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Semicontinuous Differential Inclusions.

TZANKO DONCHEV(*)

ABSTRACT - Almost upper and almost lower semicontinuous differential inclusions
in a Banach space with uniformly convex dual are considered. We suppose
that the right-hand side is a sum of one-side Lipschitz multifunction and a
multimap which satisfies compactness type conditions. A relaxation theorem
stating that the solution set of the original problem is dense in the set of con-
vexified upper semicontinuous regularization one is proved.

1. - Introduction.

We consider the following differential inclusion:

in a Banach space E with uniformly convex dual E * . Here I = [ 0, 1 ], F
and G are multifunctions (multimaps). The first one is almost Upper
SemiContinuous (USC), the second one is almost Lower SemiContinuous
(LSC). The existence of solutions in USC and LSC cases under addition-
al compactness assumptions is considered in great number of papers (see
e.g. [7] and references given there). Here we examine the existence of
solutions and prove that the solution set of (1) is connected. For one-side

Lipschitz F and G we approximate solution set of the relaxed problem (2)
(below) by the solution set of the corresponding discretized inclusion.
With the help of this approximation using Fm continous selections

(see [4], [5], [6]) the existence result without compactness assumptions is
proved. Using refined version of the main idea of [12] we also prove new

(*) Indirizzo dell’A: Department of Mathematics, University of Mining and
Geology, 1100 Sofia, Bulgaria.
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relaxation theorem (Theorem 1). Afterwards the case of sum of one-side
Lipschitz and a multimap satisfying compactness conditions is consid-
ered (Theorem 2).

Now we recall some definitions and notations. All the concepts not di-
cussed in the sequel can be found in [7].

Given metric spaces Y and X, the multimap F : Y-~ 2X (nonempty
compact subsets of X) is said to be Hausdorff upper semicontinuous-USC
[Hausdorff lower semicontinuous-LSC] iff for every E &#x3E; 0 there exists
6 &#x3E; 0 such that F(x) c BE (F( y ) ) [F( y ) c BE (F( x ) ) ] for all x E B6 (y), where
B,5 (y) is the open ball centered at y with radius 6. For A c E , A (coA) is
the closed (convex) hull of A. For bounded sets DH(A, B) =

= max { sup Q(a, B), sup Q(b, A) 1, where Q(a, B) = inf a - b , is the
aEA bEB beB

Hausdorff distance. The multimap F: I x Y~ 2x is called A(lmost)USC
(LSC) iff there exists a sequence {Jm}oom = of compact mutually disjoint

subsets of I such that meas (IB U Ji = 0 and F is USC (LSC) on Ji x Y
for every i . Given M &#x3E; 0 we define the cone:

Let A c I x E . The map , f : A - E is said to be T M continuous at ( to , xo ) if
to E &#x3E; 0 there exists 6 &#x3E; 0 such that

whenever

For A E 2E , A ) = sup a ~, where is the support function.
We denote a E A

B(A) =

= inf (R &#x3E; 0: A can be covered by finitely many balls with radius ~ 

For x EE define J(x) _ {~* eF*: = IX* 12 = ~x*, x~~. J(~) is called
duality map. When E * is uniformly convex it is well known that J is sin-
gle valued and uniformly continuous on the bounded sets. (see [7] for in-
stance). Define
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The indicator function

2. - Main results.

In this section we prove our main results. Denote

and

We will use the following assumptions:

H 1. The multimap F( ~ , ~ ) is AUSC with convex compact values and
G( - , ~ ) is closed valued ALSC such that H( ~ , ~ ) is compact valued and
USC. Let also x) + G(t, x) ~ ~ ~,(t)~ 1 + for A(’) positive inte-
grable function.

H2 (One-side Lipschitz condition). There exist integrable M( ~ ) and
N( ~ ) such that

REMARK 1. The last condition-one-side Lipschitz is introduced

in [8]. It is generalization of the known one sided Lipschitz condi-
tion :

for every x , y and every fx E F( t , x), fy E F( t , y)

In this case G(t, x ) is single valued and if Hl holds, then (1) admits an
unique solution. The one sided Lipschitz is an extension of the classical
Lipschitz condition in single valued case. Our condition (one-side Lips-
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chitz) is an extension of the following multivalued Lipschitz condi-

tion :

Moreover F( t , ~ ) is, obviously one-side Lipschitz iff co F( t , ~ ) is one side
Lipschitz.

THEOREM 1. Under the assumptions Hl, H2 the problem (1) ad-
mits a solution. Moreover the solution set of (1 ) is connected and dense
in the solution set of the relaxed problem:

Furthermore the solution set RRP of (2) is R6 set.

PROOF. First note that using standard arguments one can replace
N(.) + M(.) and A(’) by 1 if needed, preserving the other hypotheses.
Namely define cp(t) &#x3E; 0. The

is continuous and strictly increasing. Let ~( ~ ) be its inverse, i.e.

and

Evidently F and G satisfy all the conditions mentioned above. Moreover
the set of trajectories, as curves in the phase space, is preserved.

We divide the proof into four steps.

1. A priori bounds. Denote If 

~ (2 + exp (~.), thanks to Gronwall inequality. Therefore there exist
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constants L, K such that L and x) ~ ~ K for every abso-
lutely continuous (AC) x( ~ ) with

We suppose x) ~ _ ~ x) + H(t, x) ( ~ K for all x E E since we
consider only AC x(-), satisfying the differential inclusion above.

2. Approximation. Let z i = ih ; h = 1 /m be uniform grid of [0, 1 ].
Consider the discretized inclusion:

Denote by RRp and RDI the solution set of (2.2) and (2.3) respect-
ively.

We claim lim DH ( RDI , = 0 .
h-0

Let y(.) be solution of (2.2). We get x( t ) E R( t , such that

I.e.

Thus there exists a constant C such that C(h +
2L))~~. Let x(.) be a solution of (2.3). Consider another uniform

grid r Y = jhy of [0,1] such that the elements ih of the first grid
are elements of the second one. We let E R(t, y( i1J» for j =1, ... , n

be such that

I.e.

where we have denoted y(h) = fJ(Kh, 2L). Furthermore [r j , i i+ 1).
Therefore y( t ) ~ 2 ~ C(h + hy + y(h) + y ( hy ) ) . Using similar argu-
ments one can show that C(h + hy + y(h) + y(h~))1~2.
Since lim y(h) = 0 one can conclude that there exists a sequence of

subdivisions {Pm}oom=1 i such that and 
~ (C(h + y(~))~~)/2". Thus is a Cauchy sequence in C(I , E),
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here Rill is the solution set of (3) with respect to m . Thus there exists

R = lim Obviously R --- RRp . Using standard construction one can
prove that given k&#x3E;0 there exists a solution y(·) of (2) with x( t ) -

- y(t)|2  C(h + y(h)) + A. Since A is arbitrary DH(RDI, RRP)  C(h +
+ y(h))’12. The claim is proved.

3. Existence of solutions. Let S(., x) be strongly measurable and let
,S( t , ~ ) ) be USC as a real valued function for every Further-

more let S(t, x ) c R( t , x ) be nonempty convex and compact valued. We
claim that the solution set R1 of

is nonempty compact valued and lim Re) = 0 . Here R, is the sol-
ution set of 

E-0

From the previous step we know that the solution set of (2) is

nonempty compact. Consider

with the solution set RDI. Obviously lim Q(REI, = 0 . Therefore one

can conclude that lim e(Rs, R1 ) = o . I.e. R1 is nonempty compact. The
h-0 

DI

fact that R1 = lim Re is straightforward (see for instance [3, 7]).
e-o

Since G is ALSC there exists a sequence of mutualy disjoint compacts

Ai such that I = U Ai U N, where meas (N) = 0 and G(·, ·) is LSC on
i=i i

Ai x E for every i . From theorem 2 of [5] we know that there exists a se-
lection g( t , x ) x ) which is I ~’x + 1 continuous on every Ai x E . If

h(t, x) = coflg(t, x + UE) then h(t, x) cH(t, x). Hence there exists a sol-
ution x(~) of x(t) E F(t, x) + h(t, x). It is easy to show that x(t) E
E F( t , x) + g(t, x) (see the proof of Theorem 6.1 of [7]). Therefore the sol-
ution set of (1) is nonempty.
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4. Density. Let z( ~ ) be a solution of (2). It is easy to see that there
exist sequences Ei - 0 and xi such that | - 0, where

If E R(t, x), x(o) = xo, then ~ E F(t, x) + co G(t, x + U~) for every
E &#x3E; 0. One can easily show that (t, x ) --~ G( t , x + is ALSC. It is

straightforward to prove that 1 decreasing to zero there exist
such that E F( t , x + + G( t , x + + U£ 2 and

lim = z(t). Let x(t) = f (t) + g(t), where f(t) E F(t, xi (t) + UE2 ) and

let g(t) E G(t , + + Uei i be strongly measurable. Let E &#x3E; 0 be

given and let

Fix y &#x3E; 0 and define the multimap:

We will prove that H~ ( ~ , ~ ) is ALSC with nonempty compact values. Fix t .
Let y E x( t ) + !7e be such that g(t) E G(t, y ) + U~ . From H2 there exists

u) such that (J(y - u), gg - v~ ~ ~ u - y [ ~ , where U E G(t, y) and
 E . Since - x( t ) ~  E , one has that

I.e. H~ ( ~ , ~ ) is nonempty compact valued. Let G( ~ , ~ ) be jointly LSC and
g(.) be continuous on A . Suppose ti ~ t ( ti E A ), Let v E G(t, u ) be
such that

where Since G(~ , ~ ) is LSC there exists Vi E G( ti, ui ) such that

Thus H~ ( ~ , ~ ) is also ALSC. Therefore the differential inclu-
sion :
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admits a solution y( ~ ). By standard computations we obtain

One can prove that the solution set is connected as the corresponding result
of [4]. Indeed let be two solutions of (1). Letfi (.), gi ( . ) be strongly measur-
able selections of F( ~, ui ( ~ ) ) and of G( ~, ui ( ~ ) ) respectively i = 1, 2. For i =
=1, 2 consider the map

By Lusin’s theorem there exists a sequence of mutually disjoint compacts Jn c I
with meas (I B U Jn ) = 0 such that Ui (.) are continuous on Jn and G( ., .) is LSC on
Jn x E . Since G’(-, -) is LSC on Jn x E it admits rK + 1 continuous selection g’(-
., ). Define x ) = g,,(t, x ), for t E Jn . Set x ) = f 1 y ) for

y  f; sr= [t, t + f) Define also Hi(t, x) = x), for t E Jn.
I.e. H i ( ~ , ~ ) is well defined on I BN. For A E [ 0, 1 ] consider:

Let Sk be the solution set of (1) with Rk(·, ·) instead of G(·,· ). From Theorem 5.2
of [2] we know that Si is compact connected. Obviously is USC. Thus

c ,S(x) is compact connected containing ul and u2. Therefore S(x) is it-
i

self connected.
It remains to show that RRP is Ra set. As in the proof of Theorem 5.2 of [3]

consider the sequence of locally Lipschitz on

I x E . Denote where bn = 2 - n . The solution

set of (2.2) with instead of R is closed contractible. Moreover

nR 2 and lim = 0. Therefore RRp is in fact R,5 set (see for
1 

n 
n---+ 00 

n

details [3)).

COROLLARY 1. Under the conditions of Theorem 1 there exists a con-
stant C such that 2 L ~ where R URP is the
solution set of
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Consider the following differential inclusion

where V: is bounded strongly measurable compact valued. Denote by
RF(V) the solution set of (4). From Theorem 1 and Theorem 5.2 of [3] fol-
lows :

COROLLARY 2. IfF satisfies HI and H2 nonempty compact
Ra set.

PROOF. Let y(t) It is sufficient to show that there exists

Consider the multimap

Since F( ~ , ~ ) is compact valued and since ~o ( y( t ), F(t , y( t ) ) + V1 ( t ) ) ~
V2(t», taking into account H2, we obtain G(t, x ) ~ ~ . It is

easy to show that G(t, x) is convex compact valued, G(., x) is strongly
measurable and G( t , ~ ) is USC for * 

as a real valued func-
tion. Therefore the differential inclusion E G( t , x); x( 0 ) = xo admits
a solution thanks to Corollary 1 because G(t, x) c F(t, x). Consequently
d~dt ~ x(t) - y(t) [ % x(t) - y(t) + V2 (t) ) .

The following lemma is proved in [10].

LEMMA 1. Let X be a Banach space, compact convex
and F: D -~ 2D B0 USC with compact Ra values. Then F has a fixed
point.

The problem of the existence of solutions of (1) when F( ~ , ~ ) is one-
side Lipschitz and G(., .) satisfies compactness conditions is difficult
even when F and G are single valued.

In the sequel suppose E is separable. We need the next condi-
tion.

H3. G( ~ , ~ ) is ALSC closed valued and F is AUSC convex compact
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valued. Furthermore f3(G(t, A)) 6 k(t)f3(A) for every bounded AcE.

LEMMA 2. Let l(t) be L1 (I, R) function and let L1 (I, E)
satisfy I ~ l(t) for a.e. t e I and all k, then

The proof of the corresponding result of [2] works also in our case and
will be given in the last section.

The following theorem extends Theorem 3.2 of [1] and Theorem 4
of [2].

THEOREM 2. If F satisfies HI, H2 and G satisfies Hl, H3 then the
solution set of the differential inclusions (1) is non-empty connected.

PROOF. First one can suppose k(t) M(t) = ~, = 1 if needed. Obvi-

ously there exist positive constants K and L such that 
x) + G(t, x) ( ~ I~ whenever Q(x(t), F(t, x + U1) + G(t, x + Ul ) ) ~

;1 (see proof of Theorem 1 apriori bounds). Let g(t , x) E G(t , x) be rK + 1

continuous selection and let h(t, x) be as in the proof of Theorem 1 (exis-
tence of solutions). Consider (2) with H(t, x ) replaced by h(t, x). For
AC x we set Vx(t) = h(t, x( t ) ) . Due to Hl there exists a closed convex
bounded and equicontinuous set Sl c C(I , E) such that 
Here We let RF (,Sn ) for n -&#x3E; 1.

Denote Set Therefore Pn(t) 
k=l 1

Since E is separable one has that there exists a

sequence such that Thus

exp ( 1 ) due to Lemma 2.

Therefore Hence

P ~ ( t ) --- 0 , i.e. ~)=0. Since E is reflexive S # 0. Furthermore

lim P. (t) and hence n Sn = S is nonempty convex compact in
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C(I, E). Moreover RF (S) C ,S, i.e. there exists a fixed point x. This AC
x( ~ ) E RF ( Vx ) i. e. E F( t , x ) + h( t , x), x(O) = xo . Now it is obvious to
show that x(t) E F(t, x) + g(t, x) a.e. in I.

3. - Concluding remarks.

PROPOSITION 2. Let E be a Banach space and let with

Kn c 1 be such that UA) = 0 for bounded A c E and all n. If
K = U Kn and is bounded then

n&#x3E;l 1

where

= inf I r &#x3E; 0 : B can be covered by finitely many balls with radius ~

~ r with center in K~ .

This is Proposition 3 of [2] and can be proved (with obvious modifica-
tions) as Proposition 9.2 of [7]. Moreover it is not difficult to see that this
proposition holds also when Xk are replaced by compact sets Xk . One has
only to set Kn) = sup inf x - a ~ . .

xEXk aEKn

Obviously for all bounded B c K the following inequalities are

valid:

PROOF OF LEMMA 2. Let En be finite dimensional such that E =

= U En. Define Wn = {v E L1 (I): 2l(s) a.e. on 7} and let Kn =
= for fixed t E I. For E &#x3E; 0 there exists with

such that l(t) is bounded on I~ . Therefore Kn =

= ( RF ( M0( t ) : W = with is relatively compact thanks to Theo-
rem 2.1. Since + i7~ one has that = 0 . Due to Proposition 2
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Now

From Fatou’s lemma and the dominated convergence theorem we

get

REMARK 2. Using obvious modifications of the presented proof one
can prove Theorem 2 when F satisfies compactness conditions and G is
one-side Lipschitz multimap. Moreover Theorems 1 and 2 can be proved
when F is not AUSC, but the support function F( ~ , ~ ) ) is AUSC for
every l E E * as a real valued function. Moreover H2 can be relaxed to

where w( ~ , ~ ) is a Kamke function. One can prove Theorems 1 and 2 also
in case of

where H( ~ , ~ ) is one sided Lipschitz and H( ~ , ~ ) is USC with closed bound-
ed convex (non nessesarily compact) values. In this case (2.3) be-

comes

Moreover suppose where u(., .) is a

Kamke function one can prove Theorem 2 for nonseparable E . If M(.)
and N(.) are constants, then the grouth condition in H 1 can be replaced
by R( ~ , ~ ) is bounded on bounded sets. Indeed from H2 follows
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I.e.

We give two examples for systems which are neither Lipschitz, nor
one sided Lipschitz, but satisfy HI and H2.

EXAMPLE 1. Define f(y) = - y /YTYT for y # 0 and 0 elsewhere for
y E R n. Consider the system:

Obviously H 1, H2 hold if t E [ o , 1 ]. Therefore the solution set of this sys-
tem is dense in the solution set of the convexified problem:

However if we replace the second equation by

then H2 does not hold and the solution set of (1) is not dense in the sol-
ution set of the convexified problem. It is the significant counter example
of Plis ([11]).

EXAMPLE 2. Let E be the Hilbert space ~. Consider the sys-
tem :

is dense in U set, g(x) = - x/|x|2/3 for x = 0 , = 0 for

x = 0 and V : _ ~ x e l2: xi E [ -1 /i , 1 /i ] ~ . Obviously H 1, H2 hold. Here the
one-side Lipschitz constant is 0.
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