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Generalized Solutions of Time Dependent
Impulsive Control Systems (*).

CHANG EON SHIN - RYU JI HYUN (**)

ABSTRACT - This paper is concerned with the impulsive Cauchy problem

where u is a possibly discontinuous control function and the vector fields f,
g : R x W - W are measurable in t and Lipschitz continuous in x . If g is
smooth w.r.t. the variable x and satisfies - 0 (t) - 0 (s), for
some increasing function 0 and every s  t , we show that the above Cauchy
problem is well posed as u ranges in the space L1 (do).

1. Introduction.

Consider the Cauchy problem for an impulsive control system of the
form

where u is a scalar control function and the dot denotes a derivative
w.r.t. time. We assume that the vector fields f , g : are

bounded, measurable in t and Lipschitz continuous in x , so that

(*) This work was supported by BSRI-97-1412.
(**) Indirizzo dell’A: Department of Mathematics, Sogang University, Mapo-

gu Shinsudong 1, Seoul, Korea, 121-742.



162

for some constants M, L . Under these conditions, for any continuously
differentiable scalar function u, the right hand side of (1.1) is measur-
able in t and Lipschitz in x . Therefore, a well known theorem of

Caratheodory [1] provides the existence and uniqueness of the corre-
sponding solution u). Aim of this paper is to show that, under
suitable assumptions on g , the can be continuously ex-
tended to a much larger space of (possibly discontinuous) control func-
tions. Besides (1.2)-(1.3), let g be twice continuously differentiable w.r.t.
x, say

Moreover, we shall assume that the total variation of g w.r.t. time is

bounded:

for some non-decreasing function q5. Observe that, if u is a e1 function,
the solution of (1.1) is not affected by changing g on a set of times of mea-
sure zero. For simplicity, we shall thus assume that both g and 0 are
right continuous functions of time. By possibly replacing 95 with

it is not restrictive to assume that

By (1.6), the positive Radon measure do contains an atom at t = 0 and at
t = T, and satisfies dx, where dx denotes the standard Lebesgue
measure. We can now state the main result of this paper.

THEOREM 1.1. Consider a set of bounded, measurable control func-
tions of the form ‘U, ’-- ~ u : [ 0, T] ~[ - M1, u E For u E ‘U, , call

x(t, u) the corresponding solution of the Cauchy problem (1.1). Then,



163

under the assumptions (1.2)-(1.6), the map u) satisfies

for some constant C aud alL u, v E a.

As a consequence, the map x(T, u ) can be uniquely extended by con-
tinuity to the closure of a in the space This provides a natural
definition of solution of (1.1) also for a discontinuous control u,

where is any bounded sequence of e1 functions, tending to u in
the space 

REMARK 1.2. In the case where g is a piecewise smooth function of
t , x , with finitely many jumps at times 0 = to  t1  ...  tn = T , one can
always construct a function 0 such that (1.5) holds. Indeed, for suitable
constants Cl , C2 , one can take

REMARK 1.3. Our results can be extended to systems of the
form

Indeed, the dependence on u is easily removed by introducing an addi-
tional coordinate xo = u , with ~o = it.

In the case where the vector fields f , g do not depend on time, sol-
utions of the impulsive Cauchy problem (1.1) were studied in [2]. For a
special class of Lagrangean systems with piecewise continuous depen-
dence on a time-like variable, the impulsive control problem was recently
considered in [6]. The present approach is simpler than [6], since it does
not require any smoothing approximation of the vector field g.

The proof of Theorem 1.1 is given in the next two sections. We first
introduce a suitable definition of solution of (1.1), valid when u lies in the
set

U’ u: [0, is piecewise constant and all

of its jumps occur at times t ~ 0, T where 0 is continuous}.
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For U E ’U’, we show that the inequality (1.7) holds, hence the map
u ) can be continuously extended to the closure of ‘u’ in the

space When this continuous extension coincides with the

usual Carath6odory definition. Since the closures of a and coincide,
the result will be proved.

2. Definition of generalized solutions and preliminary lemmas.

Let I~ : [ o , T] x be a (time dependent) vector field, and fix a
time r e [0, T]. Denote by x the solution of the Cauchy
problem

We assume that for every the map t H 1~( t , x ) is measurable and
for every ~E[0, T], the map x) is continuously differentiable.
Moreover, denote by t H ~(t , k( i), x) the fundamental matrix solution of
the linear differential equation

with ~(o , /c(T), x) the identity matrix. Here represents the
Jacobian matrix of first order partial derivatives of 1~( z , ~ ) with respect
to x .

The matrix 0(t, k(r), x) has the following properties.

LEMMA 2.1. Let M2 be a constant such that

PROOF. Since d

Gronwall’s inequality

LEMMA 2.2. Let k be twice continuously di, fferentiable w. r. t. x and
let r E [ 0 , T]. Suppose that for any x , y E Rn
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and M. Then for any

PROOF. Let z E [ o , T ] and xl , X2, We put 
= 0(t, k(z), Xl ).w and v2 (t) _ 0(t, k(r), x2 ) ~w. For i = 1 and 2, 
is the value at time t of the solution of the linear differential equa-
tion

Observing that for any

and

due to Lemma 2.1

Gronwall’s inequality implies that

When the corresponding generalized solution x( t , u ) of (1.1)
can be defined in a straightforward manner. Indeed, let u have jumps at
points ti, with 0  t1  ...  tn  T . In this case, x(t, u) is the function
which solves the differential equation

on each subinterval ] ti _ 1, ti [, together with the boundary conditions
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To study the continuous dependence of these solutions on the control
U E U’, it is convenient to introduce an alternative representation, in
terms of a new variable which will remove the discontinuities due to
the jumps in u .

Choose points ci with C1 = 0 , cn + 1= T, such that ci  ti  ci + 1 for each
i = 1, ..., n . Since u is constant outside the points ti , on each subinterval
I Z = ~ ci ~ Ci + 1], the function x( t , u) provides a solution to

Defining the auxiliary variable it is

known [2,3] that; is an absolutely continuous function which satis-

fies

where is defined by

the corresponding solution u) can thus be obtained

by setting

where u ) is the piecewise continuous function such that

The main advantage of the representation (2.9)-(2.10) is the following.
The total variation of ~c , and hence of x , can be arbitrarily large. On the
other hand, the total variation of ~ is related to the total variation of g ,
which by (1.5) is bounded in terms of 0. For this reason, it is convenient
to study the solution of (1.1) in terms of the variable which is much
better behaved than u or x .

From now on, we assume that f and g satisfy all the hypotheses in
Theorem 1.1. The following lemma shows that the map F * defined in
(2.7) is Lipschitz continuous w.r.t. both variables ~, u.
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LEMMA 2.3. There exists L1 &#x3E; 0 such that for any t , r E [ 0 , T ], ~ 1,
and lUll, , 

PROOF. By (1.4), we can easily see that for any WE Rn 

IDxg(i, ;).wl ~ n2 Mlwl. By Lemma 2.1 and Lemma
2.2,

and
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LEMMA 2.4. E Rn and 0 ~ i 1  i 2 ~ T . Then for any t E IE~,

PROOF. Replacing t with - t, it is not restrictive to assume t &#x3E; 0 . Ob-

serving that

Gronwall’s inequality implies

Let t1, t2 E [ 0, T] and E RB From (1.4) and (1.5), we can easily
see that

and

We define a map

Then k is differentiable w.r.t. r and we have
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In the similar way, we have that

PROPOSITION 2.5. Let xo , yo E and let t1 and t2 be points on [ o , T].
Define a map K: [ - Ml , by

Then there exists B1 &#x3E; 0 such that for any s E [ - M1, M1 ],

PROOF. Let

Then

and

Define a map
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Observing that for any 

we have

there exists B2 &#x3E; 0 such that

then by Gronwall’s inequality

where We thus only have to show that inequality (2.23)
holds for some B2 &#x3E; 0. Since

and by (2.17)

to claim inequality (2.23) we shall show that there exists B3 &#x3E; 0 such that
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for any TE [-M1, M1]

We fix z E [ - Ml , M1] and define maps

and

Then

and vl , V2 satisfy

where P3 = exp P2 and q3 = exp q2. We compute a bound
for ~vl(0) - v2(0)~ 1 to get
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By considering - a instead of a, we assume that a~ ~ 0 . Observing
that

we have a bound for I as

By Gronwall’s inequality,
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We thus have that for any s E [ - Ml , M1 ]

where B4 = B3 Ml . By (2.25)

where B2 = B4 + n 2 . As a consequence, the proposition is

proved. 0

3. Proof of the theorem.

Before proving that (1.7) holds for u, v E a , we show that it holds for
u , v E 11’. Let u , v E ‘LI,’ . Recall that the generalized solutions x( t , u ) and
x( t , v ) can be defined in terms of (2.8)-(2.10). Assume that either u or v

jumps at ti where

moreover, we may assume that u and v are left continuous since 0 is con-
T

tinuous at each ti and the integral v(t) I dØ(t) is not affected by
o

changing the value . Let cl = 0 and dn = T . We choose
ci , ( ti _ 1, with for i = 2, ... , n . Define the time inter-

vals I = [ ci , di ], i = 1, ..., n . Since u and v are left continuous, it is not
restrictive to assume that di _ 1= ti . Define

Since

we need to estimate the increase of I X(ti) - Y(ti) I as i increases. On

each interval Ii , we define
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By (2.6), on the interval Ii, Xi and Yi satisfy the differential equa-
tions

respectively. Due to Lemma 2.3, on the interval [ti, ti + 1 l we have

We thus have an estimate by Gronwall’s inequality

Next, we estimate the difference between

If we put and yo = Yi (ti + 1 ), then

If in (3.3) E2 ~ C3 (95(ti , 1 ) - 0(ti)) I u(ti , 1 ) - v(ti , 1) 1 for some C3 &#x3E; 0,
then by Proposition 2.5
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By (3.2) and (3.4),

Observing that on the interval [0, equation ( 1.1 ) is x = f ( t , x),
x(t1, u) = x(t1, v) and

where We can estimate

where Hence (1.7) holds for u , 
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Now we need to show that, in (3.3), E2  C3 (o(ti+1) -
- o(ti))|u(ti+1) - v(ti+1)| 1 for some constant C3 &#x3E; 0 . By Lemma 2.4,

and

Next, we claim that (1.7) holds for u , v E 1L Suppose that for any w E
E there exists a sequence ~ wn ~ in such that wn - w in and

x( T , wn ) 2013&#x3E;.r(7B w) as n -~ ~ . For u and v E we have sequences ~ un ~
so that un -~ u , in L1(dØ), x( T , and

x(T, v ) as n --~ 00. We thus have that for any 

and take (3.7) to get

Hence we only have to show that for any w E ‘Lt,, there exists a sequence
~ wn ~ in ~,1,’ such that wn-w in and 
as n - oo. Let w E ‘U, . We can construct a sequence {wn} in U’ such that



177

and

For n E N and i = 2, ... , 6(n), we choose ci E (at, bin). Put ci = 0 and
= T . Define the time intervals [ci , and 

for i = 2, ..., 3(n).
Before proving that lim x(T, wn ) = x(T, w), we observe that for a

control function w, if the solution or the generalized solution of the in-
itial value problem

exists, then we denote by w ) the solution or the generalized sol-
ution of equation (3.10) corresponding to a control function w. If WE a ,
then w) is the usual solution of (3.10). If ~(t , w ) is the solution of
the differential equation such that on each interval Jin,

then also satisfies that

On the other hand, if then w ) is inductively defined by
(3.11) and (3.12), in this case w) = x( t , w ) is the generalized sol-
ution of ( 1.1 ) corresponding to w .

Simple computation yields that

when we take yn(t, w) as a usual Carath6odory solution of (3.10) corre-
sponding to w . By Theorem 5 in [2],
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when w) is defined by (3.11) and (3.12) corresponding to w . As a
consequence,

and (1.7) holds for ~c , v E=- U.0
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