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Groups with Dense Subnormal Subgroups.

FRANCESCO DE GIOVANNI - ALESSIO Russo (*)

1. Introduction.

Let x be a property pertaining to subgroups of a group. We shall say
that a group G has dense y-subgroups if for each pair (H, K) of sub-
groups of G such that H < K and H is not maximal in K, there exists a
x-subgroup X of G such that H < X< K. Obviously every group in which
all subgroups have the property y has dense y-subgroups, and converse-
ly in many cases it can be proved that, if a group G has dense y-sub-
groups, then the set of all subgroups of G which do not have the property
x is small in some sense. Several authors have investigated the structure
of groups with dense y-subgroups for many different choices of the prop-
erty y (see for instance [3], [4], [7], [18]). In particular, Mann [7] consid-
ered groups with dense normal or subnormal subgroups, proving that
any infinite group with dense subnormal subgroups is locally nilpotent.
The consideration of the symmetric group of degree 3 shows that there
exist finite non-nilpotent groups with dense normal subgroups.

The aim of this article is to obtain further information on the struc-
ture of infinite groups with dense subnormal subgroups. It will be
proved in particular that, if G is an infinite group with dense subnormal
subgroups, then all subgroups of G are subnormal. In the proof of this
result, we will use the relevant theorem of Mohres [10] stating that
every group, in which all subgroups are subnormal, is soluble. In the last
part of the article groups for which the set of subnormal subgroups with
defect bounded by a fixed positive integer is dense are studied.

Most of our notation is standard and can be found in[5]
and [12].

(*) Indirizzo degli AA: Dipartimento di Matematica e Applicazioni, Universi-
ta di Napoli «Federico II1», Complesso Universitario Monte S. Angelo, Via Cintia,
I 80126 Napoli (Italy).



20 Francesco de Giovanni - Alessio Russo

We are grateful to the referee for the useful comments, improving in
particular the statement of Theorem 2.4.

2. Density of subnormal subgroups.

Recall that a group G is called a Baer group if it is generated by its
abelian subnormal subgroups, or equivalently if every finitely generated
subgroup of G is subnormal.

LEMMA 2.1. Let G be an infinite group with dense subnormal sub-
groups. Then G is a Baer group.

ProoF. The group G is locally nilpotent by a result of Mann (see [7],
Theorem 2), and clearly it can be assumed that G is not nilpotent. Let H
be any finitely generated subgroup of G. Then G contains another finite-
ly generated subgroup K such that H < K and H is not maximal in K.
Thus there exists a subnormal subgroup X of G such that H < X < K.
Since X is nilpotent, it follows that H is subnormal in G, so that G is a
Baer group. =

The proof of the next result is a slight modification of one given in [8].
We give it here in details for the convenience of the reader.

LEMMA 22. Let G be a Baer group whose hyperabelian subgroups
are soluble. Then G s soluble.

Proor. Let A be an abelian non-trivial subnormal subgroup of G
with smallest defect ¢, and assume that c¢>1. Consider a finite
series

A=A,<A,<...<4,=G .

By hypothesis the Fitting subgroup F of A; is soluble, with derived
length n, say. Then F~1 is normal in A,, and hence it is an abelian
non-trivial subnormal subgroup of G with defect at most ¢ — 1. This con-
tradiction shows that G contains an abelian non-trivial normal subgroup.
On the other hand, if N is any normal subgroup of G having an ascending
G-invariant series with abelian factors, the hypotheses are inherited by
the factor group G/N. It follows that the group G is hyperabelian, and
hence soluble. =
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The following lemma shows that in any group with dense subnormal
subgroups the «join property» of subnormal subgroups holds.

LEMMA 23. Let G be a group with dense subnormal subgroups,
and let H and K be subnormal subgroups of G. Then also the subgroup
(H, K) is subnormal in G.

PrOOF. It can obviously be assumed that both H and K are properly
contained in J = (H, K), so that also H’ and K’ are proper subgroups of
J. Then H’ N K’ is not maximal in J, and so there exists a subnormal
subgroup X of G such that

H NK' <X<J.

It follows that H” N K’ is subnormal in G. Since [H, K]<H’NK’, we
obtain that also [H, K] is subnormal in G. Therefore J is a subnormal
subgroup of G (see [5], Theorem 1.2.3). =

We are now in a position to prove the main result of the article. Recall
that a group is called hypoabelian if it has a descending series with
abelian factors, i.e. if it does not contain perfect non-trivial sub-

groups.

THEOREM 2.4. Let G be an infinite group with dense subnormal
subgroups. Then every subgroup of G is subnormal.

ProoF. Assume first that the result is false for infinite soluble
groups, and among the counterexamples with minimal derived length
choose a group G containing a non-subnormal subgroup K with smallest
derived length. Then the commutator subgroup K' of K is subnormal in
G and we can also choose the counterexample in such a way that the de-
fect ¢ of K’ is minimal. Since G is a Baer group by Lemma 2.1, the sub-
group K must be infinite. Moreover, every subgroup of finite index of G
is subnormal. Assume that K is not abelian, and consider the normal clo-
sure N = (K')¢ of K'. Then H = KN is subnormal in G, and hence K is
not subnormal in H. Clearly K’ is not normal in G and (K" ) = (K')V, so
that K’ has defect ¢ — 1 in H, and K is subnormal in H by the minimal
choice of G. This contradiction shows that K is abelian. If K contains a
subgroup L such that K/L is a finite non-simple group, then there exists
a subnormal subgroup X of G such that L<X <K, and K= (X, E)
where E is finitely generated. Since G is a Baer group, it follows from
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Lemma 2.3 that K is subnormal in G, a contradiction. Therefore the fi-
nite residual J of K has finite index in K, so that J is not subnormal in G,
and replacing K by J it can also be assumed that K is divisible. Assume
that K contains a subgroup M such that

K/IM = (K,/M) x (Ky/M),

where both K;/M and K,/M are non-trivial. Then there exist subnormal
subgroups X; and X, of G such that K; <X; <K and K, < X, <K, and
hence K = (Xj, X,) is a subnormal subgroup of G. This contradiction
proves that K is a group of type p ® for some prime p. As G is locally
nilpotent, it contains a unique Sylow p-subgroup P. Obviously K is not
subnormal in P, and hence without loss of generality it can be assumed
that G is a p-group. Let A be the smallest non-trivial term of the derived
series of G. Then KA is a subnormal subgroup of G, so that K is not sub-
normal in KA, and replacing G by KA we may also suppose that G = KA,
where A is an abelian normal subgroup of G. Let X be any subnormal
subgroup of G containing K. Then U=X N A is a normal subgroup of
G=XA, and

KU=KXNA)=KANnX=X,

so that X/U = K/K N A is a group of type p “. It follows that the subnor-
mal subgroup X/U of G/U has defect at most 2 (see [12] Part 1, p. 136).
Therefore X has defect at most 2 in G, and so also the intersection K of
all subnormal subgroups of G containing K is subnormal. On the other
hand, either K = K, or K is a maximal subgroup of K, so that in all cases
K is normal in K;, and hence it is a subnormal subgroup of G. This con-
tradiction proves that the theorem holds when G is a soluble group.
Suppose now that G is hyperabelian, and let

1=G,<G;<...<G, =G

be an ascending normal series with abelian factors of G. Assume that G
contains a non-subnormal subgroup K. Clearly there exists a smallest
non-limit ordinal a < 7 such that K is a proper non-maximal subgroup of
KG,. Then for each non-limit ordinal § < a we have that either K = KGg
or K is maximal in KGg, so that Gj is contained in K. It follows that the
commutator subgroup G,_; of G,_; is contained in K, and replacing G
by G/G,_ it can be assumed that the normal subgroup V=G, of G is
metabelian. By hypothesis there exists a subnormal subgroup W of G
with K< W< KV. Let X be any subnormal subgroup of G such that
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K<X<W. Then W=X(VN W), and by induction on the defect of X in
W it can be easily proved that X contains some term of the derived series
of W with finite ordinal type. Therefore W is contained in the intersec-
tion K, of all subnormal subgroups of W containing K. On the other
hand, either K = K, or K is a maximal subgroup of Ky, so that K is normal
in K,, and W@* lies in K. As K is not subnormal in W, the group
W/W @+ must be infinite, and replacing G by W/W©*1 we may sup-
pose without loss of generality that G is also hypoabelian. If K is not
abelian, the subgroup K" is not maximal in K, so that there exists a sub-
normal subgroup X of G such that K" < X < K, and hence K" is subnor-
mal in G. Therefore, replacing eventually K by K', we may suppose that
K' is subnormal G, and the counterexample G and its subgroup K can be
chosen in such a way that the defect of K’ in G is minimal. Consider the
normal closure N = (K')% of K'. As in the first part of the proof we have
that K is subnormal in KN, so that KN is not subnormal in G, and hence
it can be assumed that K is abelian. The same argument used in the case
of soluble groups allows us to suppose that K is a group of type p * for
some prime p. Then K is not ascendant in G, and so there exists an ordi-
nal a < 7 such that KG, is not subnormal in KG, . ;. On the other hand,
the factor group KG, .,/G, is soluble, and hence all its subgroups are
subnormal by the first part of the proof. This contradiction proves that
the theorem also holds when G is hyperabelian.

In the general case, we have that, if H is any hyperabelian subgroup
of G, either H is finite or all subgroups of H are subnormal. Therefore H
is soluble by a result of Mohres ([10], Satz 7, see also [1]). It follows from
Lemma 2.2 that also the group G is soluble, and the first part of the proof
applies. =

We give now a series of consequences of Theorem 2.4, depending on
Mohres’ results concerning groups in which all subgroups are subnor-
mal.

COROLLARY 2.5. Let G be a group with dense subnormal sub-
groups. Then G is soluble.

Proor. The statement is obvious if G is finite. Suppose that G is infi-
nite. Then all subgroups of G are subnormal by Theorem 2.4, and it fol-
lows from the above quoted result of Mohres that G is soluble. m
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COROLLARY 2.6. Let G be an infinite group with dense subnormal
subgroups. If G has finite exponent, then it is nilpotent.

ProoF. By Theorem 2.4 all subgroups of G are subnormal, and hence
the group G is nilpotent (see [9], Satz12). =

COROLLARY 2.7. Let G be a periodic hypercentral group with dense
subnormal subgroups. Then G is nilpotent.

Proor. Clearly it can be assumed that G is infinite. Then all sub-
groups of G are subnormal by Theorem 2.4, and it follows from a result of
Mohres that G is nilpotent (see [11], Satz2.7). =

COROLLARY 2.8. Let G be a torsion-free group with dense subnor-
mal subgroups. Then G is hypercentral.

Proor. By Lemma 2.4 every subgroup of G is subnormal, and hence
G is hypercentral (see [8], Satz11). =

3. Density of subnormal subgroups with bounded defect.

In this section we consider groups for which the set of subnormal
subgroups with defect bounded by a fixed positive integer is dense. If H
is a subgroup of a group G, the series of normal closures of H in G is
defined by the positions H% =G and H¢ "*'=HH#°" for each non-
negative integer n. It follows immediately from the definition that, if H
and K are subgroups of a group G such that H <K, then H® "< K%
for all n.

THEOREM 3.1. Let G be an infinite group for which the set of sub-
normal subgroups with defect at most n is dense for some positive inte-
ger n. Then G is nilpotent and every subgroup of G has defect at most
n+1.

Proor. By Lemma 2.1 we have that G is a Baer group. Let H be any
finitely generated subgroup of G such that H% ™= H, and assume that
H is not maximal in H% ", By hypothesis there exists a subnormal sub-
group X of G with defect at most » such that H <X < H%", Then

Hor<X%r=X,
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and this contradiction shows that H is a maximal subgroup of H% " so
that in particular H is normal in H% ™. Therefore every finitely generat-
ed subgroup of G is subnormal with defect at most » + 1, and it is well-
known that in this case every subgroup of G has the same property
(see [12] Part 2, Lemma 7.41). Finally, the group G is nilpotent by a re-
sult of Roseblade (see [12] Part 2, Theorem 7.42). =

The above theorem has the following obvious consequence, which was
already proved by Mann (see [7], Theorem 4).

COROLLARY 3.2. Let G be an infinite group with dense normal sub-
groups. Then G is nilpotent with class at most 3.

Proor. It follows from Theorem 3.1 that G is a nilpotent group in
which every subgroup has defect at most 2. Then G has class at most 3 by
a result of Mahdavianary (see [6], Theorem1). =

We note now the following property of infinite periodic groups with
dense subnormal subgroups of bounded defect.

THEOREM 3.3. Let G be an infinite periodic group for which the
set of subnormal subgroups with defect at most n is dense for some posi-
tive integer n. Then either every subgroup of G is subnormal with defect
at most n, or G is a central extension of a group of type p~ (p prime)
by a finite group in which all subgroups are subnormal with defect at
most n.

Proor. The group G is nilpotent by Theorem 3.1. Let H be any infi-
nite subgroup of G, and consider an arbitrary element x of the subgroup
HY ™, Clearly there exists a finite subgroup E of H such that « belongs
to E% ™. Moreover, G contains a subgroup X with defect at most » such
that £ < X < H. In particular,

E’G’nSXG’n=X<H,

so that xe H and H% ™ = H. Therefore every infinite subgroup of G has
defect at most n. Application of Theorem B of [2] yields that either every
subgroup of G has defect at most %, or G is an extension of a subgroup P
of type p* (p prime) by a finite group whose subgroups have defect at
most 7. In the latter case, since G is nilpotent we have also that P is con-
tained in Z(G). =
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In the last part of this section we consider groups for which the set of
subnormal subgroups with defect at most 2 is dense.

COROLLARY 34. Let G be an infinite periodic group for which the
set of subnormal subgroups with defect at most 2 is dense. Then G is
nilpotent with class at most 4.

Proor. It follows from Theorem 3.3 that every subgroup of G/Z(G)
is subnormal with defect at most 2, so that G is nilpotent with class at
most 4 by the already mentioned result of Mahdavianary [6]. =

LEMMA 3.5. Let G be a torsion-free group for which the set of sub-
normal subgroups with defect at most 2 is dense. Then G is nilpotent
with class at most 2.

Proor. The group G is nilpotent by Theorem 3.1. Assume that G
contains a cyclic subgroup (x) with defect » >2, and let H be any sub-
group of G with defect 2 such that (x) < H < (x)% 2. Then

(x)*2?<H%*=H,

and hence H = (x)¢ 2. It follows that (x) is a maximal subgroup of (x)% 2,
so that all non-trivial subgroups of (x)' 2 have finite index, and (x)¢' % is
infinite cyclic (see [12] Part 1, Theorem 4.33). Thus (x) is normal in its
normal closure (x)¢, and this contradiction shows that every cyclic sub-
group of G has defect at most 2. Therefore the group G is nilpotent with
class at most 2 (see [6], Theorem A). =

THEOREM 3.6. Let G be an infinite group for which the set of sub-
normal subgroups with defect at most 2 is dense. Then G is soluble with
derived length at most 4.

ProoF. The group G is nilpotent by Theorem 3.1. If G is periodic the
statement is an obvious consequence of Corollary 3.4. Thus it can be as-
sumed without loss of generality that G contains an element of infinite
order x. Let T be the subgroup of G consisting of all elements of finite
order, and let y be any element of 7. It is well-known that the finitely
generated nilpotent group (x, y) contains a central element z of infinite
order (see[12] Part 1, Theorem 2.24). Since (y) is not a maximal sub-
group of (y, z), there exists a subgroup X of G with defect at most 2 such
that (y) < X < (y, z). Clearly (y) is the subgroup of all elements of finite
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order of X, so that it is characteristic in X and hence has defect at most 2
in G. Therefore every cyclic subgroup of T has defect at most 2, and so T'
has nilpotency class at most 3 (see [6], Theorem 1). On the other hand,
the factor group G/T has nilpotent class at most 2 by Lemma 3.5, and it
follows that G has derived length at most4. =

REFERENCES

[1]1 C. CasoLo, Groups in which all subgroups are subnormal, Rend. Accad.
Naz. Sci. XL, 104 (1986), pp. 247-249.

[2] S. Francios - F. DE GIOVANNI, Groups with infinite subnormal subgroups
of bounded defect, Boll. Un. Mat. Ital, (6) 4D (1985), pp. 49-56.

[8] S. Francios! - F. DE GIOVANNI, Groups with dense mormal subgroups,
Ricerche Mat., 42 (1993), pp. 283-305.

[4] L. A. KURDACHENKO - N. F. KuzENNYI - N. N. SEMKO, Groups with a dense
system of infinite almost normal subgroups, Ukrain. Math. J., 43 (1991), pp.
904-908.

[6] J. C. LENNOX - S. E. STONEHEWER, Subnormal Subgroups of Groups,
Clarendon Press, Oxford (1987).

[6] S. K. MAHDAVIANARY, A special class of three-Emgel groups, Arch. Math.
(Basel), 40 (1983), pp. 193-199.

[7]1 A. MANN, Groups with dense normal subgroups, Israel J. Math., 6 (1968), pp.
13-25.

[8] W. MOHRES, Torsionfreie Gruppen, deren Untergruppen alle subnormal
sind, Math. Ann., 284 (1989), pp. 245-249.

[9] W. MOHRES, Aufldsbare Gruppen mit endlichem Exponenten, deren Unter-
gruppen alle subnormal sind II, Rend. Sem. Mat. Univ. Padova, 81 (1989),
pp. 269-287.

[10] W. MOHRES, Auflosbarkeit von Gruppen, deren Untergruppen alle subnor-
mal sind, Arch. Math. (Basel), 54 (1990), pp. 232-235.

[11] W. MOHRES, Hyperzentrale Torsiongruppen, deren Untergruppen alle sub-
normal sind, Illinois J. Math., 35 (1991), pp. 147-157.

[12] D. J. S. ROBINSON, Finiteness Conditions and Generalized Soluble Groups,
Springer, Berlin (1972).

[13] G. VINCENZI, Groups with dense pronormal subgroups, Ricerche Mat., 40
(1991), pp. 75-79.

Manoscritto pervenuto in redazione il 22 luglio 1996.



