RENDICONTI del Seminario Matematico della Università di Padova

V. DE FILIPPIS O. M. DI VINCENZO

On the generalized hypercentralizer of a Lie ideal in a prime ring

Rendiconti del Seminario Matematico della Università di Padova, tome 100 (1998), p. 283-295

http://www.numdam.org/item?id=RSMUP_1998_100_283_0

© Rendiconti del Seminario Matematico della Università di Padova, 1998, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the Generalized Hypercentralizer of a Lie Ideal in a Prime Ring (*).

V. DE FILIPPIS(**) - O. M. DI VINCENZO(***)

SUMMARY - Let R be an associative ring, Z(R) its center and $H_R(U) =$ = { $a \in R : [a, u^n]_m = 0, n = n(a, u) \ge 1, m = m(a, u) \ge 1$, all $u \in U$ }, where U is a non-central Lie ideal of R. We prove that if R is a prime ring without nil right ideals, then either $H_R(U) = Z(R)$ or R is an order in a simple algebra of dimension at most 4 over its center.

The aim of this paper is to extend some results about the hypercenter of a ring to the hypercentralizer of a Lie ideal in a prime associative ring.

Let *R* be a given associative ring and let *n* be a positive integer. The *n*-th commutator of $x, y \in R$, denoted by $[x, y]_n$, is defined inductively as follows:

for $n = 1, [x, y]_1 = [x, y] = xy - yx$ is the commutator of x and y for $n > 1, [x, y]_n = [x, y]_{n-1}y - y[x, y]_{n-1}$.

In [2], the n-th hypercenter of R is defined to be the set

 $H_n(R) = \{a \in R : \text{for each } x \in R \text{ there exists an integer} \}$

$$m = m(a, x) \ge 1$$
 such that $[a, x^m]_n = 0$

(*) Research supported by a grant from M.U.R.S.T.

(**) Indirizzo dell'A.: Dipartimento di Matematica, Università di Messina, C/da Papardo salita Sperone 31, 98166 Messina, Italy.

(***) Indirizzo dell'A.: Dipartimento di Matematica, Università della Basilicata, Via N. Sauro 85, 85100 Potenza, Italy. and, moreover, the generalized hypercenter of R is the set

 $H(R) = \{a \in R : \text{for each } x \in R, \text{ there exist integers} \}$

 $n = n(a, x) \ge 1$ and $m = m(a, x) \ge 1$, such that $[a, x^m]_n = 0$.

The classical hypercenter theorem proved by I. N. Herstein [8] asserts that the hypercenter, $H_1(R)$, of a ring without non-zero nil two-sided ideals always coincides with its center.

More recently Chuang and Lin proved that if R is a ring without non-zero nil two-sided ideals then $H_n(R)$ coincides with the center of R, Z(R).

They also proved that if R is a ring without non-zero nil right ideals then the generalized hypercenter, H(R), coincides with the center (see Theorem 2 and Theorem 4 of [2]).

In this paper we will study a more general situation. More precisely let *S* be a subset of *R*, we say that an element $a \in R$ is in the *n*-th hypercentralizer of *S*, $H_{n,R}(S)$, if and only if for each $s \in S$ there exists an integer $m = m(a, s) \ge 1$ such that $[a, s^m]_n = 0$.

In the same way we define the generalized hypercentralizer of S to be the set

 $H_R(S) = \{a \in R : \text{for each } s \in S \text{ there exist integers} \}$

 $n = n(a, s) \ge 1$ and $m = m(a, s) \ge 1$ such that $[a, s^m]_n = 0$.

Of course if S = R then $H_{n,R}(S)$ is merely the n-th hypercenter of R and $H_R(R)$ coincides with the generalized hypercenter of R. We remark that in [6] Giambruno and Felzenszwalb studied our first hypercentralizer in the case when S = f(R) is the subset of all valutations $f(r_1, \ldots, r_d)$ of a multilinear polynomial $f(x_1, \ldots, x_d)$ on a prime ring R.

They proved that if R is without non-zero nil right ideals then either $H_{1,R}(f(R)) = Z(R)$ or the polynomial $f(x_1, \ldots, x_d)$ is power central valued and R satisfies the standard identity $S_{d+2}(x_1, \ldots, x_{d+2})$.

As a consequence of this result it is proved in [1] that if U is a non central Lie ideal of a prime ring R, without non-zero nil right ideals, then either $H_{1,R}(U) = Z(R)$ or R satisfies the standard identity $S_4(x_1, \ldots, x_4)$.

Our main result has the same flavour:

THEOREM. Let R be a prime ring without non-zero nil right ideals and let U be a non central Lie ideal of R, then either $H_R(U) = Z(R)$ or R satisfies the standard identity $S_4(x_1, \ldots, x_4)$.

Preliminar results.

Here we summarize some basic properties of n-th commutators. These simple facts will be used implicitly troughout all the proofs of this paper.

REMARK 1. Let $x, y, z \in R$.

a) If $[x, y]_n = 0$ for some $n \ge 1$ then $[x, y^m]_n = 0$ for any $m \ge 1$ and $[x, y]_q = 0$ for any $q \ge n$.

b) If $[x, y^m]_n = 0$ and $[z, y^t]_n = 0$ then $[x, y^{mt}]_n = [z, y^{mt}]_n = 0$.

c) $[x+y,z]_n = [x,z]_n + [y,z]_n$ and $[xy,z]_n = \sum_{i=0}^n \binom{n}{i} [x,z]_{n-i} [y,z]_i$ (here we put $[x, y]_0 = x$).

d) If $[x, y^m]_n = 0$ and $[z, y^m]_q = 0$ then $[xz, y^m]_{n+q-1} = 0$.

As a consequence we also have

REMARK 2.

- a) $Z(R) \subseteq H_{n,R}(S) \subseteq H_R(S)$.
- b) $H_{n,R}(S)$ is an additive subgroup of R.
- c) $H_R(S)$ is a subring of R.

REMARK 3. Let φ be an automorphism of R such that $\varphi(S) \subseteq S$, then $\varphi(H_{n,R}(S)) \subseteq H_{n,R}(S)$ and $\varphi(H_R(S)) \subseteq H_R(S)$.

1. – Some reductions.

We begin the proof of our theorem with the following standard results (see Lemmas 11, 12 of [2]). LEMMA 1.1. If R is a prime ring of characteristic p > 0 then $H_R(S) = H_{1,R}(S)$.

PROOF. Let $a \in H_R(S)$. Given $s \in S$ there exist positive integers n = n(a, s) and m = m(a, s) such that $[a, s^m]_n = 0$. For any $x, y \in R$ we have $[x, y]_n = \sum_{i=0}^n \binom{n}{i} (-1)^i y^i x y^{n-i}$.

Hence, for $t \ge 1$ such that $p^t \ge n$, we obtain $0 = [a, s^m]_{p^t} = as^{mp^t} - s^{mp^t}a = [a, s^{mp^t}]$ and so $a \in H_{1, R}(S)$.

LEMMA 1.2. Let R be a domain and let $a, b \in H(S)$ be such that a + b + ab = a + b + ba = 0. Then $a, b \in H_{1,R}(S)$.

PROOF. If the charateristic of R is a prime number then by Lemma 1.1 one has $H_R(S) = H_{1,R}(S)$. Hence we may assume that char R = 0. Given $s \in S$, let h and k be the minimal positive integers such that $[a, s^n]_h = 0$ and $[b, s^n]_k = 0$ for some $n \ge 1$. Suppose that h > 1 and k > 1, then $h + k - 2 \ge \max(h, k)$. Hence $[a, s^n]_{h+k-2} = [b, s^n]_{h+k-2} = 0$. On the other hand

$$0 = [a + b + ab, s^{n}]_{h+k-2} = [ab, s^{n}]_{h+k-2} =$$
$$= \binom{h+k-2}{h-1} [a, s^{n}]_{h-1} [b, s^{n}]_{k-1}.$$

Since *R* is a domain of characteristic 0, we have $[a, s^n]_{h-1} = 0$ or $[b, s^n]_{k-1} = 0$. This contradicts with the minimality of *h* and *k*. Hence one of *h* and *k* must be 1, say h = 1. Then $0 = [a + b + ab, s^n] = [b, s^n] + a[b, s^n] = (1 + a)[b, s^n]$. Hence $[b, s^n] = (1 + b)(1 + a)[b, s^n] = 0$ (Note that the use of 1 is purely formal). Thus h = k = 1. Since this holds for any $s \in S$ we have $a, b \in H_{1, R}(S)$.

LEMMA 1.3. Let R be a prime ring and U a non-central Lie ideal of R. Then either there exists a non-zero ideal I of R such that $0 \neq [I, R] \subseteq U$ or char R = 2 and R satisfies $S_4(x_1, \ldots, x_4)$.

PROOF. See [7, pp. 4-5], [4, Lemma 2, Proposition 1], [10, Theorem 4]. ■

2. – The case $R = H_R([I, I])$.

In this section I will be a non-zero two-sided ideal of R. [I, I] will denote the <u>subset</u> $\{[a, b]: a, b \in I\}$. We begin with an immediate consequence of Lemma 1.2.

LEMMA 2.1. Let R be a division ring. If $R = H_R([R, R])$ then R satisfies $S_4(x_1, \ldots, x_4)$.

PROOF. Let $-1 \neq a \in R$. Let $b = (1 + a)^{-1} - 1$, then a + b + ab = a + b + ba = 0 and, by Lemma 1.2, $a \in H_{1,R}([R, R])$. On the other hand, by Lemma 1 of [6], we have either $H_1([R, R]) = Z(R)$ or $\dim_{Z(R)} R = N^2$ where $N \leq 2$. In any case R satisfies the standard identity $S_4(x_1, \ldots, x_4)$.

LEMMA 2.2. Let R be a domain with non-zero Jacobson's radical J(R). If $H_R([I, I]) = R$ then R satisfies $S_4(x_1, \ldots, x_4)$.

PROOF. As R is a prime ring $V = I \cap J(R)$ is a non-zero two-sided ideal of R. By Lemma 1.2 $V \subseteq H_{1,R}([I, I])$ and, a fortiori, $V = H_{1,V}([V, V])$. Therefore, by Lemma 7 of [6], V satisfies the standard identity $S_4(x_1, \ldots, x_4)$. Since V is a non-zero ideal of $R, S_4(x_1, \ldots, x_4)$ is a polynomial identity for R too.

Notice that in the next Lemma we do not assume that $R = H_R([I, I])$.

LEMMA 2.3. Let R be a primitive ring. If R is not a division ring then either $H_R([I, I]) = Z(R)$ or $R \cong F_2$, the ring of 2×2 matrices over a field F.

PROOF. Let V be a faithful irreducible right R-module with endomorphisms ring D, a division ring. Since I is a non-zero two-sided ideal of R then R and I are both dense subrings of D-linear transformations on V. Suppose that $\dim_D V \ge 3$. We claim that in this case $H_R([I, I]) = Z(R)$.

In fact, let $a \neq 0$ be in $H_R([I, I])$ and assume that for some $v \in V$ the vectors v and va are linearly independent over D. By our assumption there exists a vector w such that v, va, w are linearly independent

over D. As I acts densely on V there exist elements $r, s \in I$ such that

$$vr = 0$$
, $(va)r = w$, $wr = 0$ and $vs = 0$, $(va)s = 0$, $ws = va$.

Hence v[r, s] = 0 and $va[r, s]^m = va$ for any $m \ge 1$. Since $a \in H_R([I, I])$ there exist positive integers n, m such that $[a, [r, s]^m]_n = 0$. Thus we have:

$$0 = v[a, [r, s]^{m}]_{n} = v\left(\sum_{i=0}^{n} \binom{n}{i} (-1)^{i} [r, s]^{mi} a[r, s]^{m(n-i)}\right) = va[r, s]^{mn} = va \neq 0,$$

a contradiction.

Hence, given $v \in V$, v and va are linearly dependent over D. It is well known that in this case a must be central (see, for istance, the proof of Lemma 2 in [8]).

Hence we may assume that $\dim_D V \leq 2$ and so, by our hypotesis, $R \cong D_2$, the ring of 2×2 matrices over the division ring D. Thus R is a simple ring with a non-trivial idempotent and I coincides with R. Moreover, by Remarks 2 and 3, $H_R([R, R])$ is a subring of R which is invariant under all the automorphisms of R. If R is not the ring of 2×2 matrices over GF(2), then, by [7, theorem 1.15], either $H_R([R, R]) = Z(R)$ or $H_R([R, R]) = R$. In the last case we have $H_{D_2}([D_2, D_2]) = D_2$ and we claim that D is commutative. Let e_{ij} be the matrix unit with 1 in (i, j) entry and 0 elsewhere. Let $r = a(e_{12} + e_{22})$ and $s = b(e_{12} + e_{22})$ where $a, b \in D$; hence $[r, s]^m = [a, b]^m (e_{12} + e_{22})$ for any $m \ge 1$. Since $H_{D_2}([D_2, D_2]) = D_2$ there exist positive integers n, m such that $[e_{12}, [r, s]^m]_n = 0$. Since $[e_{12}, [r, s]^m] = [e_{12}, [a, b]^m (e_{12} + e_{22})] = [a, b]^m e_{12}$, we obtain $0 = [e_{12}, [r, s]^m]_n = [a, b]^{mn} e_{12}$, and so $[a, b]^{mn} = 0$ in D. Hence [a, b] = 0 for all $a, b \in D$, that is D is commutative and we are done.

As an immediate consequence of Lemmas 2.1 and 2.3 we obtain

LEMMA 2.4. Let R be a primitive ring. If $R = H_R([I, I])$ then R satisfies $S_4(x_1, \ldots, x_4)$.

PROOF. It is suffices to recall that F_2 satisfies the standard identity $S_4(x_1, \ldots, x_4)$ (see Example 3 page 12 of [9]).

288

LEMMA 2.5. Let R be a domain. If $R = H_R([I, I])$ then R satisfies $S_4(x_1, \ldots, x_4)$.

PROOF. If $J(R) \neq (0)$ then the result follows by Lemma 2.2. Now we assume J(R) = (0). So that R is a subdirect product of primitive rings R_{γ} , $\gamma \in \Gamma$.

Let P_{γ} be a primitive ideal of R such that $R_{\gamma} \cong R/P_{\gamma}$. We consider $\Gamma_1 = \{\gamma \in \Gamma : I \subseteq P_{\gamma}\}$ and $\Gamma_2 = \{\gamma \in \Gamma : I \not \in P_{\gamma}\}$, in addition let $I_i = \cap P_{\gamma}$, for $\gamma \in \Gamma_i$, i = 1, 2. Since R is semisimple $I_1 I_2 \subseteq I_1 \cap I_2 = (0)$.

Since *R* is a domain we must have either $I_1 = (0)$ or $I_2 = (0)$. If $I_1 = (0)$ then $I \subseteq I_1 = (0)$, a contradiction. Hence $I_2 = (0)$ and so *R* is a subdirect product of primitive rings $R_{\gamma} \cong R/P_{\gamma}$, such that $I \notin P_{\gamma}$. Of course $I_{\gamma} = (I + P_{\gamma})/P_{\gamma}$ is a non-zero two-sided ideal of R_{γ} and we also have $R_{\gamma} = H_{R\gamma}([I_{\gamma}, I_{\gamma}])$.

Therefore, by Lemma 2.4, $S_4(x_1, \ldots, x_4)$ is a polynomial identity for R_{γ} , for each $\gamma \in \Gamma_2$, and so R satisfies $S_4(x_1, \ldots, x_4)$.

LEMMA 2.6. Let R be a prime ring satisfying a polynomial identity. If $R = H_R([R, R])$ then R satisfies $S_4(x_1, \ldots, x_4)$.

PROOF. Since *R* is a P.I. ring, by Posner's theorem, the ring of central quotients of *R*, i.e. the ring $Q = \{rz^{-1}: r \in R, 0 \neq z \in Z(R)\}$ is a finite dimensional central simple algebra. Of course $Q = H_Q([Q, Q])$, hence by Lemma 2.4 *Q* must satisfy $S_4(x_1, \ldots, x_4)$ and we are done.

LEMMA 2.7. Let R be a prime ring without non-zero nil right ideals. If $R = H_R([R, R])$ then R satisfies $S_4(x_1, \ldots, x_4)$.

PROOF. Let ρ be a non-zero right ideal of R; we claim that if ρ satisfies a polynomial identity then ρ satisfies $S_4(x_1, \ldots, x_4) x_5$.

In fact let $l(\varrho) = \{x \in R : x\varrho = 0\}$ the left annihilator of ϱ . Then the quotient ring $\overline{\varrho} = \varrho/(l(\varrho) \cap \varrho)$ is also a prime P.I. ring such that $H_{\overline{\varrho}}([\overline{\varrho}, \overline{\varrho}]) = \overline{\varrho}$. Hence, by Lemma 2.6, $S_4(x_1, \ldots, x_4)$ is a polynomial identity of $\overline{\varrho}$, that is $S_4(r_1, \ldots, r_4) \in l(\varrho)$, for all $r_i \in \varrho$, and so ϱ satisfies $S_4(x_1, \ldots, x_4) x_5$, as required.

Now if *R* is a domain then our result follows by Lemma 2.5. Suppose that *R* is not a domain and let ab = 0 for some non-zero elements $a, b \in R$. Then $bRa \neq (0)$ and so there exists $r \in R$ such that c = bra is a non-zero square-zero element of *R*. Let $\varrho = cR$, and, as above let $l(\varrho)$ its left annihilator. We consider the prime ring $\overline{\varrho} = \varrho/(l(\varrho) \cap \varrho)$ which is without non-zero nil right ideals.

Let $r_1, r_2 \in R$, since $c \in H_R([R, R])$ there exist positive integers n, msuch that $0 = [c, [cr_1, cr_2]^n]_m$. Hence $[cr_1, cr_2]^{nm}c = 0$, since $c^2 = 0$. In other words the polynomial $[x_1, x_2]$ is nil on $\overline{\varrho}$, and so, by Theorem 1 of [3], $\overline{\varrho}$ is commutative, that is $[r_1, r_2]r_3 = 0$, for all $r_i \in \varrho$. Therefore R contains non-zero right ideals satisfying a polynomial identity; thus, by first part of the proof, they must satisfy $S_4(x_1, \ldots, x_4) x_5$.

Hence, by Zorn's Lemma, there exists a non-zero right ideal ϱ' which is maximal with respect to the property that it satisfy $S_4(x_1, \ldots, x_4)x_5$. Now let $r \in R$ and $s_1, s_2, s_3, s_4, s_5 \in \varrho'$, then, since each $s_i r \in \varrho'$, we have

$$S_4(rs_1, rs_2, rs_3, rs_4) rs_5 = rS_4(s_1r, s_2r, s_3r, s_4r) s_5 = 0$$
.

This says that the right ideal rq' satisfies the identity $S_4(x_1, \ldots, x_4) x_5$. Since both q' and rq' satisfy a polynomial identity then, by a theorem of Rowen [11], q' + rq' also satisfies some identity.

Therefore, as we showed above, $\varrho' + r\varrho'$ satisfies $S_4(x_1, \ldots, x_4) x_5$. By the maximality of ϱ' we have $r\varrho' \subseteq \varrho'$, for all $r \in R$, that is ϱ' is a nonzero two-sided ideal of R. Hence, by Lemma 1 of [4], R is a P.I. ring and by Lemma 2.6 it satisfies $S_4(x_1, \ldots, x_4)$.

3. - Some results on invariant subrings.

As we said in remark 3, $H_R(S)$ is a subring of R which is invariant under any automorphism φ of R such that $\varphi(S) \subseteq S$. This fact is enough to focus our attention on invariant subrings A of R. In this section we will consider the following situation:

R will be a prime ring with non-zero Jacobson's radical J(R) and *A* will be a subring of *R* which is invariant under the automorphisms of *R* which are induced by all the elements of J(R). More precisely, let *a* be a quasi-regular element of *R* with quasi-inverse *a'*, that is a + a' + aa' = a'a + a' + a = 0.

Notice that if R has a unit element 1 then 1 + a is invertible and $(1 + a)^{-1} = 1 + a'$.

Let $\varphi_a: R \to R$ be the map defined by

$$\varphi_a(r) = r + ar + ra' + ara'.$$

 φ_a is an automorphism of *R*, we write $\varphi_a(r) = (1 + a) r(1 + a)^{-1}$ and we

say that a is formally invertible. As in the proof of Lemma 1.2, we also write r(1+a) for r + ra and (1+a) r for r + ar.

Some of the following results are implicitly contained in [6]. We include these statement in this form for the sake of clearness and completeness.

Let R, A be as described in the beginning of this section; we have

LEMMA 3.1. Let I be a non-zero two-sided ideal of R then either $A \subseteq Z(R)$ or $A \cap I \neq (0)$.

PROOF. Since *R* is a prime ring $V = I \cap J(R)$ is a non-zero two-sided ideal of *R*. Since the centralizer of a non-zero two-sided ideal in a prime ring is equal to the center of the ring then either $A \subseteq Z(R)$ or there exist $a \in A, r \in V$ such that $(1+r)a(1+r)^{-1} \neq a$, that is $a + ra + ar' + rar' \neq a$.

Since a + ra + ar' + rar' is an element of A then $0 \neq ra + ar' + rar' \in A \cap I$.

LEMMA 3.2. If A has no non-zero nilpotent elements then any non-zero element of A is regular in R and $Z(A) \subseteq Z(R)$.

PROOF. See [6] page 423, rows 10-30.

We remark that the same argument used in the previous Lemma (of course $x \in D - \{-1\}$ » instead of $x \in J(R)$ ») shows the following result

LEMMA. 3.3. Let R be a division ring. If A is a subring of R which is invariant under all inner automorphism of R then $Z(A) \subseteq Z(R)$.

In the next Lemma we will use the following definition:

Let R be a prime ring with non-zero Jacobson's radical J(R), then we put

 $\varrho_a = \{x \in J(R) : ax = 0\}$. Clearly ϱ_a is a right ideal of R which is the right annihilator of a in J(R).

LEMMA 3.4. If A does not contain a non-zero two-sided ideal of R, then the set $\{\varrho_a : a \in A\}$ is linearly ordered, that is: for all $a, b \in A$ either $\varrho_a \subseteq \varrho_b$ or $\varrho_b \subseteq \varrho_a$. PROOF. See [6] page 424, rows 10-24.

We conclude this section by proving the following result:

LEMMA 3.5. Let A be a domain such that $Z(R) \subseteq A$; if A satisfies a polynomial identity then either A = Z(R) or Q, the ring of central quotient of R, is a simple ring with 1.

PROOF. Since A is a P.I. domain then by Posner's theorem its center Z(A) is non-zero and any non-zero element of A is invertible in $Q(A) = = \{az^{-1}: a \in A, 0 \neq z \in Z(A)\}$. Moreover, by Lemma 3.2, Z(A) = Z(R), hence Q(A) is a subdivision ring of Q, the ring of central quotients of R, and it has the same unit element of R. Assume now that $A \notin Z(R)$ and let V be a non-zero two-sided ideal of Q. Then $V \cap R$ is a non-zero two-sided ideal of Q. Then $V \cap R$ is a non-zero two-sided ideal of R.

Therefore *V* contains an invertible element of *A* and so V = Q.

4. – The general case.

We begin with the case when R is a division ring.

LEMMA 4.1. Let R be a division ring then either $H_R([R, R]) = Z(R)$ or R satisfies the standard identity $S_4(x_1, \ldots, x_4)$.

PROOF. Let $A = H_R([R, R])$, as we said above A is invariant under all the automorphisms of R. Hence $Z(A) \subseteq Z(R)$ by Lemma 3.3 and so Z(A) = Z(R).

Since $H_A([A, A]) = A$, by Lemma 2.5, we obtain that A satisfies the standard identity $S_4(x_1, \ldots, x_4)$. By Posner's theorem the ring $B = \{az^{-1}: a \in A, 0 \neq z \in Z(A)\}$ of central quotients of A is a finite dimensional central simple algebra which satisfies $S_4(x_1, \ldots, x_4)$. Of course B is a subdivision ring of R, moreover it is invariant under all automorphism of R. Therefore, by Brauer-Cartan-Hua theorem, either B = R or $B \subseteq Z(R)$.

In the latter case $H_R([R, R]) = A = B = Z(R)$, while in the first case R satisfies the standard identity $S_4(x_1, \ldots, x_4)$.

LEMMA 4.2. Let R be a prime ring with no non-zero nil right ideals and $J(R) \neq 0$. Let I be a non-zero two-sided ideal of R. If

 $H_R([I, R]) = A$ does not contain a non-zero two-sided ideal of R then $H_R([I, R]) = Z(R)$.

PROOF. Since A does not contain a non-zero two-sided ideal of R, then, by Lemma 3.4, for all $a, b \in A$ we must have either $\varrho_a \subseteq \varrho_b$ or $\varrho_b \subseteq \varrho_a$.

We claim that A does not contain non-zero nilpotent elements. Let $a \in A$ be such that $a^2 = 0$ and $a \neq 0$.

If a annihilates on the left every square-zero element of A then

$$a(1+x) a(1+x)^{-1} = 0$$
 for all $x \in J(R)$.

Hence, since $a^2 = 0$, we have aJ(R)a = (0) and so a = 0, a contradiction.

Thus there exists $b \in A$ with $b^2 = 0$ and $ab \neq 0$. Then $0 \neq abJ(R) \subseteq \subseteq a\varrho_b$, so $\varrho_b \notin \varrho_a$. Hence $\varrho_a \subseteq \varrho_b$, in particular we have:

$$baJ(R) \subseteq b\varrho_a \subseteq b\varrho_b = (0)$$
 and so $ba = 0$.

Since $a \in H_R([I, R])$, for any $r \in I$, there exist positive integers n, m such that $0 = [a, [r, ab]^m]_n$. And so, since $a^2 = b^2 = ba = 0$, we obtain $0 = [a, [r, ab]^m]_n br = (-1)^n (abr)^{nm}$, that is abI is a nil right ideal of R. Hence abI = (0) and so ab = 0, a contradiction again.

Therefore $A = H_R([I, R])$ does not contain non-zero nilpotent elements and, by Lemma 3.2, we obtain that any non-zero element of A is regular in R and Z(A) = Z(R). In particular A is a domain, moreover if $A \notin Z(R)$ then $A \cap I \neq (0)$, by Lemma 3.1.

Therefore $A \cap I$ is a non-zero two-sided ideal of A and we also have $A = H_A([I \cap A, A])$. Hence, by Lemma 2.5, A satisfies $S_4(x_1, \ldots, x_4)$. Since $A \notin Z(R)$, Q, the ring of central quotients of R, is a simple ring with 1 (see Lemma 3.5), and so it is a primitive ring.

Of course $A = H_R([I, R]) \subseteq H_Q([Q, Q])$. But, by Lemmas 2.3 and 4.1, either $H_Q([Q, Q]) = Z(Q)$ or Q satisfies $S_4(x_1, \ldots, x_4)$.

In the first case we obtain $A \subseteq Z(R)$ which contradicts with our last assumption. In the last case Q is a simple algebra which is at most 4-dimensional over its center.

Therefore Q must satisfy all the polynomial identities of 2×2 matrices over its center (see [9]), hence $[x_1, [x_2, x_3]^2]$ is a polynomial identity for $R \subseteq Q$.

In other words $A = H_R([I, R]) = R$, that is A contains a non-zero two-sided ideal of R, and this is a contradiction again.

Hence $A \subseteq Z(R)$ and we are done.

A special case of our final result is the following

PROPOSITION 4.1. Let R be a prime ring without non-zero nil right ideals. Let I be a non-zero two-sided ideal of R and let $A = H_R([I, R])$. Then either A = Z(R) or R satisfies $S_4(x_1, \ldots, x_4)$ and A = R.

PROOF. Suppose R is semisimple. Then, as in the proof of Lemma 2.5, R is a subdirect product of primitive rings $R_{\gamma} = R/P_{\gamma}$, such that $I \not \subseteq P_{\gamma}$, for each γ in the set Γ of indeces.

For each $\gamma \in \Gamma$, let A_{γ} and I_{γ} be the images in R_{γ} of A and I respectively. Then, since $A_{\gamma} \subset H_{R_{\gamma}}([I_{\gamma}, R_{\gamma}])$, by Lemmas 2.3 and 4.1, either $A_{\gamma} \subseteq \subseteq Z(R_{\gamma})$ or R_{γ} satisfies $S_4(x_1, \ldots, x_4)$.

Now, let $\Gamma_1 = \{ \gamma \in \Gamma : A_\gamma \subseteq Z(R_\gamma) \}$ and $\Gamma_2 = \{ \gamma \in \Gamma : A_\gamma \notin Z(R_\gamma) \}.$

Then $\Gamma = \Gamma_1 \cup \Gamma_2$. Let $I_1 = \cap P_{\gamma}, \gamma \in \Gamma_1$ and $I_2 = \cap P_{\gamma}, \gamma \in \Gamma_2$.

So $(0) = J(R) = I_1 \cap I_2$, moreover if $\gamma \in \Gamma_2$ then R_{γ} satisfies $S_4(x_1, \ldots, x_4)$.

Since R is prime and $I_1I_2 \subseteq I_1 \cap I_2 = (0)$ we must have either $I_1 = 0$ or $I_2 = 0$. If $I_1 = 0$ then we conclude that $A \subseteq Z(R)$. Hence if $A \notin Z(R)$ then $I_2 = (0)$ and consequentely R satisfies $S_4(x_1, \ldots, x_4)$. In this case, by Posner's theorem, R is an order in a simple algebra at most 4-dimensional over its center. Hence R satisfies the polynomial identity $[[x_1, x_2]^2, x_3]$ and so $A = H_R([I, R]) = R$.

Therefore we must assume that $J(R) \neq 0$.

If A does not contain a non-zero ideal of R then, by Lemma 4.2, $H_R([I, R]) = Z(R)$.

Hence we may assume that A contains a non-zero ideal V of R. Since R is prime, $R_1 = V \cap I$ is a prime ring without non-zero nil right ideals, moreover, as $V \subseteq A$, we have that $I \cap V = H_{I \cap V}([I \cap V, I \cap V])$. By Lemma 2.7, $I \cap V$ satisfies $S_4(x_1, \ldots, x_4)$, and so R too. As above this implies $H_R([I, R]) = R$ and we are done.

THOREM 4.1. Let R be a prime ring without non-zero nil right ideals, U a noncentral Lie ideal of R. Then either $H_R(U) = Z(R)$ or R satisfies $S_4(x_1, \ldots, x_4)$.

PROOF. By Lemma 1.3 if R does not satisfy $S_4(x_1, \ldots, x_4)$ then there exists a non-zero two-sided ideal I of R such that $[I, R] \subseteq U$. Since $H_R(U) \subseteq H_R([I, R])$, we conclude by previous proposition.

REFERENCES

- L. CARINI, Centralizers and Lie ideals, Rend. Sem. Mat. Univ. Padova, 78 (1987), pp. 255-259.
- [2] C. L. CHUANG J. S. LIN, On a conjecture by Herstein, J. Algebra, 126 (1989), pp. 119-138.
- [3] C. L. CHUANG J. S. LIN, Rings with nil and power central k-th commutators, Rend. Circ. Mat. Palermo Serie II, XLI (1992), pp. 62-68.
- [4] O. M. DI VINCENZO, On the n-th centralizer of a Lie ideal, Boll. Un. Mat. Ital.
 (7), 3-A (1989), pp. 77-85.
- [5] O. M. DI VINCENZO A. VALENTI, On n-th commutators with nilpotent or regular values in rings, Rend. Circ. Mat. Palermo Serie II, XL (1991), pp. 453-464.
- [6] B. FELZENSZWALB A. GIAMBRUNO, Centralizers and multilinear polynomials in noncommutative rings, J. London Math. Soc. (2), 19 (1979), pp. 417-428.
- [7] I. N. HERSTEIN, *Topics in Ring Theory*, Univ. of Chicago Press, Chicago (1969).
- [8] I. N. HERSTEIN, On the hypercenter of a ring, J. Algebra, 36 (1975), pp. 151-157.
- [9] N. JACOBSON, P.I. Algebras, an Introduction, Lecture Notes in Mathematics, no. 441, Springer-Verlag, Berlin, New York (1975).
- [10] C. LANSKI S. MONTGOMERY, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42, n. 1 (1972), pp. 117-135.
- [11] L. M. ROWEN, General polynomial identities II, J. Algebra, 38 (1976), pp. 380-392.

Manoscritto pervenuto in redazione il 9 aprile 1997.