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Homogenization of a Linear Transport Equation
with Time Depending Coefficient.

MILENA PETRINI (*)

ABSTRACT - We are concerned with the effective behaviour of the transport equa-
tion + a~ (t , y ) 8xue = 0 when a~ - a in L °° weak* and the Cauchy prob-
lem related to the equation with memory satisfied by a weak* limit of the se-
quence of solutions. The memory term is represented by an averaging opera-
tor. The homogenized equation has a unique solution, established considering
a kinetic formulation.

1. Introduction.

Let T &#x3E; 0 be fixed, Sd c RN be an open set and let ( a~ ) be a sequence in
L 00 ((0, T) x ,S~) that satisfies

We are interested in the asymptotic behaviour of the solution Ue of a
transport equation having y ) as a coefficient oscillating in a trans-
verse direction (shear flow):

where uo (x, y) E L 00 (R x Q).
The problem (1.2) is a model for studying the global behaviour of con-

centration of fluids in porous media.

(*) Indirizzo dell’A.: Dipartimento di Matematica «V. Volterra», Universita di
Ancona, Via Brecce Bianche, Ancona (Italy). E-mail: petrini@anvaxl.cineca.it
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Transport equations with oscillating coefficients arise also for the Li-
ouville equation associated with an oscillating hamiltonian or when

studying the oscillations in Euler equation (see Amirat-Hamdache-Ziani
[3] for examples and an application to a multidimensional miscible flow in
porous media).

The homogenization of (1.2) brings out a diffusion operator in the x
variable with memory effect in the time variable t, besides the natural
transport operator.

In the case of time independent coefficient treated in the pa-
pers [2], [4]-[6], [8], [10], [14], [16], the memory term is of kind convolu-
tion in time and in particular, in the nonlocal homogenization framework
developed by L. Tartar [16] and Y. Amirat, K. Hamdache, A. Ziani [4]-
[5], it is described by a parametrized measure by use of the integral rep-
resentation of Nevanlinna-Pick’s holomorphic functions.

The representation allows to define a kinetic system equivalent to the
homogenized equation and prove existence and uniqueness of the limit
solution by the semigroup theory (see [7]).

The same method has been applied to the model (1.2) in [3] and yields
a memory term which depends from the effective solution by an equation
of division of distributions and thus not explicitly.

By Fourier transform in x the problem (1.2) writes:

and considering the frequence ~ as a parameter it can be treated with
the method developed by Tartar in [17] for an ordinary equation. Thus,
up to a subsequence, the weak limit of Se satisfies:

where, for the kernel K( t , s , y ; ~) is the solution of a resol-
vent Volterra equation.

Under the assumption of equicontinuity of the coefficients a£ ( t , y),
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by an estimate derived from the resolvent equation, R. Alexandre in [1]
has characterized the kernel K( t , s , y; ~) as the symbol of a pseudo-dif-
ferential operator in x and thus has showed a class of homogenized
equations.

The main purpose of this paper is to give to K(t, s, y; ~) a represen-
tation by an averaging operator as in the time independent case and to
establish existence and uniqueness of solution for the limiting prob-
lem.

We will work under the assumption (1.1) on the coefficients and ex-
ploit some results of [15] concerning the analysis of the ordinary equa-
tion which follows from the ideas contained in [17] and [7].

By an asymptotic analysis in the frequence ~ and application of

Phragmén-Lindelof principle joint to the Paley-Wiener theorem, we
identify a bounded parametrized measure d,u 2 , dll) by which
the memory kernel is represented as the Fourier transform

K(t, s, y; ~) = e -2JrixS).
The moments of dkt, s, y are all determined through the quantities

s , y ), L ~ 2 defined, up to subsequences, by:

and one has

We will suppose that ko(t, y) := ko(t, t, y ) &#x3E; 0 a.e. in (0, T) x Q.
The representation ensures that the operator

is bounded on L 00 (0, T ; L 2 (R x Q)), it is as a pseudo-differential opera-
tor in x whose symbol belongs to the class So, o (R ) for almost any t, s, y
and the homogenized equation writes:

Moreover, through the resolvent equation we get that the measure
is linked with the Young measure dÂ2, dÂ) associated
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tion:

where b~ : = ae - a, by the rela-

a.e. for t , s , y, for 

The link above enables us to give to the homogenized equation (1.6) a
kinetic formulation as a system and then prove that the whole sequence
Ue converges to the weak limit u.

Actually, introducing the auxiliary function z = 8xKu and the

operators C and H related to dwt,s,yk1d X=s ft a(a, y)da+)’ dx and

t dx as in (1.4), (1.5) is equivalent to the

system: 
x= 

for which existence and uniqueness of solution hold in view of a general-
ization of the fixed point theorem.

When the coefficients y ) are absolutely continuous in t and veri-
fy in L °° (( o , T ) X S~ ), there exist an operator
at K: H 1 (R ) --~ L 2 (R ) bounded for a.e. t, s, y represented by a bounded
measure dill, dU 2, dll) such that (1.6) has a kinetic formula-
tion with the time derivative of z.

As an example we will consider a sequence with small amplitude os-
cillations, i.e. a~ ( t , y ; y) = a( t , y ) + y b~ ( t , y ) + y ) + o( y 2 ) a.e. for
( t , y ) E ( o , T ) x Sz and y small, absolutely continuous in t, with

In this case the related measure admits an asymptotic expansion
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and u satisfies up to order y 2 the equation

Aknowtedgments. I would like to thank Kamel Hamdache for useful
conversations and helpful encouragement.

2. The Cauchy problem when a~ -~ a.

Let (aj be a bounded sequence in L °° ((0, T) x ,~) that satisfies (1.1).
In the following we shall denote b£ : = a~ - a, a : = a + - a _ , A =

Clearly I b, (t, y) ~ a a.e. in (0, T ) x Q and b£ -~ 0 in L °° weak*.
We consider the transport equation:

in which uo ( x , y ) E L 00 (R x Q).
The homogenization of (2.1) is studied dealing in Fourier transform

in x with the ordinary equation:

By considering the frequence ~ as a parameter we can follow the
analysis done in [15] for the case of a linear equation and subsequently
make an asymptotic analysis in ~.

We first reformulate some statements of [15], referring to the corre-
sponding results for proofs.

We denote by ~2, d~, ) the parametrized family of Young
measures generated by the vector-valued sequence

with support in for any t, s, y and by y(dÀ 1, dA),
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Wt, s, y (CL~~, 2 ~ dA), Wt, s, y (dA) its projections (see Lemma 2.0.1 in [15]):

The projection (o g y(d£) coincides with the Young measure associated
t t’ B

to the sequence f bE(o, y) da, has compact support in A T; its Fourier
transform = e -2niEk verifies Sg, s, =1 and it is

absolutely continuous in t and s, with second mixt derivative in t , s. The
functions

are related as follows:

moreover F, C, G all vanish at t = s, whereas

where denotes the Young measure associated to (b~ (t, y)).

and we have:

PROPOSITION 2.1. Under hypothesis (1.1 ), extraction of a sub-
sequence, there is a kernel K( t , s , y ; ~ ) defined on ( 0 , T) x ( 0 , T) x Q
for any ~ E R, such that the subsequence ûe of solutions of (2.2) con-
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verges weak* to the solution û of:

where D(t, s , y ; ;) is the solution of the Volterra equation:

For the proof we refer to Theorem 2.1 in [15].
In the next Lemma we summarize the properties of D and K:

LEMMA 2.1. The solution D(t , s , y ; ;) to (2.7) is measurable in t, s,

y, analytic in ;. The kernel K(t, s, y; ;) solves for any; ER the family
of Volterra equations:

on ( 0 , T) x ( 0 , T) x Q and it is given by

PROOF. We refer to Lemmas 2.1.1 and 2.1.2 in [15] recalling that in
view of (2.7)

with

and co = 0, cl = 1, whereas K has an expansion obtained by H and C
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through (2.9),

in which the coefficients kj satisfy the bound

In particular, (2.9) yields:

We recall also the following equivalence between (2.5) and the kinetic
system formulated through relation (2.8) by introducing the function

and denoting by Cz, Hu the functions defined through C(t, s, y; ~),
H(t, s, y; ~) as above:

PROPOSITION 2.2. For the Cauchy problem related to

equation (2.5) is equivalent in (0, T) x Q to the following system:

(For the proof see Theorem 2.2 in [15]).
We will check the boundedness of the memory kernel K(t , s , y ; ~) by

an asymptotic analysis in the frequence.
To this end we introduce the solution M to

and state:
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PROPOSITION 2.3. There exists a bounded measure bt, ~, y (dy)
parametrized in t, s, y with support in A T, absolutely continuous in t
and s, with second mixt derivative in t, s, such that y(~) veri-
fies :

a. e. in t, s, y, for any; E R. The moments of dbt, s, y are all determined by
the measure dw t, s, y and in particular

PROOF. For F, G as in (2.3), the solution B(t, s, y; ;) to:

with B(s , s , y ; ~) = 0 is given by:

and it is such that

with

and

The bound on the coefficients Bk ( t , s , y ) yields:

moreover from equation (2.16) we have:
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We can therefore apply the Phragmen-Lindelof result and get

In view of the Paley-Wiener theorem (see Hörmander [11], Gel’fand-
Shilov [9]), inequality (2.18) yields that

for a distribution bt, ~, y (,u) of order 0 with support contained in ~l T. From
equation (2.17) we see that B( t , s , y ; ;) is absolutely continuous in t , s
and (2.14) holds.

It follows that B(t , s , y ; ;) is a symbol in the class ,So 0 (R ) for a.e. t, s,
y (see Hörmander [11]) and the same holds for its derivatives:

PROPOSITION 2.4. The functions D( t , s , y ; ~), M( t , s , y ; ;),
K( t , s , y ; ;) are symbols in o(R) for almost every t, s, y. Moreover,
there exists a measure kt, s, y(dIl1, d1l2, dll) parametrized in 4 s, y, with

support in A x A x A T, such that

with

PROOF. By still using the Phragmém-Lindelof principle joint to the
Paley-Wiener theorem.

Thus the homogenized equation writes:

where the operator K defined by
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is bounded on L 00 (0, T ; x Q)) with

The proof of existence and uniqueness of solution for equation (2.20)
is based on a kinetic formulation as a system.

Let introduce the spaces Yo = L 2 R x Q), L 2 ( S2 ) ), X =
= W 1 ~ °° ( 0 , T ; Xo ), Y = L 00 ( 0 , T; Yo ) and denote by C, H the operators
associated to symbols C, H as in (2.21).

If z is the function in (2.10) we get:

THEOREM 2.1. The homogenized equation (2.20) is equivalent in
(0, T) x R to the system

with f = 0 = g and ( u , z ) ( 0 , x , y) = ( uo , 0) in R x Q.
Assuming that

for every ( uo , zo ) EXO X Xo and ( f , g) T ; Yo ) X L 1 ( 0 , T ; Yo )
the Cauchy problem related to (2.23) admits a unique solution (u , z) E
z X x Y

PROOF. In view of Proposition 2.2, we have the equivalence between
(2.5) and (2.12). By integrating in time the first equation and denoting
F = ( f , g), we can write (2.12) under the general form:
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in which R(t , s , y ; ~) is the kernel of an operator bounded in Y x Y:

whose related operator is bounded in Y x Y.
The resolvent equation:

has a unique solution in (L °° ((0, T) x (0, T) x Q; So o (R ) ))4.
Actually, for any fixed ~, (2.26) is an inhomogeneous integral equa-

tion in (L °° ((0, T)2 x Q))4 depending on ~ as a parameter.
By a generalization of the fixed point theorem, under assumption

(2.24) it has a unique solution for any ~ e R, being a suitable power of the
operator R a contraction in that Banach space.

One can directly calculate each term in S( t , s , y ; ~) and check its
boundedness in ~, finding that

The solution to (2.25) is thus given by

It follows that U E X x Y is indeed a solution of (2.23) and hypothesis
(2.24) ensures its unicity.
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We point out that (2.27) has a meaning also for uo E L °° (R x Q) and
f ( t , x , y ) (o , T ; L ’ (R x Q)) and it defines a generalized solution of
the Cauchy problem (2.1).

3. The Cauchy problem when at a~ ~ 3t a.

In this Section we consider the model problem (2.1) assuming that
a~ ( t , y ) is absolutely continuous in t and satisfies

~3 &#x3E; 0 and give the corresponding kinetic formulation of the effective
equation (2.20).

Let denote and consider the Young measure

dÀ 1, cM,2, associated to the sequence

with support 
The functions C(t, s, y ; ~ ), H( t , s , y ; ~ ) and K( t , s , y ; ~ ) defined in

(2.3), (2.9) are naturally absolutely continuous in t and this ensures to
equation (2.5) a different kinetic formulation, for any fixed E E R. We
state those properties referring to [15]:

LEMMA 3.1. The functions C(t, s, y; ~), H(t, s, y; ;) and

K(t, s, y ; ~) are absolutely continuous in t and one has:
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whereas 8tK(t, s , y ; ;) is defined by the equation:

(See Lemma 2.3.1 in [15]).

Let denote

the same for 
In view of Theorem 2.4 in [15] the problem (2.5) has the following ki-

netic formulation, in which z is the function defined in (2.11) and ko ( t , y)
is given by (2.10):

PROPOSITION 3.1. For Cauchy problem related to the
homogenized equation (2.5) is equivalent to the following system:

As in Proposition 2.4 we can prove that:

LEMMA 3.2. The functions at C, at H, at K are symbols in S6,0(R)
for a. e. t, s, y and the related operators are bounded from 
to L2(R). Moreover there exists a measure d,u 1, d1l2, dll)
parametrized in t, s, y with support in ~l ’ x A x A x A T, such
that

Let denote by the operator

(the same notation is used for the operators defined by s , y ; ~),
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s , y ; ~ ) ) and let introduce the spaces L 2 ( ,~ ) ), Yo =

We get the following existence and uniqueness result:

THEOREM 3.1. Under hypothesis (3.1), the problem (2.20) is equivac-
Lent in (0, T) x R x Q to the system:

If we assume y ) &#x3E; 0 a. e. in (0, T) x Q, for any initial data in
Xo x Xo the system (3.8) has a unique solutions in W~’°°(0, T ; Xo ) x X.

PROOF. In view of Proposition 3.1 we have the equivalence between
(2.5) and (3.6). For Uo E Xo x Xo , F( t , ~ , y ) ELI (0, T ; Yo ), by integration
in time, the system (3.5) is equivalent to the one in (2.25) for which exis-
tence and uniqueness hold in X x Y. The kernel R(t , s , y ; ~) is absolute-
ly continuous in t and clearly the solution S(t, s , y ; ~) of the resolvent
equation (2.26) inherits the same property.

From (2.27) we see that the solution U belongs to W 2 ~ °° ( o , T ; Xo ) x
x X and (2.27) has a meaning also when uo E L °° (R x Q ..

4. An example of measure.

We consider a sequence a£ ( t , y ; y ) bounded in L °° (( o , T ) x S~ x
x ]o , 1[) with small amplitude oscillations, i.e. such that a.e. for ( t , y ) E
E ( o , T) x S~ and y small

We assume that

Moreover, let (b~ (t, y) - b(t, y»(be(s, y) - b(s, y) )£ ko (t, s, y) in

L °° ((0, T) x (0, T) x S~) weak*.
We suppose that ko ( t , y ) : := ko ( t , t , y ) &#x3E; 0 a.e. t , y.
In this case the measure dQ2, 9 da) given by Proposition

2.4 has the following asymptotic expansion:
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LEMMA 4.1. The measure kt, S, y; y admits for small y the 
ic 

PROOF. The expansion is deduced from relation (1.7) when 
is the measure associated to a, - aY , where one sees that the zero order
moment is given by

The average operator K defined in (2.21) is correspondently expand-
ed in

From (3.8) we get that the effective equation behaves up to order y 2
like the second order integrodifferential equation
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