RENDICONTI del Seminario Matematico della Università di Padova

ULRICH ALBRECHT GÜNTER TÖRNER Valuations and group algebras

Rendiconti del Seminario Matematico della Università di Padova, tome 100 (1998), p. 67-79

http://www.numdam.org/item?id=RSMUP_1998_100_67_0

© Rendiconti del Seminario Matematico della Università di Padova, 1998, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Valuations and Group Algebras.

ULRICH ALBRECHT (*) - GÜNTER TÖRNER

1. – Introduction.

In [5], Dubrovin constructed a chain domain which has a prime ideal which is not completely prime. This ring was obtained by considering a right ordered group Γ such that the group algebra $K[\Gamma]$ can be embedded in a skew field D. Thus a partial answer was given to the Malcev-Problem [7]: Let F be a field and G be a left orderable group. Can the group ring F[G] be enclosed in a skew field? This question has a stronger version which can be found for instance in Passmann's book [10]: Determine the right ordered groups Γ with positive cone Π for which the skew-group-algebra $R[\Gamma, \sigma]$ is an order in a division algebra D whenever R is an Ore domain. In the following, the pair (Γ, Π) denotes a right ordered group Γ with its positive cone Π , while $\sigma: \Gamma \rightarrow$ \rightarrow Aut (R) is a group homomorphism. A perhaps more natural reformulation of Passmann's problem is to ask for which Γ the group algebra $R[\Gamma, \sigma]$ is a right Ore domain whenever R is one. This question has been discussed in detail in [1], and most constructions of chain orders in skew fields are based on the results of this paper, as one can see for instance in [2].

The primary goal of this paper is to investigate the structure of the group algebras and chain rings obtained via the localization techniques which were discussed in [1]. Our discussion focuses on a pair Γ_1 and Γ_2 of right ordered groups with positive cones Π_1 and Π_2 respectively. We

(*) Indirizzo dell'A.: Department of Mathematics, Auburn University, Auburn, AL 36849, U.S.A.

The author wants to thank Gerhard-Mercator Universität Duisburg for the financial support leading to the completion of this paper.

(**) Indirizzo dell'A.: Fachbereich Mathematik, Gerhard-Mercator Universität Duisburg, 47057 Duisburg, Germany. consider a subsemigroup Δ of Γ_1 containing Π_1 and a cone preserving semigroup-morphism $\phi: \Delta \to \Gamma_2$, and define the right and left ϕ -values of non-zero elements of $R[\Delta, \sigma]$. Theorem 2.2 shows that these ϕ -values give rise to a pair of generalized, conjugated valuations in the sense of [1]. The same result also shows that $R[\Delta, \sigma]$ has a zero Jacobson-radical and that its group of units $U(R[\Gamma_1, \sigma])$ is $U(R)U(\Delta)$. In particular, Theorem 2.2 permits to solve the isomorphism problem for right orderable groups: Two right orderable groups Γ_1 and Γ_2 are isomorphic if and only if $R[\Gamma_1] \cong R[\Gamma_2]$ for all rings R (Corollary 2.3). This extends the well-known result that torsion-free abelian groups are isomorphic if and only if the corresponding group algebras are isomorphic. Since the ring structure of $R[\Gamma_1, \sigma]$ is independent of the chosen right order on Γ_1 , no statement can be made about Γ_1 as a right ordered group. The remaining part of Section 2 investigates the valuation ring S^{ϕ} associated with the ϕ -values.

Section 3 considers the chain rings S_T^{ϕ} arising as localizations of S^{ϕ} inside the classical right ring of quotients of $R[\Gamma_1, \sigma]$ in the case that $R[\Gamma_1, \sigma]$ is a right Ore ring. Theorem 3.1 determines the Jacobson radical $J(S^{\phi})$ of this ring and shows that $S^{\phi}/J(S^{\phi})$ is the classical right ring of quotients of $R[H, \sigma|H]$ where $H = \ker \phi$. Furthermore, the pair of generalized, conjugated valuations on $R[\Gamma_1, \sigma]$ induces a left valuation $| \mid_l$ on S_T^{ϕ} such that $|a|_l \leq |b|$ if and only if $bS_T^{\phi} \subseteq aS_T^{\phi}$ for all a, $b \in S_T^{\phi}$.

In the following, all rings have a multiplicative identity. The symbols J(R) and U(R) denote the Jacobson-radical and the group of units of R respectively. All groups are written multiplicatively.

2. - Group rings and cones.

Let Γ be a group. A subsemigroup $\Pi \subseteq \Gamma_1$ is called a *cone* if $\Pi \cap \Pi^{-1} = \{\varepsilon\}$ and $\Pi \cup \Pi^{-1} = \Gamma$ hold. Note that in the case where Π is invariant, Γ is an ordered group. In general, setting $\alpha \leq_r \beta$ iff $\beta \alpha^{-1} \in \Pi$ resp. $\alpha \leq_l \beta$ iff $\alpha^{-1} \beta \in \Pi$ allows to view the group Γ as a *right-ordered* resp. *left-ordered* group.

We consider the pair (Γ_1, Π_1) where Γ_1 is a group and Π_1 a cone. Further let R be a domain, i.e. a ring without zero divisors. For a group homomorphism $\sigma: \Gamma_1 \rightarrow \operatorname{Aut}(R)$, we define a ring multiplication on the free left R-module with basis Γ_1 by $\alpha r = r^{\sigma(\alpha)} \alpha$ for all $\alpha \in \Gamma_1$ and $r \in R$. The resulting ring is denoted by $R[\Gamma_1, \sigma]$. Write a non-zero x in $R[\Gamma_1, \sigma]$ as $x = \sum_{\alpha \in \Gamma_1} r_\alpha \alpha$, and let supp $(x) = \{\alpha | r_\alpha \neq 0\}$ denote the support of x.

If $T = \{x \in R[\Gamma_1, \sigma] | \varepsilon_1 \in \text{supp}(x) \subseteq \Pi_1\}$, then every $x \in R[\Gamma_1, \sigma]$ has unique factorizations $x = u\alpha = \beta v$ with $\alpha, \beta \in \Gamma_1$ and $u, v \in T$. We refer to this decomposition as the $T - \Gamma_1$ -factorization of x and say that $|x|_l = \beta$ resp. $|x|_r = \alpha$ are the left resp. right Γ_1 -values of x. In a previous paper we had introduced the concept of generalized valuations, however this terminology can be omitted in this context. Naturally, the question arises at this point if the conditions on Π_1 can be weakened by assuming that the subsemigroup Π_1 is a right cone only, i.e.

- (a) Π_1 generates Γ_1 .
- (b) If $a, b \in \Pi_1$ with $a^{-1}b \notin \Pi_1$, then $b^{-1}a \in \Pi_1$.

This question is answered in a negative way by

PROPOSITION 2.1. A right cone Π_1 of Γ_1 is a cone if and only if $x \in R[\Gamma_1, \sigma]$ has a unique $T - \Gamma_1$ -decomposition.

PROOF. The uniqueness property guarantees immediately that Π_1 cannot contain any units but ε_1 . If $\alpha \in \Gamma_1$, then we can find $\delta \in \Gamma_1$ and $\pi_1, \pi_2 \in \Pi_1$ with $\varepsilon_1 + \alpha = \delta(\pi_1 + \pi_2)$. Without loss of generality, $\varepsilon_1 = \delta \pi_1$ and $\alpha = \delta \pi_2$. Since Π_1 is a right cone, we may assume that $\pi_1^{-1}\pi_2 \in \Pi_1$, say $\pi_2 = \pi_1 \pi$ for some $\pi \in \Pi_1$. Then, $\alpha = \delta \pi_2 = \delta \pi_1 \pi = \pi \in \Pi_1$. In the same way, $\pi_2^{-1}\pi_1 \in \Pi_1$ yields $\alpha^{-1} \in \Pi_1$.

Let (Γ_2, Π_2) be a further right-ordered group. We consider a subsemigroup Δ of Γ_1 containing Π_1 . A semigroup map $\phi: \Delta \to \Gamma_2$ is called a *cone preserving homomorphism*, provided ϕ maps Π_1 into Π_2 . It is natural to define the ϕ -values of an element $x \in R[\Delta, \sigma]$ to be the values under ϕ of $|x|_r$ resp. $|x|_l$. To be more precise, we set $|x|_r^{\phi} = \phi |x|_r$ resp. $|x|_l^{\phi} = \phi |x|_l$. We call $(\Gamma_1, \Gamma_2, \Delta)$ a cone-valuated triple with associated map ϕ if Δ contains α^{-1} for every $\alpha \in \ker \phi$. In the case that $\Delta = \Gamma_1$, we omit any reference of Δ and speak of a cone-valuated pair instead.

THEOREM 2.2. Let $(\Gamma_1, \Gamma_2, \Delta)$ be a cone-valuated triple with associated map ϕ . The following hold for any domain R and any group-homomorphism $\sigma: \Gamma_1 \rightarrow \operatorname{Aut}(R)$:

(a) For all non-zero $x, y, z \in R[\Delta, \sigma]$, the following conditions are satisfied:

(i) $|x|_r^{\phi} \in \Pi_2$ if and only if $|x|_l^{\phi} \in \Pi_2$.

(ii) $|x|_r^{\phi} = \varepsilon_2$ if and only if $|x|_l^{\phi} = \varepsilon_2$.

(iii) If $x + y \neq 0$, then $|x + y|_l^{\phi} \ge \min_l \{ |x|_l^{\phi}, |y|_l^{\phi} \}$ and $|x + y|_r^{\phi} \ge \min_r \{ |x|_r^{\phi}, |y|_r^{\phi} \}$.

(iv) If $|x|_r^{\phi} \ge_r |y|_r^{\phi}$, then $|xz|_r^{\phi} \ge_r |yz|_r^{\phi}$, while $|x|_l^{\phi} \ge_l |y|_l^{\phi}$ yields $|zx|_l^{\phi} \ge_l |zy|_l^{\phi}$.

- $(b) \ U(R[\varDelta, \, \sigma]) = U(R)U(\varDelta) = \big\{ u \alpha \, \big| \, u \in U(R) \ and \ \alpha \in U(\varDelta) \big\}.$
- (c) $J(R[\Delta, \sigma]) = 0$ if $|\Gamma_1| > 1$.

PROOF. (a) Since $|x|_r^{\phi} = \min_r \{\phi(\alpha) \mid \alpha \in \operatorname{supp}(x)\} \in \Pi_2$, we have $\phi(\alpha) \in \Pi_2$ for all $\alpha \in \operatorname{supp}(x)$. But then, $|x|_l^{\phi} = \min_l \{\phi(\alpha) \mid \alpha \in \operatorname{supp}(x)\}$ has to be in Π_2 too. Thus, (i) holds by symmetry. Furthermore, if $|x|_r^{\phi} = \varepsilon_2$, then $\phi(\alpha) \in \Pi_2$ for all $\alpha \in \operatorname{supp}(x)$ by what has been shown so far. If $\alpha_0 = \min_r \operatorname{supp}(x)$, then $\phi(\alpha_0) = \varepsilon_2$, and $\varepsilon_2 \leq_l |x|_l^{\phi} \leq_l \phi(\alpha_0) = \varepsilon_2$ from which (ii) follows by symmetry.

To show (iii), let $a_0 = \min_r \operatorname{supp}(x+y)$. Then $a_0 \in \operatorname{supp}(x)$ or $a_0 \in \operatorname{supp}(y)$. In the first case, $|x+y|_r^{\phi} = \phi(a_0) \ge_r |x|_r^{\phi} \ge_r \min_r \{|x|_r^{\phi}, |y|_r^{\phi}\}$ as desired. The second case is treated similarly. By symmetry, (iii) is satisfied. For (iv), we suppose $|x|_r^{\phi} \le_r |y|_r^{\phi}$. Choose $u_1, u_2, u_3 \in T$ and $a_1, a_2, a_3 \in \Delta$ such that $x = u_1 a_1, y = u_2 a_2$ and $z = u_3 a_3$. For j = 1, 2 write $a_j u_3 = v_j \beta_j$ with $v_j \in T$ and $\beta_j \in \Delta$. We obtain $xz = u_1 v_1 \beta_1 a_3$ and $yz = u_2 v_2 \beta_2 a_3$. But this gives $|xz|_r^{\phi} = \phi(\beta_1 a_3)$ and $|yz|_r^{\phi} = \phi(\beta_2 a_3)$. Since $\phi(a_1) \le_r \phi(a_2)$, we have $\phi(\beta_1) = \min_r \phi(\operatorname{supp}(a_1 u_3)) \le_r \le_r \min_r \phi(\operatorname{supp}(a_2 u_3)) = \phi(\beta_2)$, from which the first part of (c) follows. In view of the symmetry of the problem, a) has been shown.

To prove (b) consider an element $x \in R[\Delta, \sigma]$ which has an inverse $y \in R[\Delta, \sigma]$. We write $x = v\beta$ with $v \in T$ and $\beta \in \Delta$. If $|\operatorname{supp}(x)| > 1$, then $\operatorname{supp}(v)$ contains an element of $\Pi_1 \setminus \{\varepsilon_1\}$. We write $y = u\alpha$ with $u \in T$ and $\alpha \in \Delta$ and select $w \in T$ and $\gamma \in \Delta$ with $\beta u = w\gamma$. Since $\varepsilon_1 = vw\gamma\alpha$, we have $\gamma\alpha = \varepsilon_1$ and $vw = \varepsilon_1$ by the uniqueness of $T - \Gamma_1$ -factorizations. In $\operatorname{supp}(v)$, choose an element α which is maximal in the *left* order induced by Π_1 , while in $\operatorname{supp}(w)$ choose β maximal in the *right* order. Since $|\operatorname{supp}(v)| \ge 2$, we have $\alpha >_r \varepsilon_1$, from which we obtain $\alpha\beta >_r > \beta \ge_r \varepsilon_1$. Because R is a domain, $\alpha\beta$ has a non-zero coefficient in the product vw, but is not an element of $\operatorname{supp}(vw)$ since $vw = \varepsilon_1$. Hence, there are $\alpha' \in \varepsilon$ $\operatorname{supp}(v)$ and $\beta' \in \operatorname{supp}(w)$ with $\alpha\beta = \alpha'\beta'$ and $\alpha \neq \alpha'$ or $\beta \neq \beta'$. A straightforward calculation shows that $\alpha \neq \alpha'$ and $\beta \neq \beta'$. Since $\beta >_r \beta'$

by the choice of β , we can find $\pi \in \Pi_1$ with $\beta = \pi\beta'$. Then $a'\beta' = a\beta = a\pi\beta'$ yields $a' = a\pi$ from which $a' \ge_l a$ follows. However, we have $a' < <_l a$ by the choice of a. The resulting contradiction shows that x cannot have more than one element in its support, i.e. $v \in R$. Then, $|\operatorname{supp}(y)| = |\operatorname{supp}(xy)| = 1$, and $u \in R$. In particular, $\varepsilon_1 = xy = vu^{\sigma(\beta)}\beta a = yx = uv^{\sigma(\alpha)}\alpha\beta$ yields that a is a unit of Δ . Moreover, v is a unit of R whose inverse is $u^{\sigma(\beta)}$. The converse is obvious. For the proof of (c), let x be a non-zero element of $J(R[\Delta, \sigma])$ and write x = ua where $u \in T$ and $a \in \Delta$. If $a \le_r \varepsilon_1$, then $a^{-1} \ge_r \varepsilon_1$. We choose any $\beta \in \Pi_1 \setminus \{\varepsilon_1\}$, and observe that $a^{-1}\beta >_r \varepsilon_1$. Hence, no generality is lost, if we assume that $a >_r \varepsilon_1$. Since $\varepsilon_1 \notin \operatorname{supp}(x)$ in this case, we have $\operatorname{supp}(\varepsilon_1 - x) = \operatorname{supp}(x) \cup \{\varepsilon_1\}$. Since $\operatorname{supp}(x)$ is not empty, $\varepsilon_1 - x$ cannot have a right inverse in $R[\Delta, \sigma]$ by what has been shown previously. On the other hand, $J(R[\Delta, \sigma])$ is a quasi-regular ideal, which results in a contradiction.

Theorem 2.2 shows in particular that the maps $| |_r$ and $| |_l$ defined in part (a) form a pair of generalized, conjugated valuations in the sense of [1].

COROLLARY 2.2. Let Γ_1 and Γ_2 be right orderable groups. Then, $\Gamma_1 \cong \Gamma_2$ as groups if and only if $R[\Gamma_1] \cong R[\Gamma_2]$ for all rings R $(\mathbb{Q}[\Gamma_1] \cong \mathbb{Q}[\Gamma_2]).$

PROOF. By Theorem 2.2 (b), we known that $U(\mathbb{Q}[\Gamma_i]) = U(\mathbb{Q})\Gamma_i$. Observe that $N_i = U(\mathbb{Q})\varepsilon_i$ is a normal subgroup of $U(\mathbb{Q}[\Gamma_i])$ since it is contained in the center of $\mathbb{Q}[\Gamma_i]$. Every ring isomorphism $\sigma: \mathbb{Q}[\Gamma_1] \to \mathbb{Q}[\Gamma_2]$ induces a group isomorphism $\tau: U(\mathbb{Q})\Gamma_1 \to U(\mathbb{Q})\Gamma_2$. Since τ was induced by the ring-map σ , we have $\tau(r\varepsilon_1) = r\varepsilon_2$ for all $r \in U(\mathbb{Q})$. Thus, $\tau | N_1$ maps N_1 onto N_2 . Since $U(\mathbb{Q}[\Gamma_i])$ is the direct product of N_i and Γ_i , we obtain that Γ_1 and Γ_2 are isomorphic as groups.

We are particularly interested in the ring

$$S^{\phi} = \{x \in R[\Delta, \sigma] \mid |x|_r^{\phi} \ge \varepsilon_2\} = \{x \in R[\Delta, \sigma] \mid \operatorname{supp}(x) \subseteq \Pi_1 \cup \ker \phi\}.$$

Observe that $0 \in S^{\phi}$ since $|0|_l = |0|_r = \infty > \varepsilon_2$ by convention.

PROPOSITION 2.4. Consider a cone-valuated triple $(\Gamma_1, \Gamma_2, \Delta)$ with associated map ϕ whose kernel is denoted by H, a domain R, and a group homomorphism $\sigma: \Gamma_1 \rightarrow \operatorname{Aut}(R)$. Then $I^{\phi} = \{x \in$ $\in S^{\phi} \mid |x|_{\tau}^{\phi} > \varepsilon_{2} \}$ is a two-sided ideal of S^{ϕ} such that $S^{\phi}/I^{\phi} \cong R[H, \tau]$ where $\tau = \sigma \mid H$.

PROOF. If x is a non-zero element of I^{ϕ} , then $|x|_{l}^{\phi} >_{l} \varepsilon_{2}$. Observe that, for every non-zero $y \in S^{\phi}$, the inequality $|y|_{l}^{\phi} \ge_{l} \varepsilon_{2} = |\varepsilon_{1}|_{l}^{\phi}$ yields $|xy|_{l}^{\phi} \ge_{l} |x|_{l}^{\phi} > \varepsilon_{2}$ from which $|xy|_{r}^{\phi} >_{r} \varepsilon_{2}$ follows. On the other hand, $|y|_{r}^{\phi} \ge_{r} \varepsilon_{2} = |\varepsilon_{1}|_{r}^{\phi}$ implies $|yx|_{r}^{\phi} \ge_{r} |\varepsilon_{1}x|_{r}^{\phi} = |x|_{r}^{\phi} >_{r} \varepsilon_{2}$. Thus, $xy, yx \in \varepsilon I^{\phi}$. Moreover, if $a \neq b$ are in I^{ϕ} , then $|a - b|_{r}^{\phi} \ge_{r} \min(\{|a|_{r}^{\phi}, |b|_{r}^{\phi}\}) >_{r} \varepsilon_{2}$, and $a - b \in I^{\phi}$, and I^{ϕ} is a two-sided ideal of S^{ϕ} . Let $x = \sum_{a \in \text{supp}(x)} r_{a} \alpha$ be a non-zero element of S^{ϕ} , and write $x' = \sum_{a \in \text{supp}(x) \cap H} r_{a} \alpha$. We define a map $\lambda \colon S^{\phi}/I^{\phi} \rightarrow R[H, \tau]$ by $\lambda(x) = x'$. If $x - y \in I^{\phi}$, then 0 = (x - y)' = x' - y', and λ is well-defined. Moreover, if $x, y \in S^{\phi}$, then $x - x', y - y' \in I^{\phi}$, and $xy - x'y' = (x - x')y + x'(y - y') \in I^{\phi}$ since I^{ϕ} is a two-sided ideal. Then, $\lambda(xy) = \lambda(x'y') = x'y' = \lambda(x)\lambda(y)$. It is now routine to show that λ is an isomorphism.

COROLLARY 2.5. Consider a cone-valuated triple $(\Gamma_1, \Gamma_2, \Delta)$ with associated map ϕ , a domain R, and a group homomorphism $\sigma: \Gamma_1 \rightarrow \operatorname{Aut}(R)$.

(a) I^{ϕ} is maximal as a right ideal of S^{ϕ} if and only if ϕ is one-toone and R is a division algebra.

(b) S^{ϕ} has the property that $|x|_{r}^{\phi} = \varepsilon_{2}$ yields that x is a unit of S^{ϕ} if and only if $|\Gamma_{1}| = 1$ and R is a division algebra.

PROOF. (a) Suppose that I^{ϕ} is a maximal right ideal of S^{ϕ} . Using the notation of Proposition 2.4, $R[H, \tau]$ is a division algebra. But this is only possible if $H = \{\varepsilon_1\}$ by part (b) of Theorem 2.2. Consequently, $R \cong \Xi S^{\phi}/I^{\phi}$ is a division algebra. The converse is obvious.

(b) Suppose that S^{ϕ} is regular. If Γ_1 contains two elements, we can find $\alpha \in \Gamma_1$ such that $\alpha >_r \varepsilon_1$. Then, $\varepsilon_1 + \alpha$ is an element of S^{ϕ} with $|\varepsilon_1 + \alpha|_r^{\phi} = \varepsilon_2$. But then, $\varepsilon_1 + \alpha$ is a unit of S^{ϕ} which is impossible by Theorem 2.2. The rest of the proof is obvious.

3. – Localizations.

In this section, R always is a right Ore-ring and we assume that (Γ_1, Π_1) has the property that $R[\Gamma_1, \sigma]$ is a right Ore ring. Turning to the valuation rings which we considered in Proposition 2.4 and Corollary

2.5, we consider the set $X = \{x \in S^{\phi} \mid |x|_r^{\phi} = \varepsilon_2\}$. It easy to see that the elements of X are precisely the elements $x \in R[\Gamma_1, \sigma]$ of the form $x = u\alpha$ for some $u \in T$ and $\alpha \in \ker \phi$. Since the elements of ker ϕ are units in S^{ϕ} , it follows that X is an Ore sets, and that $S_X^{\phi} \cong S_T^{\phi}$ is a chain-order in D in the sense of Dubrovin (for details see [1, Theorem 4.2]). In particular, D is the classical ring of quotients of S_{ϕ} .

THEOREM 3.1. Consider a right Ore-domain R, a cone-valuated triple $(\Gamma_1, \Gamma_2, \Delta)$ with associated map ϕ whose kernel is denoted by H, and a group-homomorphism $\sigma: \Gamma_1 \rightarrow \operatorname{Aut}(R)$. If $R[\Gamma_1, \sigma]$ is a right Ore-domain, then

(a) S_T^{ϕ} is a chain-domain with maximal ideal I_T^{ϕ} .

(b) $R[H, \tau]$ is a right Ore-domain whose classical ring of quotients is S_T^{ϕ}/I_T^{ϕ} .

- (c) $||_l$ induces a generalized left valuation $||_l$ on S_T^{ϕ} .
- (d) For all $a, b \in S_T^{\phi}$ we have $|a|_l \leq |b|_l$ if and only if $aS_T^{\phi} \supseteq bS_T^{\phi}$.

PROOF. (a) To see that S_T^{ϕ} is a right and left chain domain, we consider non-zero elements a_1 and a_2 of S_T^{ϕ} , and write $a_i = \alpha_i u_i t_i^{-1}$ with $\alpha_i \in \Gamma_1$ and u_i , $t_i \in T$ for i = 1, 2. Then, $a_i S_T^{\phi} = \alpha_i S_T^{\phi}$. If $\alpha_2 \ge_i \alpha_1$, then $\alpha_2 = \alpha_1 \pi$ for some $\pi \in \Pi_1 \subseteq S^{\phi}$. Therefore, $a_2 S_T^{\phi} \subseteq a_1 S_T^{\phi}$. Because of the symmetry of the problem, S_T^{ϕ} is a right chain domain.

Observe that I_T^{ϕ} is a right ideal of S_T^{ϕ} whose elements are of the form at^{-1} with $a \in I^{\phi}$ and $t \in T$. We show that I_T^{ϕ} consists of the non-units of S_T^{ϕ} . To see this, suppose that $1 \in I_T^{\phi}$. It implies $1 = at^{-1}$ for some $a \in I^{\phi}$ and $t \in T$. We obtain a = t and $\varepsilon_2 <_r |a|_r = |t|_r = \varepsilon_2$, a contradiction. Thus, I_T^{ϕ} consists only of non-units. On the other hand, if $at^{-1} \in S_T^{\phi}$ is not a unit, then $|a|_r > \varepsilon_2$ since otherwise $a \in X$, and at^{-1} is a unit of S_T^{ϕ} . But $|a|_r > \varepsilon_2$ implies $a \in I^{\phi}$. Therefore, I_T^{ϕ} indeed is the collection of non-units of S_T^{ϕ} . In particular, $D' = S_T^{\phi}/I_T^{\phi}$ is a division algebra.

(b) In the first step, we compute $S^{\phi} \cap I_T^{\phi}$. Choose $a \in I^{\phi}$ and $t \in T$ such that $at^{-1} \in S^{\phi}$, say $at^{-1} = b$. If $b \notin I^{\phi}$, then $|b|_r = \varepsilon_2$, and $b \in X$. Consequently, I^{ϕ} contains an element of X, and $I_T^{\phi} = S_T^{\phi}$ which is not possible. Therefore, $S^{\phi} \cap I_T^{\phi} = I^{\phi}$. In the division algebra D', we consider the ring $L = (S^{\phi} + I_T^{\phi})/I_T^{\phi}$ and show that it is essential in D' as a *L*-submodule: If $at^{-1} \in S_T^{\phi}$ with $a \in S^{\phi}$ and $t \in T$, but $at^{-1} \notin I_T^{\phi}$, then

 $|a|_r \ge_r \varepsilon_2$, and $a + I_T^{\phi} = (at^{-1} + I_T^{\phi})(t + I_T^{\phi})$ is a non-zero element of $(at^{-1} + I_T^{\phi}) L \cap L$. Therefore, D' is the maximal right ring of quotients of L by [6, Propositions A. 2.11 and Corollary C. 2.31]. Moreover, $L \cong S^{\phi}/S^{\phi} \cap I_T^{\phi} = S^{\phi}/I^{\phi} \cong R[H, \tau]$ yields that $R[H, \tau]$ is a right Orering whose classical right ring of quotients is isomorphic to D' as desired.

To show (c) and (d), consider $a, b \in S_T^{\phi}$. We can find $\alpha, \beta \in \Gamma_1$ and $u, v, x, y \in T$ such that $a = \alpha u x^{-1}$ and $b = \beta v y^{-1}$, where the $T - \Gamma_1$ -factorizations have the property $\alpha u, \beta v \in S^{\phi}$. Then $|\alpha u|_l = \phi(\alpha)$, and $|\beta v|_l = \phi(\beta)$. We obtain that ux^{-1} and vy^{-1} are units in S_T^{ϕ} . Therefore, $aS_T^{\phi} = \alpha S_T^{\phi}$ and $bS^{\phi} = \beta S_T^{\phi}$.

Suppose $aS_T^{\phi} \supseteq \beta S_T^{\phi}$. We can find $s \in S^{\phi}$ and $z \in T$ with $\beta = asz^{-1}$, and write $s = \sum_{i=1}^n r_i \sigma_i$ such that $\phi(\sigma_i) \ge_l e_2$ for all i and $z = \sum_{j=1}^m t_j \delta_j$ where $\phi(\delta_j) \ge_l e_2$ and $\phi(\delta_1) = e_2$. We obtain $\beta z = \sum_{j=1}^m t_j^{\sigma(\beta)} \beta \delta_j$ and $\alpha s =$ $= \sum_{i=1}^n r_i^{\sigma(\alpha)} \alpha \sigma_i$. There exists $i_0 \in \{1, ..., n\}$ with $\beta \delta_1 = \alpha \sigma_{i_0}$. This shows $\phi(\beta) = \phi(\alpha \delta_1) = \phi(\alpha) \phi(\sigma_{i_0}) \ge_l \phi(\alpha)$ since $\phi(\sigma_{i_0}) \ge_l e_2$.

Define $|a|_{l} = \phi(\alpha)$ where $a = \alpha u x^{-1}$ is a factorization of a as before. To show that this map is well-defined, we consider a second factorization $a = \tilde{\alpha} \tilde{u} \tilde{x}^{-1}$. Since $\alpha S_{T}^{\phi} = \tilde{\alpha} S_{T}^{\phi}$, the results verified up to this point yield $\phi(\alpha) \leq_{l} \phi(\tilde{\alpha}) \leq_{l} \phi(\alpha)$. This shows that the map $||_{l}$ is indeed well-defined. Moreover, every $a \in S^{\phi}$ can be written as $a = \alpha u 1^{-1}$ with $u \in T$. Then, $|a|_{l} = \phi(\alpha) = |a|_{l}^{\phi}$. Thus, $||_{l}$ extends $||_{l}^{\phi}$ as desired.

We consider $a, b \in S_T^{\phi}$ with $|a|_l \ge_l |b|_l$, and choose a decomposition of a and b as before. Observe $\phi(a) \ge_l \phi(\beta)$. If $a \ge_l \beta$ in Γ_1 , then $\beta^{-1} a \in \Pi_1 \subseteq \subseteq S^{\phi}$, and there is $s \in S^{\phi}$ with $a = \beta s$. Thus, $aS_T^{\phi} = aS_T^{\phi} \subseteq \beta S_T^{\phi} = bS_T^{\phi}$. On the other hand, if $a \le_l \beta$, then $\phi(a) \le_l \phi(\beta)$; and hence $\phi(a) = \phi(\beta)$. Since $a^{-1}\beta \in \Pi_1 \subseteq \Delta$, we have $\phi(\beta) = \phi(a)\phi(a^{-1}\beta) = \phi(\beta)\phi(a^{-1}\beta)$. Hence, $a^{-1}\beta \in \ker \phi$, and hence $\beta^{-1}a \in \Delta$. But then, $\beta^{-1}a \in \ker(\phi) \subseteq X$ yields that $\beta^{-1}a$ is a unit of S_T^{ϕ} . In this case $aS_T^{\phi} = \beta S_T^{\phi}$. In either case, we have shown $|a|_l \ge_l |b|_l$ if and only if $aS_T^{\phi} \subseteq bS_T^{\phi}$.

Using the last result and the fact that S_T^{ϕ} is a chain ring, it is now possible to show that the map $| |_l$ defines a generalized left valuation on S_T^{ϕ} using standard arguments.

In the last result, we assumed that $R[\Gamma_1, \sigma]$ is a right Ore ring in order to embed S^{ϕ} as an essential submodule into a ring Q in which the elements of T are units. We now show that the Ore condition on $R[\Gamma_1, \sigma]$ is necessary and sufficient for the existence of such a ring Q. COROLLARY 3.2. Consider a right Ore-domain R, a cone-valuated pair (Γ_1, Γ_2) with associated map ϕ , and a group-homomorphism $\sigma: \Gamma_1 \rightarrow \operatorname{Aut}(R)$. Then, the following conditions are equivalent:

(a) $R[\Gamma_1, \sigma]$ is a right Ore ring.

(b) S^{ϕ} can be embedded as an essential S^{ϕ} -submodule of a ring Q in which the elements of T are units.

PROOF. $(a) \Rightarrow (b)$ is an immediate consequence of the Theorem 3.1. $(b) \Rightarrow (a)$ Let $t \in T$ and $s \in S^{\phi}$. No generality is lost if we assume that $s \neq 0$. Because of (b), we can find elements $t_1, t_2 \in S^{\phi}$ with $t^{-1}st_1 = t_2$. Choose $u_1, u_2 \in T$ and $\alpha_1, \alpha_2 \in \Gamma_1$ with $t_i = u_i \alpha_i$ for i = 1, 2. Write $su_1 \alpha_1 = tu_2 \alpha_2$ to obtain $su_1 = tu_2(\alpha_2 \alpha_1^{-1})$ in $\mathbb{R}[\Gamma_1, \sigma]$. Then, $su_1 =$ $= \sum_{i=1}^n a_i \delta_i$ where $\operatorname{supp}(su_1) = \{\delta_1, \ldots, \delta_n\} \subseteq \Gamma_1$ and $\phi(\delta_i) \ge_r \varepsilon_2$. Similarly, $tu_2 = \sum_{j=1}^m b_j \varrho_j$ where $\operatorname{supp}(tu_2) = \{\varrho_1, \ldots, \varrho_m\}$ with $\phi(\varrho_j) \ge_r \varepsilon_2$. Then $\sum_{i=1}^n a_i \delta_i = \left(\sum_{j=1}^m b_j \varrho_j\right) \alpha_2 \alpha_1^{-1} = \sum_{j=1}^m b_j (\varrho_j \alpha_2 \alpha^{-1})$. This shows $\varepsilon_2 \le_r |su_1|_r = \min_{i=1}^n \phi(\delta_i) = \min_{j=1}^m \phi(\varrho_j \alpha_2 \alpha_1^{-1}) =$ $= \left(\min_{j=1}^m \phi(\varrho_j)\right) \phi(\alpha_2 \alpha_1^{-1}) = \varepsilon_2 \phi(\alpha_2 \alpha_1^{-1}) = \phi(\alpha_2 \alpha_1^{-1})$.

Moreover $tu_2 \in T$, and hence $\alpha_2 \alpha_1^{-1} \in S^{\phi}$. Furthermore, $u_2 \in T$ yields $u_2 \alpha_2 \alpha^{-1} \in S^{\phi}$. Therefore, $su_1 = t(u_2 \alpha_2 \alpha_1^{-1})$ with $u_1 \in T$ and $u_2 \alpha_2 \alpha_1^{-1} \in S^{\phi}$; and T is right Ore in S^{ϕ} .

To show (a), let r_1 and r_2 be two non-zero elements of $R^{\sigma}[\Gamma_1]$. Choose $u_1, u_2 \in T$ and $\alpha_1, \alpha_2 \in \Gamma_1$ with $r_i = u_i \alpha_i$ for i = 1, 2. By (b) there are $v_1, v_2 \in T$ with $u_2 v_2 = u_1 v_1$. Then $r_2 \alpha_2^{-1} v_2 = u_2 v_2 = u_1 v_1 = r_1 r_1^{-1} v_1$ is non-zero, and $\alpha_i^{-1} v_i \in R[\Gamma_1, \sigma]$. Hence $R[\Gamma_1, \sigma]$ is a right Ore ring.

The last result of this section shows that, in the setting of Mathiak's work ([8]), the pair of conjugated generalized valuations can be extended to the localization S_T^{ϕ} just like standard valuations.

COROLLARY 3.3. Let R be a right and left, Ore-domain, $(\Gamma_1, \Gamma_2, \Delta)$ a cone-valuated triple with associated map ϕ , and $\sigma: \Gamma_1 \rightarrow \operatorname{Aut}(R)$ be a group homomorphism such that $R[\Gamma_1, \sigma]$ is a right and left Ore-domain. (a) The pair $(||_l, ||_r)$ of generalized, conjugated valuations on S^{ϕ} extends to a pair $(||_l, ||_r)$ of conjugated, generalized valuations on S_{T}^{ϕ} .

(b) The induced valuations in a) are order-anti-isomorphic to the generalized valuations on S_T^{ϕ} which are induced by the linear ordering of the one-sided ideals of S_T^{ϕ} .

PROFF. By Theorem 3.1, there exist extensions $| |_l$ and $| |_r$ of $| |_l$ and $| |_r$ which are one-sided generalized valuations and satisfy condition (b). Since $|a|_l \ge_l \varepsilon_2$ and $|a|_r \ge_r \varepsilon_2$ for all $a \in S_T^{\phi}$, it remains to show $|a|_l = \varepsilon_2$ if and only if $|a|_r = \varepsilon_2$. If $|a|_l = \varepsilon_2$ then $aS^{\phi}T = S_T^{\phi}$ and a is a unit of S_T^{ϕ} . In this case, $S_T^{\phi}a = S_T^{\phi}$ and $|a|_r = \varepsilon_2$. The converse is verified in exactly the same way.

4. - Examples.

Dubrovin showed in [5] that the property that $R[\Gamma_1, \sigma]$ is a right Ore-domain whenever R is a right Ore-domain, is inherited by subgroups. Using this, we can easily establish the following

PROPOSITION 4.1 (a) The following conditions are equivalent for a group Γ , a right Ore-domain R, and a group-homomorphism $\sigma: \Gamma \rightarrow \operatorname{Aut}(R)$:

(i) $R[\Gamma, \sigma]$ is a right Ore-domain.

(ii) For every finitely generated subgroup U of Γ , the ring $R[U, \sigma | U]$ is a right Ore-domain.

(iii) Γ is the union of a smooth ascending chain $\{\Gamma_{\nu} | \nu < \kappa\}$ of subgroups Γ_{ν} such that $R[\Gamma_{\nu}, \sigma_{|\Gamma_{\nu}}]$ is a right Ore-domain.

(b) The following conditions are equivalent for a group Γ which is the semi-direct product of a normal subgroup N by a subgroup U:

(i) $R[\Gamma, \sigma]$ is a right Ore domain for all right Ore domains R and all $\sigma: \Gamma \rightarrow \operatorname{Aut}(R)$.

(ii) a) $R[N, \sigma]$ is a right Ore domain for all right Ore domains R and all $\sigma: N \rightarrow \operatorname{Aut}(R)$.

 β) $R[U, \tau]$ is a right Ore domain for all right Ore domains R and all $\tau: U \rightarrow \operatorname{Aut}(R)$.

PROOF. (a) The implication (i) \Rightarrow (iii) is obvious. (iii) \Rightarrow (ii): If U is a finitely generated subgroup of Γ , then $U \subseteq \Gamma_{\nu}$ for some $\nu < \kappa$. Since $(\sigma|_{\Gamma_{\nu}})|_{U} = \sigma|_{U}$, we have that $R[U, \sigma|_{U}]$ is a right Ore domain by Dubrovin's result. (ii) \Rightarrow (i): Whenever a and b are non-zero elements of $R[\Gamma, \sigma]$, then there is a finitely generated subgroup U of Γ with $a, b \in \epsilon R[U, \sigma|_{U}]$. But the latter ring is a right Ore-domain. (b) (i) \Rightarrow (ii): Condition (i) holds by (a). To show the second condition, we observe that every homomorphism $\sigma: U \rightarrow \operatorname{Aut}(R)$ can be extended to a homomorphism $\tilde{\sigma}: \Gamma \rightarrow \operatorname{Aut}(R)$ by setting $\tilde{\sigma}(nu) = \sigma(u)$ for all $n \in N$ and $u \in U$. Now, we apply Dubrovin's result again.

(ii) \Rightarrow (i): By condition (ii), $R[N, \sigma|_N]$ is a right Ore domain, and $(R[N, \sigma|_N])[U, \tau]$ is a right Ore domain for all homomorphisms $\tau: U \rightarrow Aut(R[N, \sigma|_N])$. In particular consider the map τ_U which is defined by $[\tau_U(u)](\sum_{\alpha \in N} r_\alpha \alpha) = \sum_{\alpha \in N} r^{\sigma(\alpha)} \alpha$ for all $u \in U$. By [1, Lemma 3.1], $R[\Gamma, \sigma]$ is isomorphic to the right Ore domain $(R[N, \sigma|_N])[U, \tau_U]$.

EXAMPLE 4.2. Let G and H be infinite groups such that R[G] and R[H] are right Ore domains for all right Ore domains R. Then, $\Gamma = G \wr H$ has the property that $R[\Gamma]$ is a right Ore domain for all right Ore domains R, but Γ has a trivial center. Here, \wr denotes the restricted wreath-product of G by H.

PROOF. By Proposition 4.1, it is enough to show that $\bigoplus_{I} G$ is Ore for all index sets *I*. Because of Proposition 4.1, it suffices to consider the case that *I* is finite. However, a finite direct sum of Ore groups is an Ore group by Proposition 4.1.

For instance, consider the following family $\{G_n \mid n < \omega\}$ of groups: Set $G_0 = \mathbb{Z}$ and $G_{n+1} = G_n \wr \mathbb{Z}$. We observe that each G_n is a solvable finitely generated Ore group with trivial center whose $(n-1)^{st}$ commutator subgroup is non-trivial. By Proposition 4, the group $\Gamma = \bigoplus_{\omega} G_n$ is an Ore group which is not solvable.

We conclude with some examples relating our results to previous work by Brungs' and Törner.

EXAMPLE 4.3. Since every skewpolynomial ring $R[x, \sigma]$ can be viewed as a subring of $R[\mathbb{Z}, \sigma]$ Theorem 2.2 shows that the chain rings constructed in this paper include those from [2].

In [1], we investigate groups Γ which are the union of a smooth ascending chain $\{\Gamma_{\nu}\}_{\nu < \kappa}$ of normal subgroups such that $\Gamma_{\nu+1}/\Gamma_{\nu}$ is torsion-free abelian.

THEOREM 4.4. Let R be a right Ore-ring and Γ a group which is the union of a smooth chain $\{\Gamma_{\nu}\}_{\nu < \kappa}$ of normal subgroups of Γ with $\Gamma_0 = = \{\varepsilon\}$. Then, Γ can be right ordered in such a way that for all $\alpha < \kappa$

a) Γ/Γ_a carries a natural right order induced by the Γ_v 's such that the canonical projection $\pi_a \colon \Gamma \to \Gamma/\Gamma_a$ is an order preserving map.

b) $S_T^{\pi_a}/J(S_T^{\pi_a})$ is the classical right ring of quotients of $R[\Gamma_a]$.

PROOF. Using [4, Lemma 3.7], we can right order Γ in such a way that an element $x \in \Gamma_{\nu+1} \setminus \Gamma_{\nu}$ is positive in Γ exactly if $x \Gamma_{\nu}$ is positive $\Gamma_{\nu+1}/\Gamma_{\nu}$. We fix $\alpha < \kappa$, and observe that in the group $[\Gamma_{\sigma+1}/\Gamma_{\alpha}]/[\Gamma_{\sigma}/\Gamma_{\nu}] \cong \Gamma_{\sigma+1}/\Gamma_{\sigma}$ is torsion-free abelian. We right order the group on the left in such a way that the natural isomorphism becomes order-preserving. Once Γ and Γ/Γ_a are right ordered as has been detailed in the first paragraph, the canonical projection $\pi_a: \Gamma \to \Gamma/\Gamma_a$ is order preserving. To see this let $x \in \Gamma$ be positive and choose $\sigma < \kappa$ minimal with $x \in \Gamma_{\alpha}$. Then, $\sigma = \nu + 1$, and $x\Gamma_{\nu}$ is positive in $\Gamma_{\alpha}/\Gamma_{\nu}$. Only the $\sigma > \alpha$ needs further consideration. case In this case, $x\Gamma_a \in$ $\in [\Gamma_{\sigma}/\Gamma_{a}] \setminus [\Gamma_{\nu}/\Gamma_{a}]$, and hence $x\Gamma_{a}$ is positive since the isomorphism $[\Gamma_{\sigma+1}/\Gamma_{\alpha}]/[\Gamma_{\sigma}/\Gamma_{\nu}] \cong \Gamma_{\sigma+1}/\Gamma_{\sigma}$ is order preserving and $x\Gamma_{\nu}$ is positive in $\Gamma_{\alpha}/\Gamma_{\nu}$. The theorem is now an immediate consequence of the results of Section 3.

EXAMPLE 4.5. Suppose that Γ is a right Ore-group which contains a normal subgroup N such that N and Γ/N are both right ordered groups, e.g. Γ is the semi-direct product of N and a suitable subgroup U. Then, Γ can be right ordered in such a way that the projection-map $\phi: \Gamma \rightarrow \Gamma/N$ is order preserving. We obtain that $S_T^{\phi}/J(S_T^{\phi})$ is the classical ring of quotients of the group algebra R[N], while the chain-ring S_T^{Γ} which is obtained by using $1_{\Gamma}: \Gamma \rightarrow \Gamma$ to define the generalized valuations satisfies $S_T^{\Gamma}/J(S_T^{\Gamma}) \cong Q(R)$ where Q(R) is the classical ring of quotients of R. In the case of [1, Example 2], the first ring is the classical ring of quotients of $R[\mathbb{Z}]$ and is not associated with the cone Π_1 . The last example also applies in the following case. Let $\Gamma = \mathbb{Z} \wr (\mathbb{Z} \wr \mathbb{Z})$ in which $\Pi_{\mathbb{Z} \wr \mathbb{Z}} \mathbb{Z}$ is the kernel of the induced map $\phi \colon \Gamma \to \mathbb{Z} \wr \mathbb{Z}$, and consider the group-algebra $K[\Gamma]$ over a field K. Since this kernel is an abelian group, the induced valuation ring S^{ϕ} has the property that $S_T^{\phi}/J(S_T^{\phi})$ is a commutative ring not isomorphic to K although $K[\Gamma]$ is non-commutative.

REFERENCES

- U. ALBRECHT G. TÖRNER, Group rings and generalized valuations, Comm. Algebra, 18 (1984), pp. 2243-2272.
- [2] C. BESSENRODT H. BRUNGS G. TÖRNER, *Right chain rings*, Part 1, 2a, 2b, Preprint, Duisburg.
- [3] G. BASTUS T. VISWANATHAN, Torsion-free abelian groups, valuations and twisted group-rings, Can. Math. Bull., 2 (1988), pp. 139-146.
- [4] P. CONRAD, Right ordered-groups, Mich. Math. J., 6 (1959), pp. 267-275.
- [5] N. I. DUBROVNIN, The rational closure of group rings of left orderable groups, Mat. USSR Sbornik, 184 (7) (1993), pp. 3-48.
- [6] K. GOODEARL, Ring Theory, Marcel Dekker, Basel, New York (1976).
- [7] A. I. MALCEV, The embedding of group algebras into division algebras, Doklady Nauk USSR, 60 (1948) (9), pp. 1499-1501.
- [8] K. MATHIAK, Bewertungen nicht kommutativer Körper, J. Algebra, 48 (1977), pp. 217-235.
- [9] B. NEUMANN, On ordered division rings, Trans. Amer. Math. Soc., 66, 2 (1949), pp. 202-252.
- [10] PASSMANN, The Algebraic Structure of Group Rings, Robert Krieger, Malabar (1985).

Manoscritto pervenuto in redazione il 16 aprile 1996 e, in forma definitiva, il 17 giugno 1997.