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On the Generalized Hypercentralizer
of a Lie Ideal in a Prime Ring (*).

V. DE FILIPPIS (**) - O. M. DI VINCENZO (***)

SUMMARY - Let R be an associative ring, Z(R ) its center and HR(U) =
[a, 0, n = n(a, u) ;1, ~n = m(a, u) ;1, all where

U is a non-central Lie ideal of R. We prove that if R is a prime ring without nil
right ideals, then either HR ( U) = Z(R) or R is an order in a simple algebra of
dimension at most 4 over its center.

The aim of this paper is to extend some results about the hypercenter
of a ring to the hypercentralizer of a Lie ideal in a prime associative
ring.

Let R be a given associative ring and let n be a positive integer. The
n-th commutator of x , y E R, denoted by [x, is defined inductively as
follows:

for is the commutator of x and y

for

In [2], the n-th hypercenter of R is defined to be the set

for each x E R there exists an integer

m = m(a, x) ; 1 such that [a, 
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(***) Indirizzo dell’A. : Dipartimento di Matematica, Universita della Basili-

cata, Via N. Sauro 85, 85100 Potenza, Italy.
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and, moreover, the generalized hypercenter of R is the set

H(R ) = ( a e R : for each there exist integers

and 1 , such that

The classical hypercenter theorem proved by I. N. Herstein [8] as-
serts that the hypercenter, .Hi(7X), of a ring without non-zero nil two-sid-
ed ideals always coincides with its center.

More recentely Chuang and Lin proved that if l~ is a ring without
non-zero nil two-sided ideals then Hn (R ) coincides with the center of R,
Z(R).

They also proved that if R is a ring without non-zero nil right ideals
then the generalized hypercenter, H(R), coincides with the center (see
Theorem 2 and Theorem 4 of [2]).

In this paper we will study a more general situation. More precisely
let S be a subset of R, we say that an element a E R is in the n-th hyper-
centralizer of ,S, Hn, R (S), if and only if for each s there exists an inte-

ger m = m( a , s ) ; 1 such that [ a , = 0.

In the same way we define the generalized hypercentralizer of S to
be the set

for each there exist integers

and such that [a, 

Of course if S = R then Hn, R (S) is merely the n-th hypercenter of R
and HR (R ) coincides with the generalized hypercenter of R. We remark
that in [6] Giambruno and Felzenszwalb studied our first hypercentraliz-
er in the case when ,S = f(R) is the subset of all valutations flr1, ... , rd )
of a multilinear polynomial f ( xl , ... , Xd) on a prime ring R.

They proved that if R is without non-zero nil right ideals then either
or the polynomial f ( xl , ... , xd ) is power central

valued and R satisfies the standard identity S d + 2 (Xl’ ... , xd + 2 ).
As a consequence of this result it is proved in [1] that if U is a

non central Lie ideal of a prime ring R, without non-zero nil right ideals,
then either or R satisfies the standard identity
S4(xl, ... , x4).

Our main result has the same flavour:
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THEOREM. Let R be a prime ring without non-zero nil right ideals
and let U be a non central Lie ideal of R, then either HR ( U) = Z(R ) or R
satisfies the standard identity ,S4 (xl , X4)-

Preliminar results.

Here we summarize some basic properties of n-th commutators.

These simple facts will be used implicitly troughout all the proofs of this
paper.

REMARK 1. Let x, y, z E R.

a) If [ x , y ]n = 0 for some n a 1 then [ x , = 0 for any m ~ 1 and
= 0 for any q ~ n.

and

(here we put [x, = x).

As a consequence we also have

REMARK 2.

b) Hn, R (S) is an additive subgroup of R.

c) HR (,S) is a subring of R.

REMARK 3. Let cp be an automorphism of R such that T(S) c S, then
and cp(HR(S»)çHR(S).

1. - Some reductions.

We begin the proof of our theorem with the following standard re-
sults (see Lemmas 11, 12 of [2]).
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LEMMA 1.1. If R is a prime ring of characteristic p &#x3E; 0 then

HR (S) = Hl, R (S).

PROOF. Let aeHR(S). Given s E S there exist positive integers
n = n(a, s) and m = m(a, s) such that [a, S m In = 0. For any x, y E R we

have I

Hence, for t &#x3E; 1 such that we obtain 0 = [ a , t = asmp -

and so 

LEMMA 1.2. Let R be a domain and let a, b eH(S) be such that
a+b+ab=a+b+ba=0. Then a, 

PROOF. If the charateristic of R is a prime number then by Lem-
ma 1.1 one has HR (S) = Hence we may assume that char R = 0.
Given let h and k be the minimal positive integers such that
[ a , = 0 and [ b , = 0 for some n ~ 1. Suppose that h &#x3E; 1 and k &#x3E; 1,
then h + k - 2 ~ max ( h , k). Hence [ a , = [b, = o. On
the other hand

Since R is a domain of characteristic 0, we have [ a , s n )n -1= 0 or
[ b , s n )k -1= 0. This contradicts with the minimality of h and k. Hence
one of h and k must be 1, say h = 1. Then 0 = [ a + b + ab , = [b, +

+ a[b, s"] = (1 + a)[b, s"]. Hence [b, s"] = (1 + b)(1 + a)[b, s"] = 0
(Note that the use of 1 is purely formal). Thus h = k = 1. Since this holds
for any s e S we have a, 

LEMMA 1.3. Let R be a prime ring and U a non-central Lie ideal
of R. Then either there exists a non-zero ideal I of R such that
0 ~ [I , R] c U or char R = 2 and R satisfies S4 (xl, ... , ~4).

PROOF. See [7, pp. 4-5], [4, Lemma 2, Proposition 1], [10, Theo-
rem 4]..
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2. - The case R = HR ( [I , I]).

In this section I will be a non-zero two-sided ideal of R. [I , I] will de-
note the subset {[a. b ] : a , We begin with an immediate conse-
quence of Lemma 1.2.

LEMMA 2.1. Let R be a division ring. If R = HR ( [R , R]) then R sat-
isfies ,S4 ( xl , ... , ~4).

PROOF. Let - 1 ;é a E R. Let b = (1 + a) -1 - 1, then a + b + ab = a +
+ b + ba = 0 and, by Lemma 1.2, a E Hl, R ( [R , R ] ). On the other hand, by
Lemma 1 of [6], we have either 77i([72. R ] ) = Z(R ) or = N 2
where N-2. In any case R satisfies the standard identity

... , ~4). *

LEMMA 2.2. Let R be a domain with non-zero Jacobson’s radical

J(R). If HR ( [I , I]) = R then R satisfies 84(X1, ..., x4 ).

PROOF. As R is a prime ring V = I n J(R ) is a non-zero two-sided
ideal of R. By Lemma 1.2 and, a fortiori, V=
= Hl, v([V, V]). Therefore, by Lemma 7 of [6], V satisfies the standard
identity S4 (x1, ... , ~4). Since V is a non-zero ideal of R, S4 (xl , ... , x4 ) is a
polynomial identity for R too.

Notice that in the next Lemma we do not assume that R =

= HR([I, I]).

LEMMA 2.3. Let R be a primitive ring. If R is not a division ring
then either HR ( [I , I]) = Z(R) or R = F2, the ring of 2 x 2 matrices over
a field F.

PROOF. Let V be a faithful irreducible right R-module with endo-
morphisms ring D, a division ring. Since I is a non-zero two-sided ideal of
R then R and I are both dense subrings of D-linear transformations on
V. Suppose that dimD V ~ 3. We claim that in this case HR ( [I , I ] ) =
= Z(R).

In fact, let a ~ 0 be in HR ( [I , I]) and assume that for some v E V the
vectors v and va are linearly independent over D. By our assumption
there exists a vector w such that v , va , w are linearly independent
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over D. As I acts densely on V there exist elements r, s E I such that

vr=0, (va)r=w, wr=0 and vs=0, (va)s=0, ws=va.

Hence v[r, s] = 0 and va[r, sl’ = va for any m ;1. Since a e

E HR ( [I , I]) there exist positive integers n , m such that [ a , [r, = 0.

Thus we have:

a contradiction.

Hence, given v E V, v and va are linearly dependent over D. It is well
known that in this case a must be central (see, for istance, the proof of
Lemma 2 in [8]).

Hence we may assume that dimD V ~ 2 and so, by our hypotesis, R ==
= D2 , the ring of 2 x 2 matrices over the division ring D. Thus R is a simple
ring with a non-trivial idempotent and I coincides with R. Moreover, by
Remarks 2 and 3, HR ( [R , R ] ) is a subring of R which is invariant under
all the automorphisms of R. If R is not the ring of 2 x 2 matrices over
GF(2), then, by [7, theorem 1.15], either HR ( [R , R ] ) = Z(R ) or

HR ( [R , R ] ) = R. In the last case we have HD2 ( [D2 , D2 ] ) = D2 and
we claim that D is commutative. Let eij be the matrix unit with 1 in

(i, j ) entry and 0 elsewhere. Let r = a(e12 + e22 ) and s = b(e12 + e22 )
where a, b E D; hence for 

Since HD2 ( [D2 , D2 ] ) = D2 there exist positive integers n , m such

that [el2, [r, = 0. Since [el2, [r, = [el2, [a, + e22)] =
= [a, b]m e12, we obtain 0 = [el2, [r, = [a, b]mn e12, andso [a, b]mn = 0
in D. Hence [a, b ] = 0 for all a, b e D, that is D is commutative and we
are done. 0

As an immediate consequence of Lemmas 2.1 and 2.3 we obtain

LEMMA 2.4. Let R be a primitive ring. If R = HR ( [I , I]) then R sat-
isfies ,S4 (xl , ... , ~4).

PROOF. It is suffices to recall that F2 satisfies the standard identity
~4(~1, .... X4) (see Example 3 page 12 of [9]). *



289

LEMMA 2.5. Let R be a domain. If R = HR ( [I , I]) then R satisfies
~4(~1, ...,~4).

PROOF. If J(R ) ~ (0) then the result follows by Lemma 2.2. Now we
assume J(R ) _ (0). So that R is a subdirect product of primitive rings
R , yer.

Let P. be a primitive ideal of R such that Ry = RIP)" We consider
and in addition let Ii = npy,

for y e r i , 9 i = 1, 2. Since R is semisimple n I2 = (0).
Since R is a domain we must have either h = (0) or 12 = ( ). If I, =

= ( ) then /c7i = (0), a contradiction. Hence 12 = (0) and so R is a subdi-
rect product of primitive rings such that Of course IY =
= is a non-zero two-sided ideal of R., and we also have
R, = I,]) -

Therefore, by Lemma 2.4, 84 (Xl’ X4) is a polinomial identity for
RY , for each and so R satisfies 9 ... , ~4). 0

LEMMA 2.6. Let R be a prime ring satisfying a polynomial identi-
ty. If R = HR ( [R , R]) then R satisfies S4 (Xl 9 ... , X4).

PROOF. Since R is a P.I. ring, by Posner’s theorem, the ring of cen-
tral quotients of R, i.e. the 0 ~ z is a finite
dimensional central simple algebra. Of course Q = HQ ( [ ~ , ~ ] ), hence by
Lemma 2.4 Q must satisfy ~4(~1, .... x4 ) and we are done.

LEMMA 2.7. Let R be a prime ring without non-zero nil right ide-
als. If R = HR ( [R , R]) then R satisfies S4 (Xl ... , x4 ).

PROOF. Let Q be a non-zero right ideal of R; we claim that if e satis-
fies a polynomial identity then e satisfies ,S4 (xl , ... , r4) x5 .

In fact let E R : xo = 0} the left annihilator of Q. Then the
quotient ring g = ()1(1(Q) n o) is also a prime P.I. ring such that

= o. Hence, by Lemma 2.6, 9 ... , X4) is a polynomial iden-
tity of o, that is 84 (r1, ... , ~4)e~(p), for all and so o satisfies

S4 (Xl 9 ... , X4) x5, as required.
Now if R is a domain then our result follows by Lemma 2.5.

Suppose that R is not a domain and let ab = 0 for some non-zero

elements Then and so there exists r E R such

that c = bra is a non-zero square-zero element of R. Let Q = cR,
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and, as above let its left annihilator. We consider the prime
ring = n Q) which is without non-zero nil right ideals.

Let r1, r2 E R, since c E HR ( [R , R ] ) there exist positive integers n , m
such that 0 = [ c , [ crl , Hence [ cal, since c~ = 0. In
other words the polynomial is nil on Ki, and so, by Theorem 1 of
[3], o is commutative, that is [rl, r2 ] r3 = 0, for all ri EO. Therefore R con-
tains non-zero right ideals satisfying a polynomial identity; thus, by first
part of the proof, they must satisfy S 4 (Xl’ ... , X4) x5 .

Hence, by Zorn’s Lemma, there exists a non-zero right ideal Q’ which
is maximal with respect to the property that it satisfy ~4(~1, .... x4 ) x5 .
Now let r E R and 81, 82, 83, 84, 85 E (}’, then, since each we

have

This says that the right ideal ro ’ satisfies the identity
~4(~1, .... X4) X5. Since both e’ and rQ’ satisfy a polynomial identity
then, by a theorem of Rowen [11], Q’ + rQ’ also satisfies some identity.

Therefore, as we showed above, o ’ + r~o ’ satisfies ,S4 ( xl , ... , x4 ) x5 .
By the maximality of Q’ we have rQ’g Q’, for all r E R, that is Q’ is a non-
zero two-sided ideal of R. Hence, by Lemma 1 of [4], R is a P.I. ring and
by Lemma 2.6 it satisfies ~4(~1, ..., x4 ).

3. - Some results on invariant subrings.

As we said in remark 3, HR (S) is a subring of R which is invariant un-
der any automorphism q? of R such that c S. This fact is enough to
focus our attention on invariant subrings A of R. In this section we will
consider the following situation:
R will be a prime ring with non-zero Jacobson’s radical J(R) and A

will be a subring of R which is invariant under the automorphisms of R
which are induced by all the elements of J(R ). More precisely, let a be a
quasi-regular element of R with quasi-inverse a ’ , that is a + a ’ + aa ’ -
=a’a+a’ +a=0.

Notice that if R has a unit element 1 then 1 + a is invertible and

(1 + a)-1 = 1 + a’.
Let be the map defined by

CP a is an automorphism of R, we write ( 1 + a) + and we
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say that a is formally invertible. As in the proof of Lemma 1.2 , we also
write r( 1 + a) for r + ra and (1 + a) r for r + ar.

Some of the following results are implicitly contained in [6]. We in-
clude these statement in this form for the sake of clearness and

completeness.
Let R , A be as described in the beginning of this section; we

have

LEMMA 3.1. Let I be a non-zero two-sided ideal of R then either
A c Z(R ) 

PROOF. Since R is a prime ring V = I n J(R) is a non-zero two-sided
ideal of R. Since the centralizer of a non-zero two-sided ideal in a prime
ring is equal to the center of the ring then either A c Z(R ) or there exist
a E A , r E V such that that is a + ra + ar’ +

+ rar ’ ~ a.

Since a + ra + ar’ + rar’ is an element of A then 0 # ra + ar’ +

+ rar’ E A n I.

LEMMA 3.2. If A has no non-zero nilpotent elements then any non-
zero elements of A is regular in R and Z(A ) c Z(R).

PROOF. See [6] page 423, rows 10-30.

We remark that the same argument used in the previous Lemma (of
course instead of «x E J(R)») shows the following
result

LEMMA. 3.3. Let R be a division ring. If A is a subring of R which
is invariant under all inner automorphisms of R then Z(A) g Z(R).

In the next Lemma we will use the following definition:
Let R be a prime ring with non-zero Jacobson’s radical J(R), then we

put
x E=- J(R) : ax = 0 }. Clearly is a right ideal of R which is the

right annihilator of a in J(R).

LEMMA 3.4. If A does not contain a non-zero two-sided ideal of R,
then a is linearly ordered, that is: for all a , b E A either
QagQb or 
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PROOF. See [6] page 424, rows 10-24.

We conclude this section by proving the following result:

LEMMA 3.5. Let A be a domain such that Z(R) çA; if A satisfies a
polynomial identity then either A = Z(R) or Q, the ring of central quo-
tient of R, is a simpLe ring with 1.

PROOF. Since A is a P.I. domain then by Posner’s theorem its center
Z(A) is non-zero and any non-zero element of A is invertible in Q(A) =
- ~ az -1: a E A , 0 ~eZ(A)}. Moreover, by Lemma 3.2, Z(A ) = Z(R),
hence is a subdivision ring of Q, the ring of central quotients of R,
and it has the same unit element of R. Assume now that A ~Z(R ) and let
V be a non-zero two-sided ideal of Q. Then V n R is a non-zero two-sided
ideal of R and so, by Lemma 3.1, A n ( V n R ) ~ (0).

Therefore V contains an invertible element of A and so V = Q.

4. - The general case.

We begin with the case when R is a division ring.

LEMMA 4.1. Let R be a division ring then either HR([R, R]) =
= Z(R ) or R satisfies the standard identity S4 ( x1, ... , x4 ).

PROOF. Let A = HR ( [R , R]), as we said above A is invariant under
all the automorphisms of R. Hence Z(A ) g Z(R) by Lemma 3.3 and so
Z(A) = Z(R).

Since HA ([A, A]) = A, by Lemma 2.5, we obtain that A satisfies the
standard identity ... , x4 ). By Posner’s theorem the ring B =
={~~’~:a~~4.,0~2:e Z(A)} of central quotients of A is a finite dimen-
sional central simple algebra which satisfies 84(X1, ..., ~4). Of course B
is a subdivision ring of R, moreover it is invariant under all automor-
phism of R. Therefore, by Brauer-Cartan-Hua theorem, either B = R or
B c Z(R ).

In the latter case HR ( [R , R ] ) = A = B = Z(R ), while in the first case
R satisfies the standard identity S4 (Xl, - - X4)..

LEMMA 4.2. Let R be a prime ring with no non-zero nil right
ideals and J(R) # 0. Let I be a non-zero two-sided ideal of R. If
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HR ( [I , R ] ) = A does not contain a non-zero two-sided ideal of R
then HR ( CI , R ] ) = Z(R ).

PROOF. Since A does not contain a non-zero two-sided ideal of R,
then, by Lemma 3.4, for all a, b E A we must have either or

pb C pa.
We claim that A does not contain non-zero nilpotent elements. Let

a E A be such that a 2 = 0 and 0.

If a annihilates on the left every square-zero element of A then

Hence, since a 2 = 0, we have aJ(R ) a = (0) and so a = 0, a contradic-
tion.

Thus there exists b E A with b 2 = 0 and ab ~ 0. Then 0 ~ abJ(R) g
c ao b , so Hence in particular we have:

Since R ] ), for any r E I, there exist positive integers n , m
such that 0 = [a, [r, And so, since a 2 = b 2 = ba = 0, we obtain
0 = [ a , [r , = that is abI is a nil right ideal of R.
Hence abI = (0) and so ab = 0, a contradiction again.

Therefore A = HR ( [I , R ] ) does not contain non-zero nilpotent ele-
ments and, by Lemma 3.2, we obtain that any non-zero element of A is
regular in R and Z(A) = Z(R ). In particular A is a domain, moreover if
A 4Z(R) then A n I;e (0), by Lemma 3.1.

Therefore A n I is a non-zero two-sided ideal of A and we also have

Hence, by Lemma 2.5, A satisfies ,S4 (xl , ... , x4 ).
Since A 4Z(R), Q, the ring of central quotients of I~, is a simple ring with
1 (see Lemma 3.5), and so it is a primitive ring.

Of course A = HR ( [I , R ] ) gHQ([Q, ~ ] ). But, by Lemmas 2.3 and 4.1,
either HQ ( [ Q , Q]) = Z(Q) or Q satisfies ~4(~1, .... ~4).

In the first case we obtain which contradicts with our last

assumption. In the last case Q is a simple algebra which is at most 4-di-
mensional over its center.

Therefore Q must satisfy all the polynomial identities of 2 x 2 matri-
ces over its center (see [9]), hence [xl , X3 ]2 ] is a polynomial identity
for RcQ.

In other words A = HR ( [I , R ] ) = l~, that is A contains a non-zero
two-sided ideal of R, and this is a contradiction again.
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Hence A c Z(R ) and we are done.

A special case of our final result is the following

PROPOSITION 4.1. Let R be a prime ring without non-zero niL right
ideals. Let I be a non-zero two-sided ideals of R and Let A = HR ([I, R]).
Then either A = Z(R) or R satisfies 84 (Xl’ ... , X4) and A = R.

PROOF. Suppose R is semisimple. Then, as in the proof of Lemma 2.5,
R is a subdirect product of primitive rings Ry = R/PY , such that I ~Py , for
each y in the set F of indeces.

For each y E r, let AY and I. be the images in Ry of A and I respect-
ively. Then, since A. c HR, ( [IY , Ry ] ), by Lemmas 2.3 and 4.1, either Ay ç
g Z(Ry) or RY satisfies 84(X1, ..., ~4).

Now, let and 

Then Let 7i= YEET, 1 and I2 = f1 PY, 
So (0)=J(72)=7iD72, moreover if y E r2 then 72y satisfies

... , x4).
Since R is prime and I1 I2 c I1 n 12 = (0) we must have either h = 0 or

12 = 0. If 7i = 0 then we conclude that A c Z(R ). Hence if A ~Z(R ) then
I2 = (0) and consequentely R satisfies ,S4 (xl , ... , X4). In this case, by
Posner’s theorem, R is an order in a simple algebra at most 4-dimen-
sional over its center. Hence R satisfies the polynomial identity
CCxI, X2 ]2, X3] and so A = HR([I, R]) = R.

Therefore we must assume that J(R ) ~ 0.
If A does not contain a non-zero ideal of R then, by Lemma 4.2,

HR ([I, 
Hence we may assume that A contains a non-zero ideal V of R. Since

R is prime, R1= V n I is a prime ring without non-zero nil right ideals,
moreover, as V c A, we have that I n V = f1 V, I n V] ). By Lem-
ma 2.7, 1 n V satisfies ... , x4 ), and so R too. As above this implies
HR ( [I , R]) = R and we are done. 0

THOREM 4.1. Let R be a prime ring without non-zero nil right ide-
als, U a non-central Lie ideal of R. Then either HR ( U) = Z(R ) or R satis-
fies S4 (zi , ... , X4)- -

PROOF. By Lemma 1.3 if R does not satisfy S4 (Xl, x4) then there
exists a non-zero two-sided ideal I of R such that [I, R] c U. Since

R]), we conclude by previous proposition.
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