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A Note on Codimension-1 Foliations.

CARLO PETRONIO (*)

SUNTO - Sia y una curva semplice chiusa tangente ad una foliazione F coorientata
di codimensione 1 su una qualsiasi varieta, e sia h 1’olonomia di y. Si esibisce
qui una parametrizzazione di un intorno di y nella quale 1F£ definita da una 1-
forma differenziale i cui coefficienti hanno proprieta globali intimamente lega-
te a quelle di h . Tale parametrizzazione ha inoltre una classe di regolarita su-
periore a quella che ci si potrebbe attendere in generale.

ABSTRACT - Let y be a simple closed curve tangent to a cooriented codimension-1
foliation of a manifold, and let h be the holonomy of y . We provide here a
parametrization of a neighbourhood of y in which Tis defined by a differential
1-form whose coefficients satisfy global properties closely related to the prop-
erties satisfied by h . Moreover this parametrization is more regular than one
could in general expect it to be.

The aim of this note is to illustrate a geometric argument which al-
lows, given a germ h of C~ diffeomorphism of R at 0, to construct a
«canonical» model for a Ck codimension-1 foliation near a curve having
holonomy h . We regard our model to be canonical because various prop-
erties of h have precise counterparts on the coefficients of the form
defining the foliation in the model. Recall that in general the holonomy is
obtained by «integrating» in a suitable sense the coefficients, so no in-
formation on h can lead to a pointwise information on the coefficients of
the form.

(*) Indirizzo dell’A: Dipartimento di Matematica, Universita di Pisa, Via F.
Buonarroti 2, 1-56127 PISA; E-mail: petronio@dm.unipi.it
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The motivation for searching for such a model was to understand one
of the steps of the proof of a recent result of Eliashberg and Thurston
([I], see also [4]), according to which every foliation on a closed oriented
3-manifold can be approximated by a contact structure. The property of
the holonomy which is crucial for [1] is that of being two-sided weakly-
contracting, but we think it is of some interest that the same model of fo-
liation reflects several other properties of the holonomy.

Another remarkable feature of our model is the following. Recall that
in general, given a Ck foliation and a Ck (or more) chart on a manifold,
the foliation is defined in the chart by a differential form which is only
Ck -1. However in our model the form happens to be C~.

1. Statement and comments.

For all the relevant definitions and basic facts concerning foliations
we address the reader to the well-established references [2] and [3]. The
technical result proved in this note is the following:

PROPOSITION 1.1. Let h be a germ at 0 of increasing Ck diffeomor-
phism with = 0 . Then we can (constructively) define a germ ff¡¿
of foliation on Sx x R~ near 5~ X ~ 0 ~, induced by a form dz +
+ a( x , z ) dx , such that a is a Ck-regular function (hence is a Ck-regular
foliation) and Sx leaf of with holonomy h. Moreover:

1 ) If h ’ ( o ) = 1 then 0 ) = 0 for all x;

2) If h ’ ( o )  1 then 0 ) &#x3E; 0 for all x;
- 

3) If h( z )  z for all z &#x3E; 0 then z ) &#x3E; 0 for z &#x3E; 0 and all x;

4) If h( ))  ~ for some ~ &#x3E; 0 then a(x, ~) &#x3E; 0 for all x;
5) If h( z ’ ) - h( z )  z ’ - z for all 0  z  z ’ , then for all x thefunc-

tion z ) is strictly increasing for z ~ 0 .

To apply this result, we note that if we have an embedded loop y con-
tained in a leaf of a Ck cooriented codimension-1 foliation tf on a Ck n-
manifold, then we can Ck parametrize a neighbourhood of y as S1x x
x R; - 2 x Rz in such a way that lfin these coordinates is invariant under
translations in the y-direction. Moreover the leaf S; x (0) in the in-
duced foliation on 5~ x R~ still has holonomy h . Now we recall that the
holonomy determines the germ of a Ck foliation near a compact leaf up to
Ck diffeomorphism. As a consequence we get:
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THEOREM 1.2. a Ck cooriented codimension-1 foliation on
an n-manifold and let y be an embedded closed curve tangent to 
a neighbourhood of y can be Ck-parametrized as S; x Rny- 2 X Rz, and in
these coordinates F is the kernel of a form dz + a(x , z) dx where a is Ck
and:

1) If y has trivial Linear holonomy then (8aI8z)(x, 0 ) = 0 for
all x;

2) If y has contracting Linear holonomy then 0 ) &#x3E; 0 for
all x;

3) If y has contracting holonomy on the positive side then

a(x, z ) &#x3E; 0 for z &#x3E; 0 and all x;

4) If y has weakly contracting holonomy on the positive side then
there such that Cn &#x3E; 0, lim Cn = 0 and a(x, Cn) &#x3E; 0 for
all x; 

"

5) If the hotonomy of y is contracting in a metric sense on the po-
sitive side then for all x the map z ~ a( x , z) is strictly increasing for
z -&#x3E; 0.

REMARK 1.3. Properties 3-5 could be proved for the negative side,
and properties 2-5 have natural analogues with ’expanding’ replacing
« contracting » .

REMARK 1.4. Recall that in general a Ck foliation is globally the
kernel of a 1-form which is only Ck -1 (but locally the form can be chosen
to be constant in foliated coordinates). So under a Ck parametrization of
a set which is not a ball one can only expect in general to get a Ck -1 form.
Therefore it is a non-obvious fact that in the Ck parametrization given by
the theorem the foliation is defined by a Ck-form. We regard this fact as
a manifestation of the canonicity of our model.

2. Geometric construction and proof.

Fix the notation of Proposition 1.1. Recall that we want a «preferred»
Ck foliation 1J§ of ,Sx x m with holonomy h . The geometric idea to get it
goes as follows. We consider the universal cover IE~ of Sx acted on by Z,
and we foliate IE~ x R, in such a way that each segment joining a point
( n , z) with a point ( n + 1, h( z ) ) is contained in a leaf. This gives rise to a
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foliation of Si x R, which has holonomy h, but is not even C1. To obtain
the desired foliation then we regularize the leaves of the foliation of
II~ x R, by taking the convolution with a symmetric bell function sup-
ported in [ -1 /4 , 1 /4 ]. It takes some efforts to prove that this indeed

provides a Ck foliation on Si x Rz, and to establish the desired proper-
ties ; we will skip some of the calculations, concentrating on the key
points.

We first need to formalize the construction of By simplicity we ex-
tend h to a diffeomorphism of R, so that the construction becomes global
(but of course the relevant properties only have to be checked in the
sense of germs).
We first examine the foliation f1h before taking the convolution. By

definition, in the slice [ o , x R, of the universal cover, the leaves we
see are as shown on the left-hand side of Fig. 1. This implies that in the
slice [ -1 /2 , 1 /2 ]x x fl we see what is shown on the right-hand side of
the same figure, where g is the diffeomorphism of R given by g(z) _
- (h -1 (z) + z)/2.

Let us define for a map lw: R ~ R as

Note that the holonomy of ~h with basepoint -1/2 is given by h(w) =
= Lw ( 1 /2 ); one easily sees that h = g o h o g -1, which is coherent with the
fact that the holonomy of a curve is well-defined only up to conjuga-
tion.

Consider now a smooth non-negative even real function u : R ~ R

Fig. 1. - The unregularized foliation in the universal cover.
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00

supported in [ -1 /4 , 1 /4 ], with u ’ (t) % 0 for t ~ 0 and u( t ) dt = 1, and
define - m

If w &#x3E; w’ we have lw(t) &#x3E; for all t, hence Lw(x) &#x3E; Lw, (x) for all x.
This easily implies that by projecting to S’ x R, the sets 

1/2} we get a C°-foliation Th.
Now note that for 1/4 the map lw has the form t - at + b on

[ x - 1 /4 , x + 1 /4 ]; using the properties of u one sees that also Lw ( x ) =
= ax + b . So Lw (x) = tw (x) 1 /4 . This implies that the holonomy of
,Sx X ~ 0 ~ in Th is still h (i.e. h, up to conjugation). Moreover each individ-
ual leaf of Th is C °° regular.

Now we have to deal with the regularity of Th. To this end we com-
pute the form dz + a( x , z) dx which defines Th. Since a(x, z) is the oppo-
site of the slope of the leaf through (x , z ) we have for x in a neighbour-
hood of [ -1 /2 , 1/2] and for all w that

Now we define = Lw (x) and we claim that:

Assume for a moment these claims to be proved. Then Wz has a local in-
verse 0 , near 0 and the map (x , z ) H ~ x (z ) is C’-regular because
locally

by the implicit function theorem. Moreover with easy computations

which immediately implies that a is jointly Ck-regular (at least near
z = 0, which is sufficient for us). Now we prove the claims. Claim I imme-
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diately follows from the formula:

To prove claim II we consider the Taylor expansion h(z) = cz + o(z),
which implies that

Moreover:

00

Now note that f This easily implies that we can

rewrite ((1 + c)/2c)Y’x(0) in the following two ways:
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In both expressions the third summand is strictly positive; more-

over

This immediately implies claim II and hence the regularity of a.
Now we turn to properties 1-5, starting from number 3, which is the

easiest one. Using the fact that u is an even function and the expression
of a one easily gets

whence the conclusion because u ’ ( t ) ~ 0 for t ~ 0 and 1,,, is a strictly de-
creasing function for w &#x3E; 0 under the assumption that h is contract-

ing.
Next, we prove property 4, which is the most important one in view of

the applications to [ 1 ]. We define )o = ~ 1 satisfies
the equivalent relations ~(l/2)=~o and L~1(1/2) = ~o. We claim
that:

(i) For all x E [ -1 /2 , 1/2] ] there exists such that

Lw(x) = C0 ;

(ii) For all we [ ~ o , ~ 1 ] and r e R, we have  0 .

Recalling the expression of a, these claims immediately imply the
conclusion.

To show (i) we will check that:

This is sufficient to establish (i) because we know that the map
is continuous and increasing for any fixed x . Since L~o

is obtained by taking the average of to show (i-a) and (i-b)
it is sufficient to prove that and for all x .

Recall that Lw is the union of the two line segments joining the

points
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Therefore to prove (i-a) and (i-b) one has to show the following
inequalities:

Now one easily sees that (i-a-1) is equivalent to h( ~ o )  ~ o which is true
by assumption. For (i-ac-2) we note that g o h is increasing, so from (i-a-1)
we get

The inequalities (i-b-1) and (i-b-2) are proved essentially in the same way.
Now we turn to point (ii). Let us recall that the convolution with u of

a strictly decreasing function has negative derivative, So it will be suffi-
cient to show that lw is strictly decreasing in x for w E [ ~ o, ~ 1 ]. Recalling
again the definition of lw one sees that it is sufficient to establish the fol-
lowing inequalities:

We show (II), the proof of (I) being similar. From above it follows that

So (II) is implied by the inequality z &#x3E; (g o h)(z) for all z E

E [ h( ~ o ), h -1 ( ~ o ) ]; using the formula for g we see that this inequality is
equivalent to z &#x3E; h(z) for all z E [h( ~ o ), h -1 ( ~ o ) ]. Now note that h is a
continuous monotonic function, so it maps [ h( ~ o ), ~ o ] to [ h 2 ( ~ o ), h( ~ o ) ],
and [ ~ o , h -1 ( ~ o ) ) to [ h( ~ o ), ~ o ]. This implies that z &#x3E; h(z) respectively
for z E [ h( ~ o ), ~ o ) and for z E [ ~ o , h -1 ( ~ o ) ], whence the desired inequali-
ty. This proves property 4.

Now we turn to properties 1, 2 and 5. In the rest of the proof we will
omit most of the computations. We start by remarking that

(only the first equality requires some work, the other two are immedi-

ate). Now, using the definitions and some lengthy computations in par-
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ticular the identity j for all x J we can show that
a(x, tp x (g(z) ») can be rewritten in the following two ways:

with

Now c+ ( o ) = 1 and c+ (1/2) = 0, and for r a 0 one sees that c~ ( x ) ~ 0 .
So c + ( x ) E [ o , 1 /2 ]. In particular for ~E[0, 1 /2 ] the first of
the above expressions of a(x , is a convex combination of two
functions of z . Similarly for X E [ -1 /2 , 0 ] the second expression of

a(x , is a convex combination of two functions of z .
Now we can give a unified proof of properties 1, 2, 5. First of all the

map z - tp x (g(z) ) has positive derivative in 0, so it is sufficient to prove
the conclusions for z H a(x , rather than for z). Next
one shows that the assumption on h allows to prove the desired conclu-
sions for the three functions for x = 0 , x = 1/2 and
x = -1 /2 (this is rather easy for each of the properties 1, 2 and 5). To
conclude it is then sufficient to use the fact that can

always be expressed as a convex combination of two of these three func-
tions, noting that the properties are preserved by convex combinations.
This concludes the proof.
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