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REND. SEM. MAT. UNIv. PADovA, Vol. 101 (1999)

Homogenization of a Linear Transport Equation
with Time Depending Coefficient.

MIiILENA PETRINI (*)

ABSTRACT - We are concerned with the effective behaviour of the transport equa-
tion o,u, + a,(t, y) 8, u, = 0 when a,—a in L ® weak* and the Cauchy prob-
lem related to the equation with memory satisfied by a weak* limit of the se-
quence of solutions. The memory term is represented by an averaging opera-
tor. The homogenized equation has a unique solution, established considering
a kinetic formulation.

1. Introduction.

Let T > 0 be fixed, 2 c R" be an open set and let (a,) be a sequence in
L~ (0, T) x ) that satisfies

0<a_<a/(t,y)<a, ae. in (0,7)XQ,

1.1
a,—a in L*((0, T) x Q) weak*.

We are interested in the asymptotic behaviour of the solution u, of a
transport equation having a.(f, ) as a coefficient oscillating in a trans-
verse direction (shear flow):

12) & u.+a./t,y) du.=0 with u,(0, x, y) =u(x, y),

where uy(x, y) e L (R X 2).
The problem (1.2) is a model for studying the global behaviour of con-
centration of fluids in porous media.

(*) Indirizzo dell’A.: Dipartimento di Matematica «V. Volterra», Universita di
Ancona, Via Brecce Bianche, Ancona (Italy). E-mail: petrini@anvaxl.cineca.it
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Transport equations with oscillating coefficients arise also for the Li-
ouville equation associated with an oscillating hamiltonian or when
studying the oscillations in Euler equation (see Amirat-Hamdache-Ziani
[8] for examples and an application to a multidimensional miscible flow in
porous media).

The homogenization of (1.2) brings out a diffusion operator in the «
variable with memory effect in the time variable ¢, besides the natural
transport operator.

In the case of time independent coefficient a,(y), treated in the pa-
pers [2], [4]-[6], [8], [10], [14], [16], the memory term is of kind convolu-
tion in time and in particular, in the nonlocal homogenization framework
developed by L. Tartar [16] and Y. Amirat, K. Hamdache, A. Ziani [4]-
[5], it is described by a parametrized measure by use of the integral rep-
resentation of Nevanlinna-Pick’s holomorphic functions.

The representation allows to define a kinetic system equivalent to the
homogenized equation and prove existence and uniqueness of the limit
solution by the semigroup theory (see [7]).

The same method has been applied to the model (1.2) in [3] and yields
a memory term which depends from the effective solution by an equation
of division of distributions and thus not explicitly.

By Fourier transform in « the problem (1.2) writes:

13) { dyu (t, &, y) +2mi&a,(t, y) u,(t, &, y) =0 in (0, T)XR X Q,
| %0, &, y) =&, y) in RxQ

and considering the frequence & as a parameter it can be treated with
the method developed by Tartar in [17] for an ordinary equation. Thus,
up to a subsequence, the weak limit of %, satisfies:

14)  Qu(t, &, y) +2mia(t, y) ult, &, y) —

t
— (2miE)? j e

0

e VB oy B A, £, y) ds =0

where, for any £ e R, the kernel K(t, s, y; &) is the solution of a resol-
vent Volterra equation.
Under the assumption of equicontinuity of the coefficients a,(t, y),
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by an estimate derived from the resolvent equation, R. Alexandre in [1]
has characterized the kernel K(t, s, y; &) as the symbol of a pseudo-dif-
ferential operator in x and thus has showed a class of homogenized
equations.

The main purpose of this paper is to give to K(t, s, y; &) a represen-
tation by an averaging operator as in the time independent case and to
establish existence and uniqueness of solution for the limiting prob-
lem.

We will work under the assumption (1.1) on the coefficients and ex-
ploit some results of [15] concerning the analysis of the ordinary equa-
tion which follows from the ideas contained in [17] and [7].

By an asymptotic analysis in the frequence & and application of
Phragmén-Lindelof principle joint to the Paley-Wiener theorem, we
identify a bounded parametrized measure k; ; ,(du, dus, du) by which
the memory kernel is represented as the Fourier transform
K(,s,y; &) = <dkt, s,'y;ullu26x=/4dxv 6—2m5>‘

The moments of dk, , , are all determined through the quantities
a(t, s, y), 1 =2 defined, up to subsequences, by:

t
a’e(ty y) a’e(sy y)J’ae(TI’ y) '“a’e(rl—Z, ?/) dtl'“drl—Z'L C"l(t’ S, ?/)

and one has I dky s, yu1p2 = ko(t, s, y) = a5(t, s, ¥) — alt, y)als, y).

AxA
We will supp(;se that ko(t, y) :=ke(t, t, y) >0 ae. in (0, T) X Q.
The representation ensures that the operator

27r'i§(x —'ftu(r, y)dr—pu )

t
W5)  Ku= [ [(kys,y n1pze Yiils, &, y) dEds
0

is bounded on L * (0, T; L%(R x Q)), it is as a pseudo-differential opera-
tor in « whose symbol belongs to the class Sé’, o(R) for almost any t, s, y
and the homogenized equation writes:

(1.6) du+alt,y) d,u— & Ku=0.

Moreover, through the resolvent equation we get that the measure
dk, s, , is linked with the Young measure w, , ,(dA, di,, dA) associated
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t
to [b.(L, ), b.(s, ¥), J’be(o, Y) do), where b,:=a,—a, by the rela-

tion:

AT (kg rphze Y = (@, .y Ardoe 2TH) 4+
¢
+2ni§f<wt, T, Y Aie -zm.é.AXkT’s’y, Uipqe -2n‘i§;4> dr
8

a.e. for t, s, y, for any £€R.

The link above enables us to give to the homogenized equation (1.6) a
kinetic formulation as a system and then prove that the whole sequence
u, converges to the weak limit w.

Actually, introducing the auxiliary function 2z=3,Ku and the

operators C and H related to dwt,s,yllépﬁw y)da”dx and
dw,,s,ylllzéxzmgyy)da”dx as in (14), (1.5) is equivalent to the
system: d

S,ult, x, y) +alt,y) d,ult, x, y)—3,2(t, x,y) =0

49 { 2(t, ¢, y) — % (C2)(t, @, y) — & (Hu)t, x,y) =0
for which existence and uniqueness of solution hold in view of a general-
ization of the fixed point theorem.

When the coefficients a,(t, y) are absolutely continuous in ¢ and veri-
fy 8,a.(t, y) = d,a(t,y) in L=((0,T)x Q), there exist an operator
3,K: H'(R) — L2(R) bounded for a.e. t, s, ¥ represented by a bounded
measure k; , ,(dm,, duy, dus, du) such that (1.6) has a kinetic formula-
tion with the time derivative of z.

As an example we will consider a sequence with small amplitude os-
cillations, i.e. a.(t, ¥; ¥) = a(t, y) + yb.(¢, y) + y2c.(t, y) + o(y?) a.e. for
t,y)e(0, T)x Q2 and y small, absolutely continuous in #, with
a.(t, y; v) =a,@, y), b, 8,b.—b, b, c.—c in L weak*.

Moreover, let (b.(t, y) — b(t, y))(b.(s, ) — b(s, ¥))=ko(t, s, %) in
L>((0,T)x (0, T)x Q) weak* with ky(t, t, y) >0 ae. t, y.

In this case the related measure admits an asymptotic expansion

dz) = y2k(t, s, ¥) o _¢

2
S, y)drdz + o(y*)

k .y, 01090 ¢
(t,s,y,w 192 2= Jo,(z, pdr +o
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and u satisfies up to order y? the equation

Fu+ (a, +a) Fu+ (aa, — ko(t, y)) E,u+ d,a,(t, y) ,u—

t t
- yzjatko(t, s, Y) aﬁxu(s, x— Ia(r, y) dr, y) ds=0.
0

8

Aknowledgments. 1 would like to thank Kamel Hamdache for useful
conversations and helpful encouragement.

2. The Cauchy problem when a,—a.

Let (a,) be a bounded sequence in L * ((0, T') x ) that satisfies (1.1).
In the following we shall denote b,:=a,—a, ai=a,—-—a_, A=
=[-a,al, Ar=[—-Ta, Tal.

Clearly |b.(t,y)| <a a.e. in (0, T) x 2 and b0 in L weak*.

We consider the transport equation:

@21 Ju,+a.(t,y)ou.,=0in (0,T)XR X Q,
Ue |t=0=Uo(x, ¥y) in RX Q

in which uy(x, y) e L (R X Q).
The homogenization of (2.1) is studied dealing in Fourier transform
in x with the ordinary equation:

@2) 8t £ y) +2mika,(t, y) Be(t, &, y) =0 in (0, )X R X Q

with %,(0, &, ¥) = %y(&, ¥) in R X Q.

By considering the frequence £ as a parameter we can follow the
analysis done in [15] for the case of a linear equation and subsequently
make an asymptotic analysis in &.

We first reformulate some statements of [15], referring to the corre-
sponding results for proofs.

We denote by w, 5, ,(dA, dis, dA) the parametrized family of Young
measures generated by the vector-valued sequence

t
belt, ), be(s, ), [belo, y) do),

8

with support in A XA X Ar for any t, s, ¥ and by w, , ,(dA,, dA),
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Wy, 5, y(dAs, dA), . s ,(dA) its projections (see Lemma 2.0.1 in [15]):
Wy, s, y(dA1, dA) =Proj|i,ca @y, s, 4(dA1, dAs, di),
Wy, s, y(dAs, dA) =DProj|1, c 4y, s, 4(dA1, dAg, dA),
Wy 5,4 (dA) =Droj|1,ca,2,e4 @1, 5,4 (dA1, dA 5, dA).
The projection w,, st,y(dl) coincides with the Young measure associated
to the sequence I be(o, y) da), has ecompact support in A 7; its Fourier
transform @, ,,,(&) = [ ,,,,,(dA) e~ verifies @, ,,,(8) =1 and it is

A
absolutely continuous in ¢ and s, with second mixt derivative in £, s. The
functions

F(t,s,y; 8) =w4,5,,(8) -1,

C(t, 8, Y5 E) =(w,, 4, ,(dAy, dA), A e 275,

Gty 8,45 &) = (04,4, (A, dA), Ape ~27),
H(t,s,y; &) =(w, 5 ,(dAy, ddg, dA), A Ay ~275H)

2.3)

are related as follows:
OF(t,s,y; &) =—2mECQ, s, y; &),
24 G F(t, s,y; &) =2mEG(E, s, y; &),
80, F(t,s,y; &) = — 2mi&lH({, s, y; &);
moreover F, C, G all vanish at ¢ = s, whereas
H(s,s,y; &) = (vy,,(dA1),(4,)%) 20,
where v, ,(di,) denotes the Young measure associated to (b.(¢, ¥)).

t
~ o~ ~2xik fa(o, y)do ~ .
For a subsequence, #,—~%=e ¢ @y, 0, 4(8) up(&, y) in

Wb (0, T; HY(R x R)) weak*, with
du+2mEalt, y) u=—2miEC(L, 0, y; &) Uy(&, )
and we have:
ProPoSITION 2.1. Under hypothesis (1.1), after extraction of a sub-

sequence, there is a kernel K(t, s, y; &) defined on (0, T) x (0, T) x
for any EeR, such that the subsequence U, of solutions of (2.2) con-
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verges weak* to the solution u of:

@25) dult, &, y) + 2miEalt, y) u(t, &, y) —
t
— (2miE)? j e

0

~2xit falo, y)do

Kt,s,y; & uls, & y)ds=0

in (0, T) X R x Q with (0, &, y) = ug(&, y) in R x Q.
The kernel K(t, s, y; &) is given by

(2.6) 2méEK({, s, y; &) =90,D(, s, y; &)
where D(t, s, y; &) is the solution of the Volterra equation:

12
@7 Clt, 5,93 &) =D(t, 8, y; &) — 2ik [ D(t, 7, y; ) O(x, 5, y; &) dr .

8

For the proof we refer to Theorem 2.1 in [15].
In the next Lemma we summarize the properties of D and K:

LemmaA 2.1. The solution D(t, s, y; &) to (2.7) is measurable in t, s,
y, analytic in E The kernel K(t, s, y; &) solves for any & € R the family
of Volterra equations:

i
@8) K, s, y; §) —2mik [C(t, v, y; ) K(x, 5,95 §) dr=H(t, 5, 45 &)
on (0, T)x (0, Ty x Q and it is given by

t
2.9) K(t,s,y; &) =H(,s,y; &+ 2m’§ID(t, 7,y; 6 H(z,s,y; &dr.

8

ProoF. We refer to Lemmas 2.1.1 and 2.1.2 in [15] recalling that in
view of (2.7)

D(t, S, Y, 5) = kgo(ZﬂiE)ka(t’ S, ?/)
with

t—s)
IDk(t,s,y)lsck(a+_a_)k+1(——kT')—, ckSZk—l fk=1

and ¢, =0, ¢; =1, whereas K has an expansion obtained by H and C
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through (2.9),

K(t,s,y; &= 20(2::@'5)jkj(t, 8, )
VEd

in which the coefficients k; satisfy the bound

t—sy

ij(t,s,y)lSCj(a+—a-)j+2—_'—, chZj. a
7!
In particular, (2.9) yields:
(2-10) K(S, S, ?/; E) = k0(87 ?/) = <Vs,y(d/11)7 (ﬂ'l)z>-

We recall also the following equivalence between (2.5) and the kinetic
system formulated through relation (2.8) by introducing the function

2.11) z2tEy)=

t
-2ni¢fa(o, y)do

t
=2m’§je K(t, s, y; £) (s, &, y) ds:=2mit Ku
0

and denoting by Cz, Hu the functions defined through C(t, s, y; &),
H(t, s, y; &) as above:

PROPOSITION 2.2. For any EeR the Cauchy problem related to
equation (2.5) is equivalent in (0, T) X 2 to the following system:

(2.12) { ata +2niia(t, Y) ﬁLZﬂlf z2=0
7 —2mi& Cz —2miE Hu =0
with @, (0, y; &) = (Tio(y; ), 0) in Q.

(For the proof see Theorem 2.2 in [15]).

We will check the boundedness of the memory kernel K(t, s, y; &) by
an asymptotic analysis in the frequence.

To this end we introduce the solution M to

i
@13) G, 8,95 =M, s, y; &) —2ik [ G, 7, y; §) M(z, 5, y; §) dr

on (0, T)x (0, T)x Q, Ee R and state:
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PropoSITION 2.3. There exists a bounded measure b, , ,(du)
parametrized in t, s, y with support in Ar, absolutely continuous in t
and s, with second mixt derivative in t, s, such that b, , ,(§) veri-

fies:
2.14) 8,b, , ,(E)=—2mED(, s, y; &), B5by s ,(E)=2mEM(L, s, y; &)

a.e. int, s, y, for any & e R. The moments of db, , , are all determined by
the measure dw, , , and in particular

(2.15) (b, s,y (dw), 1) = (w5, ,(dA), A2) = 0.
Proor. For F, G as in (2.3), the solution B(t, s, y; &) to:
t
@16) B, s, y; §) —2i& [ G, 7, y; §) B(x, 5, y; ) dr=F(t, 3, y; &)
with B(s, s, y¥; §) =0 is given by:
t
@17  B(,s,y; 5 =F, s, y; §)+2m'rSIM(t, 7,Y; 8 F(r,s,y; §dr

and it is such that
B(t, 5,95 &) = 2 Bi(t, s, y)2wib)*
with
By(t, s, y) =B(t,s,y) =0, By(t,s,y)=Ft,s,y)= <dwt,s,y,(/1)2>
and

(t—s)

|Bi(t, s, 9) | Scela, —a_ ) i

The bound on the coefficients B, (t, s, ¥) yields:
(2.18) |B(t, s, y; 2) | SeXer-a- =9zl pe(C
moreover from equation (2.16) we have:

|B(t, s, y; E)| <const when R .
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We can therefore apply the Phragmén-Lindelof result and get
(2.19) |B(t, s, y; 2)| SeXar-a-Xi-sRallmz| - 5o,

In view of the Paley-Wiener theorem (see Hormander [11], Gel’fand-
Shilov [9]), inequality (2.18) yields that

B(t! S, ?/; E) = Bt,s,y(g) = Ibt,s,y(ﬂ) e_zm'gﬂdﬂ
r

for a distribution b; , ,(u) of order 0 with support contained in A4 7. From
equation (2.17) we see that B(t, s, y; &) is absolutely continuous in ¢, s
and (2.14) holds. =

It follows that B(Z, s, y; &) is a symbol in the class S¢ ((R) for a.e. t, s,
y (see Hormander [11]) and the same holds for its derivatives:

PROPOSITION 2.4. The functions D(t,s,y; &), M({,s,y; &),
K(t, s, y; &) are symbols in S(?, o(R) for almost every t, s, y. Moreover,
there exists a measure k; , ,(duy, dus, du) parametrized in t, s, y, with
support in A X A X Ayp, such that

K(t,s,y; &) = (kt,s,y(d,ul; du o, du), ﬂlﬂze—zw)
with

(kt, s,y(dﬂlv d/‘Z: d/‘)’ 1“1/42) = <wt,s,y(d/11’ dj-z, d/‘L), /11}'2)'

Proor. By still using the Phragmém-Lindelof principle joint to the
Paley-Wiener theorem. =

Thus the homogenized equation writes:
(2.20) Su+alt, y) O,u— EZ,Ku=0,

where the operator K defined by

- Jato, y)do)

t o
@21)  Kut,z,y) = | o2l K(t, s, y; &) s, £, y) dEds
0
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is bounded on L ® (0, T; L2(R x Q)) with
(2.22) [h:en( =0, T; L2R x Q) S a? Tllull, *(0, T; L2(R X Q))*

The proof of existence and uniqueness of solution for equation (2.20)
is based on a kinetic formulation as a system.

Let introduce the spaces Y,=L2(R x Q), Xo=H'(R; L%(RQ)), X =
=Wt >(0,T; X,), Y=L*(0, T;Y,) and denote by C, H the operators
associated to symbols C, H as in (2.21).

If z is the function in (2.10) we get:

THEOREM 2.1. The homogenized equation (2.20) is equivalent in
(0, T) X R x Q to the system

Su+alt, y) O,u — I,z =ft, x,y),
(2.23) !

2t %, y) — 8,(Cz) — 3,(Hu) = jg(s, 2, y)ds
0

with f=0=g and (u, 2)(0, x, ¥) = (g, 0) in R X Q.
Assuming that

2.24) ko, y) >0 ae in (0,T)x 82,
for every (ug, 2)eXoxX, and (f,g)eL(0,T;Y,) x L0, T;Y,)

the Cauchy problem related to (2.23) admits a unique solution (u, 2) e
eXxY.

ProoF. In view of Proposition 2.2, we have the equivalence between
(2.5) and (2.12). By integrating in time the first equation and denoting
F=(f,9), we can write (2.12) under the general form:

t
@25) Ut &, y) - 2mi& [ R, s, u; &) Uls, &, y) ds =
0

i
=To&, )+ [Fis, £, ) ds
0
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in which R(, s, y; &) is the kernel of an operator bounded in Y x Y:

—a(s, y) 1
R(t, s,y; &)=

¢ ¢
-2k [a(o, y)do —2mit fa(o, y)do
e ’ e ¢ C(t

H(,s,y; &) 8, Y5 8)

whose related operator is bounded in Y x Y.
The resolvent equation:

t
226)  S(t, s, y; &) -2k [S(t, 7, y; §) R(x, 5, y; §) dr=R(t, 5, 93 &)

has a unique solution in (L *((0, T) x (0, T) x 2; 8¢ o(R)))".

Actually, for any fixed &, (2.26) is an inhomogeneous integral equa-
tion in (L *((0, T)? x Q))* depending on £ as a parameter.

By a generalization of the fixed point theorem, under assumption
(2.24) it has a unique solution for any & € R, being a suitable power of the
operator R a contraction in that Banach space.

One can directly calculate each term in S(¢, s, y; §) and check its
boundedness in &, finding that

—2m'§sfta(a, y)do _<wt, 8, Y (12 + a(s, y))e —2m‘§).> 1

S, s,y; &) =e . .
y (wt,s,y, ll(}.z'f-a/('g’ y))e—2ﬂ1§}.> 0

The solution to (2.25) is thus given by

t t
@21 Ttt, & 9) = Uoly, §) + [Fls, &, ) ds + 2mik [ (2, 5, 95 &) ds-
0 0

3 3
Ool&, ) + | (2m’§ [St, 0,89 da) Fs, & y)ds.
0 s

It follows that Ue X x Y is indeed a solution of (2.23) and hypothesis
(2.24) ensures its unicity. =
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We point out that (2.27) has a meaning also for u,e L ® (R x Q) and
ft, 2, y)e L' (0, T; L>*(R X )) and it defines a generalized solution of
the Cauchy problem (2.1).

3. The Cauchy problem when J;a,— J;a.

In this Section we consider the model problem (2.1) assuming that
a.(t, y) is absolutely continuous in ¢ and satisfies

3.1) 0<a_<at,y)<a,, -B<5a.(t,y)<p ae. in

(0, T)x R with a, x 3,a,—a,, 3,a, =a, d,a in L> weak*
B >0 and give the corresponding kinetic formulation of the effective
equation (2.20).

Let denote A'=[-p3,B] and consider the Young measure
Wy s ,(dly, dAy, diy, dA) associated to the sequence

t
Sube(t, y), belt, ), be(s, ), [b.(0, ) do,

with support in A’ XA XA X Ap.

The functions C(t, s, y; &), H(t, s, y; &) and K(t, s, y; &) defined in
(2.3), (2.9) are naturally absolutely continuous in ¢ and this ensures to
equation (2.5) a different kinetic formulation, for any fixed £e R. We
state those properties referring to [15]:

LEemMMA 3.1. The functions C(t,s,y; &), H(t,s,y;& and
K(t, s, y; &) are absolutely continuous in t and one has:

(3-2) atC = <a)t,8,y(dl17 dll, dlz, dl), l1®111®112®6 —2m'§l> —
— 2ﬂi§<wt,s,y(dll, dﬂ.l, d/lz, dl)’ 1l1® (11)26 —2!!15}.),
33)  8.H= (w4 ,(dh, diy, ddg, dA), L @1, @ Lye ~27E) -

— 2iE(w 5, (dly, dA1, dAg, dA), 1, ® (A)2Age ~27éh)
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whereas 0, K(t, s, y; &) is defined by the equation:
t
B4) 3K, s, y; ) —2xiE [8,0¢, 7, y; H K(z, s, y; §) dr=

=0,H(t, s, y; §).
(See Lemma 2.3.1 in [15]).
t

t
-27ri55f0(a, y)do

Let denote 87@=Ie 3,C(t, s, y; &) u(s, &, y) ds and

the same for 3,Hu.

In view of Theorem 2.4 in [15] the problem (2.5) has the following ki-
netic formulation, in which z is the function defined in (2.11) and k((%, y)
is given by (2.10):

PropoSITION 3.1. For any & € R, the Cauchy problem related to the
homogenized equation (2.5) is equivalent to the following system:

35 S u+2mikalt, y) u —2miEZ =0,
' { 3,2 +2mika(t, y) 2 —2mikky(t, y) 4 — 2k 3,Ce —2miE3,Hu =0,
in (0, T) X Q, with (u,2)(0, &, y) = (4 (&, y), 0) in L.

As in Proposition 2.4 we can prove that:

LEMMA 82. The functions 8,C, 8;H, 3,K are symbols in S{ o(R)
for a.e t s, y and the related operators are bounded from H'(R)
to L%(R). Moreover there exists a measure ki, s, (dmy, duy, dus, du)
parametrized in t, s, y with support in A'XAXAXAp such
that

86) SK(t,s,y; &) = (ke s, (dmy, duy, dus, du), mypse ~27H) —

- zni§<ktvs:?/(dlu17 d:uZ’ d/l), (#1)2,u2e _2"i5”>,

Let denote by 5;K the operator
t t
@7 aKu= || ew(x—sw wda)atmt, s, y; &) Uls, £, y) dEds
0

(the same notation is used for the operators defined by 3,C(t, s, y; &),
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O,H(t, s, y; £)) and let introduce the spaces X, =H2(R; L%(Q)), Y, =
=L*(RxQ), X=W"=(0,T; X,), Y=L"(0, T; Yo).
We get the following existence and uniqueness result:

THEOREM 3.1. Under hypothesis (3.1), the problem (2.20) is equiva-
lent in (0, T) X R X Q to the system:

Su+at,y) O, u—3,2=0

3.8)
{ Sz +alt, y) 3,2 — ky(t, y) O, u — 3,(3;Cz) — 3,(3; Hu) =0
with (u, v) |;=0= (Ue(x, ), 0) in R x Q.
If we assume ky(t, y) >0 a.e. in (0, T) X Q, for any initial data in
Xox X, the system (3.8) has a unique solution in W2 = (0, T; X,)xX.

Proor. In view of Proposition 3.1 we have the equivalence between
(2.5) and (8.6). For Uye X, X X,, F(t, &, y) e L*(0, T; Y,), by integration
in time, the system (3.5) is equivalent to the one in (2.25) for which exis-
tence and uniqueness hold in X x Y. The kernel R(t, s, y; &) is absolute-
ly continuous in ¢ and clearly the solution S(t, s, y; &) of the resolvent
equation (2.26) inherits the same property.

From (2.27) we see that the solution U belongs to W2 * (0, T; X,) X
x X and (2.27) has a meaning also when uge L*(Rx 2). =

4. An example of measure.

We consider a sequence a,(t, ; y) bounded in L “((0, T) x 2 X
% ]0, 1[) with small amplitude oscillations, i.e. such that a.e. for (¢, y) €
€ (0, T) x 2 and y small

a.(t, y; ¥) = alt, y) + vb(t, y) + y2c.(t, y) + o(y?).

We assume that a,., 8,0.—a,(t, y), 3;a,(t, ), b, ,b.—b, 3;b,
c,—c in L~ weak*.

Moreover, let (b.(t, y) — b(t, ¥))(b.(s, y) — b(s, y))=>ky(t, s, y) in
L>{0, T)x (0, T)x Q) weak*.

We suppose that ky(t, y) :=ko(t, t, y) >0 ae. t, y.

In this case the measure k; , ,;,(do,, do,, do) given by Proposition
2.4 has the following asymptotic expansion:
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LEMMA 4.1. The measure k; s ,;, admits for small y the asymptot-
ic expansion:

ki s, y;y(doy, dosy, do) (01025

i )
z=[a,(z,y)dr+o

=y2k0(t’ S, ?/)(5 dx+o(y2).

:c=ja(t, y)dr

Proor. The expansion is deduced from relation (1.7) when w, 4 ,;,
is the measure associated to a, — a,, where one sees that the zero order
moment is given by

<kt, S, YV 0102> = (wt,s,y;yv /11/12> = ysz(t7 S, y) + O(yz)' n

The average operator K defined in (2.21) is correspondently expand-
ed in

t t
Ku = yszo(t, s, Y) u(s, xr— Ia(o, y) do, y) ds + o(y?).
0 8

From (3.8) we get that the effective equation behaves up to order y?
like the second order integrodifferential equation

Eu+ (a,+a) Zu+ (aa, — ko(t, y)) E.u+ 8,a,(t, y) d,u —

t t
— v2[ kot s, ) Gixu(s, z - [a(z, y) dr, y) ds=0.
0 s
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