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Valuations and Group Algebras.

ULRICH ALBRECHT (*) - GÜNTER TÖRNER

1. - Introduction.

In [5], Dubrovin constructed a chain domain which has a prime ideal
which is not completely prime. This ring was obtained by considering a
right ordered group r such that the group algebra K[T] can be embed-
ded in a skew field D . Thus a partial answer was given to the Malcev-
Problem [7]: Let F be a field and G be a left orderable group. Can the
group ring F[G] be enclosed in a skew field? This question has a
stronger version which can be found for instance in Passmann’s

book [10]: Determine the right ordered groups r with positive cone II
for which the skew-group-algebra R[r, a] is an order in a division alge-
bra D whenever R is an Ore domain. In the following, the pair (r, II)
denotes a right ordered group T with its positive cone 77, while 

is a group homomorphism. A perhaps more natural reformula-
tion of Passmann’s problem is to ask for which T the group algebra
R[r, a] is a right Ore domain whenever R is one. This question has been
discussed in detail in [1], and most constructions of chain orders in skew
fields are based on the results of this paper, as one can see for instance

in [2].
The primary goal of this paper is to investigate the structure of the

group algebras and chain rings obtained via the localization techniques
which were discussed in [1]. Our discussion focuses on a pair T1 and T2 of
right ordered groups with positive cones II1 1 and II2 respectively. We

(*) Indirizzo dell’A.: Department of Mathematics, Auburn University, Au-
burn, AL 36849, U.S.A.
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consider a subsemigroup L1 of T 1 containing II 1 and a cone preserving
semigroup-morphism ~ : d --~ T 2 , and define the right and left ~-values
of non-zero elements of R[.J, o~]. Theorem 2.2 shows that these 0-values
give rise to a pair of generalized, conjugated valuations in the sense
of [1]. The same result also shows that R[d , or] has a zero Jacobson-radi-
cal and that its group of units U(R[r 1, a]) is U(R) U(L1). In particular,
Theorem 2.2 permits to solve the isomorphism problem for right order-
able groups: Two right orderable groups T and T 2 are isomorphic if and
only if R[T 1 ] = R[T 2 ] for all rings R (Corollary 2.3). This extends the
well-known result that torsion-free abelian groups are isomorphic if and
only if the corresponding group algebras are isomorphic. Since the ring
structure of R[r 1, a] is independent of the chosen right order on T 1, no
statement can be made about T1 as a right ordered group. The remain-
ing part of Section 2 investigates the valuation ring SO associated with
the 0-values.

Section 3 considers the chain rings S: arising as localizations of S ø
inside the classical right ring of quotients of R[r 1, Q] in the case that

a] is a right Ore ring. Theorem 3.1 determines the Jacobson radi-
cal J(S’ ~ ) of this ring and shows that S " IJ(S 0) is the classical right ring
of quotients of R[H, where Furthermore, the pair of
generalized, conjugated valuations on R[r 1, ar] induces a left valuation

I ~ i on S: such that I if and only if for all a ,

bE S:.
In the following, all rings have a multiplicative identity. The symbols

J(R ) and U(R) denote the Jacobson-radical and the group of units of R

respectively. All groups are written multiplicatively.

2. - Group rings and cones.

Let T be a group. A subsemigroup Hcri 1 is called a cone if
II n and II U 17 -1 = T hold. Note that in the case where II is
invariant, T is an ordered group. In general, setting a iff E II

resp. allows to view the group T as a right-ordered
resp. left-ordered group.

We consider the pair (T 1, 111 ) where T is a group and 771 a cone.
Further let R be a domain, i.e. a ring without zero divisors. For a group
homomorphism or: we define a ring multiplication on the
free left R-module with basis T 1 by ar = ra(a) a for all a E r 1 and r E R .
The resulting ring is denoted by R[r 1, a]. Write a non-zero x in R[r 1, of]
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as x and let supp ( x ) = I a I r, ;e 0} denote the support of x .
If T a] E 1 e supp (x) then every x E R[T 1, a] has

unique factorizations x = ua with a, fl e T 1 and u , v E T . We refer to
this decomposition as the T - T1-factorization of x and say that I x It = {3
resp. I x I r = a are resp. right T 1-vaLues of x . In a previous paper
we had introduced the concept of generalized valuations, however this
terminology can be omitted in this context. Naturally, the question aris-
es at this point if the conditions on Ill can be weakened by assuming that
the subsemigroup II1 is a right cone only, i.e.

(a) II 1 generates T 1.

(b) If a, bElll with then b-1aell1.

This question is answered in a negative way by

PROPOSITION 2.1. A right cone II 1 of T 1 is a cone if and only if
a] has a unique 

PROOF. The uniqueness property guarantees immediately that 111 1
cannot contain any units but If then we can 1

and 1 with E 1 + a = ~(~c 1 + ,~ 2 ). Without loss of generality,
E 1 = 1 and a = d~ 2 . Since II 1 is a right cone, we may assume that
n-11 n2 E II1, say n 2 = n1n for some Then, a = dn2 = dII1 n = x e
E II 1. In the same way, ni1n1ell1 1 yields 

Let (7"2, II 2 ) be a further right-ordered group. We consider a sub-
semigroup d of T 1 containing II 1. A semigroup map 0: L1 ~ T 2 is called a
cone preserving homomorphism, provided 0 maps II1 into II 2. It is nat-
ural to define the 0-values of an element x e R[,J, as] to be the values un-
der 0 of I x I r resp. To be more precise, we set _ ~ ~ x ~ r resp.
I x I t = We call (T 1, 7"2, cone-vaLuated triple with associated
map 0 if L1 contains a -1 for every a e ker 0. In the case that L1 = F 1, we
omit any reference of L1 and speak of a cone-vaLuated pair instead.

THEOREM 2.2. Let (T 1, r 2, L1) be a cone-vaLuated triple with asso-
ciated map 0. The following hold for any domain R and any group-ho-
momorphism a : 

(a) For all non-zero x, y, z a], the following conditions are
satisfied:
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PROOF. (a) Since we have

o(a) E 172 for all a E supp (x). But then,
has to be in II2 too. Thus, (i) holds by symmetry. Furthermore, if =

= E 2, then q5 (a) E I12 for all a E supp (x) by what has been shown so far. If
a o = min supp ( x ), and from

r

which (ii) follows by symmetry.
To show (iii), let Then a o e supp (r) or a o E

E supp (y). In the first case,
as desired. The second case is treated similarly. By symmetry, (iii) is

satisfied. For (iv), we suppose Choose U1, U2, Ug ~7" and

a 2 , such that x = U1 aI, y = U2 a 2 and z = For j = 1, 2
write and f3jEL1. We obtain and

But this gives
Since o(a1)ro(a2), we have 

r

from which the first part of (c)
r

follows. In view of the symmetry of the problem, a) has been

shown.
To prove (b) consider an element x E R[,J, a] which has an inverse

y E R[d , a). We write x = v~3 with v E T and p e J. If supp (r ) I &#x3E; 1, then
supp (v) contains an element of II1 B { ê 1 } . We write y = ua with u E T
and a E L1 and select and y E L1 with ~3u = wy . Since E 1= vwya , we
have ya = E 1 and vw = E 1 by the uniqueness of T - T1-factorizations. In
supp (v), choose an element a which is maximal in the left order induced
by Ill, while in supp (w) choose {3 maximal in the right order. Since

~ 2 , we have from which we obtain 
Because R is a domain, a{3 has a non-zero coefficient in the product vw,
but is not an element of supp (vw) since vw = E 1. Hence, there are a’ E
E supp (v) and supp (w) with afl = a ’ fl ’ and a ~ a’ or {3 ~ {3’. A
straightforward calculation shows that a # a’ and {3 ~ {3 , . Since fl &#x3E; r ~ ’
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by the choice of P, we can find n E II with /3 = jr/3 B Then a ’ = a(3 =
= yields a ’ = an from which a ’ ~ a follows. However, we have a ’ 
 1 a by the choice of a . The resulting contradiction shows that x cannot
have more than one element in its support, i. e. Then, I =
- ~ supp (xy) ~ = 1, and u E R . In particular, , 1= xy = vu a(f3) (3a = yx =

a(3 yields that a is a unit of d . Moreover, v is a unit of R whose in-
verse is u a(f3). The converse is obvious. For the proof of (c), let x be a non-
zero element of J(R[L1, a]) and write x = ua where u E T and a E L1. If
a ~r ~ 1, then a -1 We choose any (3 E II 1 ~ ~ e 1 ~, and observe that

is a non-zero element of J(R[L1, a]) with and

a 1 ~ Hence, no generality is lost, if we assume that a Since
in this case, we have Since

supp (x) is not empty, e 1 - x cannot have a right inverse in R[L1, a] by
what has been shown previously. On the other hand, J(R[L1, a]) is a

quasi-regular ideal, which results in a contradiction.

Theorem 2.2 shows in particular that the maps 1 1, and defined in
part (a) form a pair of generalized, conjugated valuations in the sense
of [1].

COROLLARY 2.2. Let 1°1 1 and r 2 be right orderable groups. Then,
as groups if and only if = R [ T 2 ] , for all rings R

PROOF. By Theorem 2.2 (b), we known that = U( o ) T i . Ob-
serve that Ni = U(Q) e i is a normal subgroup of since it is con-

tained in the center of Q[Fi 1. Every ring isomorphism : ~ Q[F2]
induces a group isomorphism i : U( ~) T 2 . Since r was induced
by the ring-map a, we have = re 2 for all r E U(Q). Thus, í I N1 maps
Nl onto N2 . Since is the direct product of Ni and we obtain

that T 1 and T 2 are isomorphic as groups.

We are particularly interested in the ring

Observe that 0 E ,S ~ since 0 ~ l = ~ 0 ~ ~. _ ~ &#x3E; e 2 by convention.

PROPOSITION 2.4. Consider a cone-valuated triple (Fl, r 2, L1) with
associated map q5 whose kernel is denoted by H, a domain R,
and a group homomorphism Then 
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is a two-sided ideal of S ~ such that ,S ~ = R[H, i] where

PROOF. If x is a non-zero element of 10, then Observe

that, for every non-zero the inequality = yields
from which follows. On the other hand,

lê11t implies Thus, xy, YXE
Moreover, if a;,6 b areini", then r 

r 
r r

and a - b E Io, and 10 is a two-sided ideal of S 9. Let x =,¿ aesupp(x) ra a be
a non-zero element of S 1, and write x ’ We define a

map ~: i] by À(x) = x ’ . If x - y E I ~ , then 0 = (x - y)’ -
= x ’ - y ’ , and A is well-defined. Moreover, if x , y E ,S ~ , then x - x ’ , y -

sided ideal. Then, = x’ y’ _ It is now routine

to show that A is an isomorphism.

COROLLARY 2.5. Consider a cone-valuated triple (T 1, T 2 , L1)
with associated a domain R , and a group homomorphism
a~: 

(a) 10 is maximal as a right ideal if and only if q5 is one-to-
one and R is a division algebra.

(b) has the property that = E 2 yields that x is a unit of So
if and only if = 1 and R is a division algebra.

PROOF. (a) Suppose that I ~ is a maximal right ideal of SO. Using the
notation of Proposition 2.4, R[H, r] is a division algebra. But this is only
possible if H = ~ E 1 ~ by part (b) of Theorem 2.2. Consequently, R =

is a division algebra. The converse is obvious.

(b) Suppose that is regular. If T1 contains two elements, we
can find a E T 1 such that Then, s 1 + a is an element of ,S ~ with

I E 1 + = E 2 . But then, E 1 + a is a unit of ,S ~ which is impossible by
Theorem 2.2. The rest of the proof is obvious.

3. - Localizations.

In this section, R always is a right Ore-ring and we assume that
(T 1, II 1 ) has the property that R[r 1, a] is a right Ore ring. Turning to
the valuation rings which we considered in Proposition 2.4 and Corollary
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2.5, we consider the set X = x ~ ~ _ ~ 2 ~. It easy to see that the
elements of X are precisely the elements x e R[r 1, a] of the form x = ua
for some u e T and a e ker o. Since the elements of ker o are units in ,S ø,
it follows that X is an Ore sets, and that is a chain-order in D in
the sense of Dubrovin (for details see [1, Theorem 4.2]). In particular, D
is the classical ring of quotients of Sø.

THEOREM 3.1. Consider a right Ore-domain R , a cone-valuated
triple (7"i, T 2 , d ) with associated whose kernel is denoted by H,
and a group-homomorphism a : If R[T 1, a] is a right Ore-
domain, then 

(a) ST is a chain-domain with maximal ideal 
(b) R[H, r] is a right Ore-domain whose classical ring of quo-

tients is 

(c) I Il L induces a generalized left S:.
(d) For all a, beSt we have L if and only 

PROOF. (a) To see that ST is a right and left chain domain, we con-
sider non-zero elements al and a2 of S: , and write ai = with a i E

1, 
= a 1 Jl for some jr e II 1 c ,S ~ . Therefore, a2 SI c a1 SI . Because of the sym-
metry of the problem, 5~ is a right chain domain.

Observe that I§l is a right ideal of S§l whose elements are of the form
at -1 with a e I ~ and t e T . We show that I§l consists of the non-units of
S~. To see this, suppose that 1 It implies 1 = at -1 for some 
and We obtain a = t contradiction.

Thus, I ~ consists only of non-units. On the other hand, if at -1 e SI is not
a unit, then I a I r &#x3E; ë 2 since otherwise a and at -1 is a unit of 5~. But
( a ~ r &#x3E; e 2 implies Therefore, I: indeed is the collection of non-
units of 5~. This shows that I§l is the Jacobson-radical of the chain-ring
5~. In particular, is a division algebra.

(b) In the fIrst step, we compute ,S ~ n Choose a E I ~ and t e T
such that at -1 E ,S ~ , say at -1= b . If b ~ I ~ , then ~~=6-2, and 
Consequently, I ~ contains an element of X, and which is
not possible. Therefore, ~D7~=7~. In the division algebra D ’ , we
consider the ring L = (,S~ + IT )/IT and show that it is essential in D’ as
a L-submodule: If with and but then
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is a non-zero element of

( at -1 + 7~) L n L . Therefore, D ’ is the maximal right ring of quotients
of L by [6, Propositions A. 2.11 and Corollary C. 2.31]. Moreover,
L = s ~ /s ~ fl IT = ,S ~ /I ~ = R[H, r] yields that R[H, r] is a right Ore-
ring whose classical right ring of quotients is isomorphic to D ’ as desired.

To show (c) and (d), consider a , beSt. We can find a, 1 and

u , v , x , y E T such that a = aux -1 and b = where the T - ri-fac-
torizations have the property Then and

= Ø(f3). We obtain that ux -1 and vy -1 are units in Therefore,
and 

Suppose We can find s e S o and z e T with B = and
n m

write such -&#x3E;ie2 for all i and ¡where

0(6j)-&#x3E;le2 and 0(61)=e2- We obtaino ( dj &#x3E; L e2 and o ( d 1 ) = e2 . We obtain and as =

There exists io E ~ 1, ..., n ~ with P6, 1 = This shows

Define I a Il = Ø( a) where a = is a factorization of a as before.

To show that this map is well-defined, we consider a second factorization
a = Since as: = the results verified up to this point yield

~~(5) ~ l ~ ( a ). This shows that the map [ [ is indeed well-defined.
Moreover, every can be written as a = au1 -1 with U E T. Then,
|a|l = o(a) = I a Ii. Thus, ||l extends ||ol as desired.
We consider a , b e 5~ with I a Il Il, and choose a decomposition of

a and b as before. Observe ~ ( a ) If in r i , a e II 1 c

çSø, and there is s with a = Thus, = = bS:. On
the other hand, if and _ ~ (~ ). Since

we have Hence,
and hence ~3 -1 a E L1. But then, yields

that ~3 -1 a is a unit of S:. In this case as: = In either case, we have

if and only if 
Using the last result and the fact that 5~ is a chain ring, it is now pos-

sible to show that the map [ [ defines a generalized left valuation on ,S~
using standard arguments.

In the last result, we assumed that R[r 1, a] is a right Ore ring in or-
der to embed ,S ~ as an essential submodule into a ring Q in which the ele-
ments of T are units. We now show that the Ore condition on R[r1, a] is
necessary and sufficient for the existence of such a ring Q.



75

COROLLARY 3.2. Consider a right Ore-domain l~, a cone-valuated
pair ( T 1, T2 ) with associated map 0, and a group-homomorphism
a : F -Aut (R). Then, the following conditions are equivalent:

(a) a~] is a right Ore ring.
(b) ,S ~ can be embedded as an essential S 0-submodule of a ring Q

in which the elements of T are units.

PROOF. (a)==&#x3E;(b) is an immediate consequence of the Theorem 3.1.

(b) P (a) Let t E T and s E S 0. No generality is lost if we assume that
s # 0 . Because of (b), we can find elements t1, t2 E ,S ~ with t -1 stl = t2 .
Choose ul , U2 E T and a 1, a 2 E r 1 with ti = ui a i for i = 1, 2. Write
sul a 1 = tu2 a 2 to obtain SU1=tu2(a2al1) in Then, sul =

where ... , i and w ( 3 z ) ~ r ~ 2 . Simi-

larly,

Then

Moreover tu2 E T , and hence a 2 a 1 1 E S 0. Furthermore, u2 E T yields
u2 a 2 a -1 E ,S ~ . Therefore, SUl = t(u2 a 2 a 1 1 ) with U1 E T and 

and T is right Ore in S ø .
To show (a), let ri and r2 be two non-zero elements Choose

ul , u2 E T and T 1 a ? i for i = 1, 2 . By (b) there are
Vl v2 E T with U2 V2 = ul vl . Then r2 a 2~ 1 v2 = U2 V2 = Ul Vl - rl ri is non-

zero, and a]. Hence R[r 1, or] is a right Ore ring.

The last result of this section shows that, in the setting of Mathiak’s
work ([8]), the pair of conjugated generalized valuations can be extended
to the localization si just like standard valuations.

COROLLARY 3.3. Let R be a right and Ore-domain, (r 1, T 2, L1)
a cone-valuated triple with associated and a : be a

group homomorphism such that R[r 1, a] is a right and left Ore-do-
main.

This shows

where supp
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(a) The pair (I [ h, of generalized, conjugated valuations on
S ~ extends to a pair (I [ Iz, I ~ r) of conjugated, generalized valuations
on S~.

(b) The induced valuations in a) are order-anti-isomorphic to the
generalized valuations on si which are induced by the linear ordering
of the one-sided ideals of si.

PROFF. By Theorem 3.1, there exist extensions and r Of h i
and | r which are one-sided generalized valuations and satisfy condition
( b). Since and for all a E=- S T 1, it remains to show

lal,=E2 if and only if If then aS~T=S~ and a is a
unit of ST . In this case, ST a = S i and I a r = E 2. The converse is verified
in exactly the same way.

4. - Examples.

Dubrovin showed in [5] that the property that R[r 1, a] is a right
Ore-domain whenever R is a right Ore-domain, is inherited by sub-
groups. Using this, we can easily establish the following

PROPOSITION 4.1 (a) The following conditions are equivalent for a
group r, a right Ore-domain R, and a group-homomorphism a: 
~Aut (R):

(i) R[r, a] is a right Ore-domain.

(ii) For every finitely generated subgroup U of r, the ring
R[ U, a U] is a right Ore-domain.

(iii) r is the union of a smooth ascending chain v  KI of
subgroups 1’" such that R[Tv, a Irv] is a right Ore-domain.

(b) The following conditions are equivalent for ce group r which is
the semi-direct product of a normal subgroup N by ce subgroup U:

(i) R[F, a] is a right Ore domain for all right Ore domains R
and all a: 

(ii) a) R[N, a] is a right Ore domain for all right Ore domains
R and all a: N~Aut (R).

{3) R[ U, z] is a right Ore domain for all right Ore domains R and all
t: 
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PROOF. (a) The implication (i)==&#x3E;(iii) is obvious. (iii) ~ (ii): If U is a

finitely generated subgroup of T, then for some v  K. Since
we have that is a right Ore domain by

Dubrovin’s result. ( ii ) ~ ( i ): Whenever a and b are non-zero elements of
a], then there is a finitely generated subgroup U of T with a, b E

E R[ U, a v ]. But the latter ring is a right Ore-domain. (b) (i) ~ (ii): Condi-
tion (i) holds by (a). To show the second condition, we observe that every
homomorphism : U-Aut(R) can be extended to a homomorphism
5: by setting a(u) for all n E N and u E U. Now, we
apply Dubrovin’s result again.

(ii) ~ (i): By condition (ii), R[N, is a right Ore domain, and
r] is a right Ore domain for all homomorphisms i : U--~

In particular consider the map í u which is defined by
a for all u E U. By [1, Lemma 3.1], a]

is isomorphic to the right Ore domain (R[N, 

EXAMPLE 4.2. Let G and H be infinite groups such that R[G] and
R[H] are right Ore domains for all right Ore domains R . Then, r =
= G ? H has the property that is a right Ore domain for all right Ore
domains R , but T has a trivial center. Here, I denotes the restricted
wreath-product of G by H.

PROOF. By Proposition 4.1, it is enough to show that (D G is Ore for
I

all index sets I. Because of Proposition 4.1, it suffices to consider the
case that I is finite. However, a finite direct sum of Ore groups is an Ore
group by Proposition 4.1.

For instance, consider the following family {Gn|nw} of groups:
Set Go = Z and Gn , 1 = We observe that each Gn is a solvable
finitely generated Ore group with trivial center whose (n - 1 )st commu-
tator subgroup is non-trivial. By Proposition 4, the group T = is an

Ore group which is not solvable. 
°

We conclude with some examples relating our results to previous
work by Brungs’ and Torner.

EXAMPLE 4.3. Since every skewpolynomial ring a] can be

viewed as a subring of R[Z, a] Theorem 2.2 shows that the chain rings
constructed in this paper include those from [2].
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In [ 1 ], we investigate groups r which are the union of a smooth as-
cending chain of normal subgroups such that is tor-

sion-free abelian.

THEOREM 4.4. Let R be a right Ore-ring and r a groups which is the
union of a smooth of normal subgroup of T with T o =

- ~ ~ ~. Then, T can be right ordered in such a way that for all a  x

a) carries a natural right order induced by the such

that the canonical an order preserving
map.

b) the classical right ring of quotients 

PROOF. Using [4, Lemma 3.7], we can right order r in such a way
that an element x E Tv + 1 BT v is positive in r exactly if is positive
in We fIX a  K, and observe that the group

is torsion-free abelian. We right order
the group on the left in such a way that the natural isomorphism be-
comes order-preserving. Once rand are right ordered as has been
detailed in the first paragraph, the canonical projection is

order preserving. To see this let x e r be positive and choose a  K mini-

mal with x Era. Then, a = v + 1, and is positive in Only the
case a &#x3E; a needs further consideration. In this case, 

and hence xT a is positive since the isomorphism
= is order preserving and is positive in

The theorem is now an immediate consequence of the results of

Section 3.

EXAMPLE 4.5. Suppose that T is a right which contains
a normal subgroups N such that N and r/N are both right ordered
groups, e.g. r is the semi-direct product of N and a suitable subgroups
U. Then, r can be right ordered in such a way that the projection-map
~ : order preserving. We obtain that is the classi-
cal ring of quotients of the groups algebra R[N], while the chain-ring ,STr
which is obtained by using 1 r: to define the generalized valua-
tions satisfies = Q(7?) where Q(R) is the classical ring of
quotients of R. In the case Example 2 ], the first ring is the classi-
cal ring of quotients and is not associated with the cone II 1.
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The last example also applies in the following case. Let T =

in which is the kernel of the induced map 95: r-
2013&#x3E;Z~Z, and consider the group-algebra K[ F] over a field K. Since this
kernel is an abelian group, the induced valuation ring ,S ~ has the proper-
ty that si IJ(Si) is a commutative ring not isomorphic to K although
K[T] is non-commutative.
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