}=a+i l$, $i=0, \ldots, N$. Let I be the set of the indices $i, 0 \leqslant i \leqslant N$ such that the strip $\Re^{n} \times\left(t_{i-1}, t_{i}\right)$ intersects $E^{(r)}(\eta, \theta)$ and let I^{c} be its com-
plement. For $i \in I$ we choose a cube Q_{i} such that $Q_{i} \cap E^{(r)}(\eta, \theta) \neq \emptyset$ and $\quad \pi\left(Q_{i}\right)=\left(t_{i-1}, t_{i}\right) . \quad$ Since $\quad E^{(r)}(\eta, \theta) \subseteq \Omega_{1 / k} \quad$ and $\quad \operatorname{diam}\left(Q_{i}\right)<$ $<1 / 2 k \sqrt{n+1}$ we have that $Q_{i} \subseteq \Omega_{1 /(2 k)} \times\left(t_{i-1}, t_{i}\right)$. Since $\left|\pi E^{(r)}(\eta, \theta)\right| \geqslant b-a-\varepsilon, I^{c} \quad$ satisfies $\quad \sum\left(t_{i}-t_{i-1}\right)<\varepsilon$. Let $F=$ $=\bigcup_{i \in I^{c}}\left(t_{i-1}, t_{i}\right)$, then $|\Omega \times F| \leqslant \varepsilon|\Omega|$. No ${ }^{i} \mathbb{W}^{I^{c}}$

$$
\int_{\Omega \times F}|m|<\|m\|_{r}|\Omega \times F|^{1 / r^{\prime}} \leqslant \varepsilon^{1 / r^{\prime}}\|m\|_{r}|\Omega|^{1 / r^{\prime}}
$$

with r^{\prime} defined by $1 / r+1 / r^{\prime}=1$. To cover \mathfrak{R}^{n} we use cubes with vertices on the points of the lattice $l Z^{n}$. Let $Q_{1}^{*}, \ldots, Q_{M}^{*}$ be the cubes in the mesh meeting Ω_{k}, so $Q_{j}{ }^{*} \subseteq \Omega, 1 \leqslant j \leqslant M$. Since $|\Omega| \leqslant 2\left|\Omega_{k}\right| \leqslant 2 M l^{n}$, then $M \geqslant|\Omega| /\left(2 l^{n}\right)$. Since

$$
\|m\|_{r} \varepsilon^{1 / r^{\prime}}|\Omega|^{1 / r^{\prime}} \geqslant \int_{\Omega \times F}|m| \geqslant \sum_{s=1}^{M} \int_{Q_{s}^{*} \times F}|m|
$$

we have, for some $s, 1 \leqslant s \leqslant M$ that

$$
\int_{Q_{s}^{*} \times F}|m| \leqslant\|m\|_{r} \varepsilon^{1 / r^{\prime}}|\Omega|^{1 / r^{\prime}} M^{-1} \leqslant 2 l^{n}\|m\|_{r} \varepsilon^{1 / r^{\prime}}|\Omega|^{-1 / r^{\prime}} .
$$

We define, for $i \in I^{c}, Q_{i}=Q_{s}^{*}$. Then, for $i \in I$

$$
\int_{Q_{i}} m \geqslant \int_{Q i} \widetilde{m}-\eta\left|Q_{i}\right|+\theta\left|Q_{i}\right| / 2=l^{n}\left(\int_{t_{\imath}-1}^{t_{2}} \widetilde{m}_{k}(t) d t-\eta l+\theta l / 2\right)
$$

Then

$$
\begin{aligned}
\sum_{i \in I} \int_{Q_{i}} m \geqslant l^{n}\left(\sum_{i \in I} \int_{t_{i-1}}^{t_{i}} \widetilde{m}_{k}(t) d t\right. & \left.-\eta l \operatorname{Card}(I)-\frac{\theta l \operatorname{Card}(I)}{2}\right) \geqslant \\
& \geqslant l^{n} \sum_{i \in I} \int_{t_{i-1}}^{t_{i}} \widetilde{m}_{k}(t) d t-l^{n}\left(\eta(b-a)+\theta \frac{b-a}{2}\right)
\end{aligned}
$$

Since $\sum_{i \in I^{c}}\left|\int_{Q_{i}} m\right| \leqslant 2 l^{n}\|m\|_{r} \varepsilon^{1 . r^{\prime}}|\Omega|^{-1 / r}$ we get

$$
\sum_{i=1}^{N} \int_{Q_{i}} m \geqslant l^{n}\left(\sum_{i \in I} \int_{t_{i-1}}^{t_{i}} \tilde{m}_{k}(t) d t-\eta(b-a)-\theta \frac{b-a}{2}-2\|m\|_{r} \varepsilon^{1 / r^{\prime}}|\Omega|^{-1 / r^{\prime}}\right)
$$

and so $\sum_{i=1}^{N} \int_{Q_{i}} m \geqslant c l^{n}$ for η, θ, and ε small enough.
Now, reasoning as in remarks 4.2, 4.3 and lemma 4.4 of [G-L-P], we obtain

Remark 3.7. Suppose that $m \in L_{T}^{r}(\Omega \times \mathfrak{R})$ is bounded from above and that $\int_{0}^{T} \widetilde{m}(t) d t>0$. Then there exists a T-periodic curve $\gamma \in C^{2}(\Re, \Omega)$ and a domain Ω_{0} with smooth boundary such that
(i) $\gamma(t)+\Omega_{0} \subset \Omega$ for every $t \in \mathfrak{R}$.
(ii) $P_{\Gamma, \Omega_{0}}(m)>0$.

THEOREM 3.8. Let $m, a_{i, j} 1 \leqslant i, j \leqslant n$ be as in Theorem 3.2. Suppose that there exists $\lambda>0, u \in D(\widetilde{L}) u>0$ solution of the periodic eigenvalue problem $\widetilde{L} u=\lambda m u, B(u)=0$, where either $B(u)=u_{\mid \partial \Omega \times \Re}$ or $B(u)=\partial u / \partial v_{\mid \partial \Omega \times \Re}$. If $B(u)=\partial u / \partial v_{\mid \partial \Omega \times \Re}$ we also assume that $m \neq \widetilde{m}$, if $B(u)=\partial u / \partial v_{\mid \partial \Omega \times \Re}$. Then there exists a T-periodic curve $\gamma \in C^{2}(\Re, \Omega)$ and a domain Ω_{0} with smooth boundary satisfying $\gamma(t)+\Omega_{0} \subset \Omega, t \in \mathfrak{R}$ and such that $P_{\Gamma, \Omega_{0}}(m)>0$. Moreover, if $B(u)=\partial u / \partial v_{\mid \partial \Omega \times \Re}$, we also have $\left\langle\Psi^{N}, m\right\rangle<0$.

Proof. Taking into account lemma 3.1 and remark 2.17 and reasoning as in the regular case (see [H,1], Lemma 15.6) we obtain, in both cases, $P(m)>0$. Then lemma 3.6 gives us the first assertion of the theorem. To see that $\left\langle\Psi^{N}, m\right\rangle<0$ we choose $m_{j} \in C_{c, T}^{\infty}(\Omega \times \mathfrak{R}), j \in N$, such that m_{j} converges to m in $L_{T}^{r}(\Omega \times \Re)$. We pick $\lambda_{1}<\lambda$. Then $\mu_{m}\left(\lambda_{1}\right)>0$, therefore, by lemma 2.16, $\mu_{m_{j}}\left(\lambda_{1}\right)>\mu_{m}\left(\lambda_{1}\right) / 2$ for all large enough j. Therefore

$$
-\left\langle\Psi^{N}, m_{j}\right\rangle=\mu_{m_{\jmath}}^{\prime}(0) \geqslant \frac{\mu_{m_{\jmath}}\left(\lambda_{1}\right)}{\lambda_{1}}>\frac{\mu_{m}\left(\lambda_{1}\right)}{2 \lambda_{1}}
$$

and then $\left\langle\Psi^{N}, m\right\rangle \leqslant-\left(\mu_{m}\left(\lambda_{1}\right) / 2 \lambda_{1}\right)<0$.
Remark 3.9. Let $m, a_{i, j} 1 \leqslant i, j \leqslant n$ be as in Theorem 3.2 and let M be the operator multiplication by m. Suppose either the Dirichlet condition or the Neumann condition. Taking into account corollary 2.13 and lemma 2.18 we have, with the same proof as in the regular case, (see
[H,1], Lemma 16.9) that the positive principal eigenvalue is an M simple eigenvalue of \widetilde{L}.

REFERENCES

[A] H. Amann, Periodic solutions of semilinear parabolic equations. Nonlinear Analysis (Ed. Cesari, Kannan, Weinberger), Academic Press, New York (1978).
[B] A. Beltramo, Über den Hauptteigenwert von periisch-parabolischen Differentialoperatoren, Ph. D. Thesis, Univ. of Zurich (1984).
[B-H] A. Beltramo - P. Hess, On the principal eigenvalue of a periodic parabolic operator, Comm. Partial and differential Equations, 9 (1984), pp. 919-941.
[C-R] M. G. Crandall - P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and stability, Arch. Rat. Mech. Anal., V 52, N. 2 (1973), pp. 161-180.
[G-L-P] T. Godoy - E. Lami Dozo - S. Paczka, The periodic parabolic eigenvalue problem with L^{∞} weight, Math. Scand., 81 (1997), pp. 20-34.
[H,1] P. Hess, Periodic-parabolic Boundary Problems and Positivity. Longman, Scientific \& technical, Copublished in the United States with John Wiley \& Sons, Inc., New York (1992).
[H,2] P. Hess, On positive solutions of semilinear periodic-parabolic problems. Infinite dimensional Systems, Lecture Notes in Mathematics 1076, p. 101-114, Springer Verlag, Berlin-Heidelberg-New YorkTokyo.
[P] S. Paczka, A Neumann periodic parabolic eigenvalue problem with continuous weight, Rend. Sem. Mat. Pol. Torino, V. 54, 1 (1996), pp. 67-74.
[S] J. Schwartz, Compact positive mappings in Lebesgue spaces, Comm. on Pure and Appl. Math., V, XIV (1961), pp. 693-705.
[Z] M. Zerner, Quelques propriétés spectrales des opérateurs positifs, J. of Funct. Anal., V. 72, N. 2 (1987), pp. 381-417.

Manoscritto pervenuto in redazione il 13 marzo 1996.

