RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

V. DE Filippis
 O. M. Di Vincenzo
 On the generalized hypercentralizer of a Lie ideal in a prime ring

Rendiconti del Seminario Matematico della Università di Padova, tome 100 (1998), p. 283-295
http://www.numdam.org/item?id=RSMUP_1998__100__283_0
© Rendiconti del Seminario Matematico della Università di Padova, 1998, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

On the Generalized Hypercentralizer of a Lie Ideal in a Prime Ring (*).

V. De Filippis (**) - O. M. Di Vincenzo (***)

Summary - Let R be an associative ring, $Z(R)$ its center and $H_{R}(U)=$ $=\left\{a \in R:\left[a, u^{n}\right]_{m}=0, n=n(a, u) \geqslant 1, m=m(a, u) \geqslant 1\right.$, all $\left.u \in U\right\}$, where U is a non-central Lie ideal of R. We prove that if R is a prime ring without nil right ideals, then either $H_{R}(U)=Z(R)$ or R is an order in a simple algebra of dimension at most 4 over its center.

The aim of this paper is to extend some results about the hypercenter of a ring to the hypercentralizer of a Lie ideal in a prime associative ring.

Let R be a given associative ring and let n be a positive integer. The n-th commutator of $x, y \in R$, denoted by $[x, y]_{n}$, is defined inductively as follows:
for $n=1,[x, y]_{1}=[x, y]=x y-y x$ is the commutator of x and y for $n>1,[x, y]_{n}=[x, y]_{n-1} y-y[x, y]_{n-1}$.
In [2], the n-th hypercenter of R is defined to be the set
$H_{n}(R)=\{a \in R$: for each $x \in R$ there exists an integer

$$
\left.m=m(a, x) \geqslant 1 \text { such that }\left[a, x^{m}\right]_{n}=0\right\}
$$

(*) Research supported by a grant from M.U.R.S.T.
${ }^{(* *)}$ Indirizzo dell'A.: Dipartimento di Matematica, Università di Messina, C/da Papardo salita Sperone 31, 98166 Messina, Italy.
(***) Indirizzo dell'A.: Dipartimento di Matematica, Università della Basilicata, Via N. Sauro 85, 85100 Potenza, Italy.
and, moreover, the generalized hypercenter of R is the set
$H(R)=\{a \in R$: for each $x \in R$, there exist integers

$$
\left.n=n(a, x) \geqslant 1 \text { and } m=m(a, x) \geqslant 1, \text { such that }\left[a, x^{m}\right]_{n}=0\right\}
$$

The classical hypercenter theorem proved by I. N. Herstein [8] asserts that the hypercenter, $H_{1}(R)$, of a ring without non-zero nil two-sided ideals always coincides with its center.

More recentely Chuang and Lin proved that if R is a ring without non-zero nil two-sided ideals then $H_{n}(R)$ coincides with the center of R, $Z(R)$.

They also proved that if R is a ring without non-zero nil right ideals then the generalized hypercenter, $H(R)$, coincides with the center (see Theorem 2 and Theorem 4 of [2]).

In this paper we will study a more general situation. More precisely let S be a subset of R, we say that an element $a \in R$ is in the n-th hypercentralizer of $S, H_{n, R}(S)$, if and only if for each $s \in S$ there exists an integer $m=m(a, s) \geqslant 1$ such that $\left[a, s^{m}\right]_{n}=0$.

In the same way we define the generalized hypercentralizer of S to be the set
$H_{R}(S)=\{a \in R:$ for each $s \in S$ there exist integers

$$
\left.n=n(a, s) \geqslant 1 \text { and } m=m(a, s) \geqslant 1 \text { such that }\left[a, s^{m}\right]_{n}=0\right\}
$$

Of course if $S=R$ then $H_{n, R}(S)$ is merely the n-th hypercenter of R and $H_{R}(R)$ coincides with the generalized hypercenter of R. We remark that in [6] Giambruno and Felzenszwalb studied our first hypercentralizer in the case when $S=f(R)$ is the subset of all valutations $f\left(r_{1}, \ldots, r_{d}\right)$ of a multilinear polynomial $f\left(x_{1}, \ldots, x_{d}\right)$ on a prime ring R.

They proved that if R is without non-zero nil right ideals then either $H_{1, R}(f(R))=Z(R)$ or the polynomial $f\left(x_{1}, \ldots, x_{d}\right)$ is power central valued and R satisfies the standard identity $S_{d+2}\left(x_{1}, \ldots, x_{d+2}\right)$.

As a consequence of this result it is proved in [1] that if U is a non central Lie ideal of a prime ring R, without non-zero nil right ideals, then either $H_{1, R}(U)=Z(R)$ or R satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Our main result has the same flavour:

Theorem. Let R be a prime ring without non-zero nil right ideals and let U be a non central Lie ideal of R, then either $H_{R}(U)=Z(R)$ or R satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Preliminar results.

Here we summarize some basic properties of n-th commutators. These simple facts will be used implicitly troughout all the proofs of this paper.

Remark 1. Let $x, y, z \in R$.
a) If $[x, y]_{n}=0$ for some $n \geqslant 1$ then $\left[x, y^{m}\right]_{n}=0$ for any $m \geqslant 1$ and $[x, y]_{q}=0$ for any $q \geqslant n$.
b) If $\left[x, y^{m}\right]_{n}=0$ and $\left[z, y^{t}\right]_{n}=0$ then $\left[x, y^{m t}\right]_{n}=\left[z, y^{m t}\right]_{n}=0$.
c) $[x+y, z]_{n}=[x, z]_{n}+[y, z]_{n} \quad$ and $\quad[x y, z]_{n}=\sum_{i=0}^{n}\binom{n}{i}[x, z]_{n-i}[y, z]_{i}$
we put $\left.[x, y]_{0}=x\right)$.
d) If $\left[x, y^{m}\right]_{n}=0$ and $\left[z, y^{m}\right]_{q}=0$ then $\left[x z, y^{m}\right]_{n+q-1}=0$.

As a consequence we also have

Remark 2.
a) $Z(R) \subseteq H_{n, R}(S) \subseteq H_{R}(S)$.
b) $H_{n, R}(S)$ is an additive subgroup of R.
c) $H_{R}(S)$ is a subring of R.

Remark 3. Let φ be an automorphism of R such that $\varphi(S) \subseteq S$, then $\varphi\left(H_{n, R}(S)\right) \subseteq H_{n, R}(S)$ and $\varphi\left(H_{R}(S)\right) \subseteq H_{R}(S)$.

1. - Some reductions.

We begin the proof of our theorem with the following standard results (see Lemmas 11, 12 of [2]).

LEMMA 1.1. If R is a prime ring of characteristic $p>0$ then $H_{R}(S)=H_{1, R}(S)$.

Proof. Let $a \in H_{R}(S)$. Given $s \in S$ there exist positive integers $n=n(a, s)$ and $m=m(a, s)$ such that $\left[a, s^{m}\right]_{n}=0$. For any $x, y \in R$ we have $[x, y]_{n}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{i} y^{i} x y^{n-i}$.

Hence, for $t \geqslant 1$ such that $p^{t} \geqslant n$, we obtain $0=\left[a, s^{m}\right]_{p^{t}}=a s^{m p^{t}}-$ $-s^{m p^{t}} a=\left[a, s^{m p^{t}}\right]$ and so $a \in H_{1, R}(S)$.

Lemma 1.2. Let R be a domain and let $a, b \in H(S)$ be such that $a+b+a b=a+b+b a=0$. Then $a, b \in H_{1, R}(S)$.

Proof. If the charateristic of R is a prime number then by Lemma 1.1 one has $H_{R}(S)=H_{1, R}(S)$. Hence we may assume that char $R=0$. Given $s \in S$, let h and k be the minimal positive integers such that $\left[a, s^{n}\right]_{h}=0$ and $\left[b, s^{n}\right]_{k}=0$ for some $n \geqslant 1$. Suppose that $h>1$ and $k>1$, then $h+k-2 \geqslant \max (h, k)$. Hence $\left[a, s^{n}\right]_{h+k-2}=\left[b, s^{n}\right]_{h+k-2}=0$. On the other hand
$0=\left[a+b+a b, s^{n}\right]_{h+k-2}=\left[a b, s^{n}\right]_{h+k-2}=$

$$
=\binom{h+k-2}{h-1}\left[a, s^{n}\right]_{h-1}\left[b, s^{n}\right]_{k-1}
$$

Since R is a domain of characteristic 0 , we have $\left[a, s^{n}\right]_{h-1}=0$ or $\left[b, s^{n}\right]_{k-1}=0$. This contradicts with the minimality of h and k. Hence one of h and k must be 1 , say $h=1$. Then $0=\left[a+b+a b, s^{n}\right]=\left[b, s^{n}\right]+$ $+a\left[b, s^{n}\right]=(1+a)\left[b, s^{n}\right]$. Hence $\left[b, s^{n}\right]=(1+b)(1+a)\left[b, s^{n}\right]=0$ (Note that the use of 1 is purely formal). Thus $h=k=1$. Since this holds for any $s \in S$ we have $a, b \in H_{1, R}(S)$.

Lemma 1.3. Let R be a prime ring and U a non-central Lie ideal of R. Then either there exists a non-zero ideal I of R such that $0 \neq[I, R] \subseteq U$ or char $R=2$ and R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. See [7, pp. 4-5], [4, Lemma 2, Proposition 1], [10, Theorem 4].
2. - The case $R=H_{R}([I, I])$.

In this section I will be a non-zero two-sided ideal of R. [I, I] will denote the subset $\{[a, b]: a, b \in I\}$. We begin with an immediate consequence of Lemma 1.2.

Lemma 2.1. Let R be a division ring. If $R=H_{R}([R, R])$ then R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. Let $-1 \neq a \in R$. Let $b=(1+a)^{-1}-1$, then $a+b+a b=a+$ $+b+b a=0$ and, by Lemma 1.2, $a \in H_{1, R}([R, R])$. On the other hand, by Lemma 1 of [6], we have either $H_{1}([R, R])=Z(R)$ or $\operatorname{dim}_{Z(R)} R=N^{2}$ where $N \leqslant 2$. In any case R satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Lemma 2.2. Let R be a domain with non-zero Jacobson's radical $J(R)$. If $H_{R}([I, I])=R$ then R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. As R is a prime ring $V=I \cap J(R)$ is a non-zero two-sided ideal of R. By Lemma $1.2 V \subseteq H_{1, R}([I, I])$ and, a fortiori, $V=$ $=H_{1, V}([V, V])$. Therefore, by Lemma 7 of [6], V satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$. Since V is a non-zero ideal of $R, S_{4}\left(x_{1}, \ldots, x_{4}\right)$ is a polynomial identity for R too.

Notice that in the next Lemma we do not assume that $R=$ $=H_{R}([I, I])$.

Lemma 2.3. Let R be a primitive ring. If R is not a division ring then either $H_{R}([I, I])=Z(R)$ or $R \cong F_{2}$, the ring of 2×2 matrices over a field F.

Proof. Let V be a faithful irreducible right R-module with endomorphisms ring D, a division ring. Since I is a non-zero two-sided ideal of R then R and I are both dense subrings of D-linear transformations on V. Suppose that $\operatorname{dim}_{D} V \geqslant 3$. We claim that in this case $H_{R}([I, I])=$ $=Z(R)$.

In fact, let $a \neq 0$ be in $H_{R}([I, I])$ and assume that for some $v \in V$ the vectors v and $v a$ are linearly independent over D. By our assumption there exists a vector w such that $v, v a, w$ are linearly independent
over D. As I acts densely on V there exist elements $r, s \in I$ such that

$$
v r=0, \quad(v a) r=w, \quad w r=0 \quad \text { and } \quad v s=0,(v a) s=0, \quad w s=v a
$$

Hence $v[r, s]=0$ and $v a[r, s]^{m}=v a$ for any $m \geqslant 1$. Since $a \in$ $\in H_{R}([I, I])$ there exist positive integers n, m such that $\left[a,[r, s]^{m}\right]_{n}=0$. Thus we have:

$$
\begin{aligned}
0=v\left[a,[r, s]^{m}\right]_{n}=v\left(\sum_{i=0}^{n}\binom{n}{i}(-1)^{i}[r, s]^{m i} a[r, s]^{m(n-i)}\right) & = \\
& =v a[r, s]^{m n}=v a \neq 0
\end{aligned}
$$

a contradiction.
Hence, given $v \in V, v$ and $v a$ are linearly dependent over D. It is well known that in this case a must be central (see, for istance, the proof of Lemma 2 in [8]).

Hence we may assume that $\operatorname{dim}_{D} V \leqslant 2$ and so, by our hypotesis, $R \cong$ $\cong D_{2}$, the ring of 2×2 matrices over the division ring D. Thus R is a simple ring with a non-trivial idempotent and I coincides with R. Moreover, by Remarks 2 and $3, H_{R}([R, R])$ is a subring of R which is invariant under all the automorphisms of R. If R is not the ring of 2×2 matrices over $G F(2)$, then, by [7, theorem 1.15], either $H_{R}([R, R])=Z(R)$ or $H_{R}([R, R])=R$. In the last case we have $H_{D_{2}}\left(\left[D_{2}, D_{2}\right]\right)=D_{2}$ and we claim that D is commutative. Let $e_{i j}$ be the matrix unit with 1 in (i, j) entry and 0 elsewhere. Let $r=a\left(e_{12}+e_{22}\right)$ and $s=b\left(e_{12}+e_{22}\right)$ where $a, b \in D$; hence $[r, s]^{m}=[a, b]^{m}\left(e_{12}+e_{22}\right)$ for any $m \geqslant 1$. Since $H_{D_{2}}\left(\left[D_{2}, D_{2}\right]\right)=D_{2}$ there exist positive integers n, m such that $\left[e_{12},[r, s]^{m}\right]_{n}=0$. Since $\left[e_{12},[r, s]^{m}\right]=\left[e_{12},[a, b]^{m}\left(e_{12}+e_{22}\right)\right]=$ $=[a, b]^{m} e_{12}$, we obtain $0=\left[e_{12},[r, s]^{m}\right]_{n}=[a, b]^{m n} e_{12}$, and so $[a, b]^{m n}=0$ in D. Hence $[a, b]=0$ for all $a, b \in D$, that is D is commutative and we are done.

As an immediate consequence of Lemmas 2.1 and 2.3 we obtain

Lemma 2.4. Let R be a primitive ring. If $R=H_{R}([I, I])$ then R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. It is suffices to recall that F_{2} satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$ (see Example 3 page 12 of [9]).

Lemma 2.5. Let R be a domain. If $R=H_{R}([I, I])$ then R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. If $J(R) \neq(0)$ then the result follows by Lemma 2.2. Now we assume $J(R)=(0)$. So that R is a subdirect product of primitive rings $R_{\gamma}, \gamma \in \Gamma$.

Let P_{γ} be a primitive ideal of R such that $R_{\gamma} \cong R / P_{\gamma}$. We consider $\Gamma_{1}=\left\{\gamma \in \Gamma: I \subseteq P_{\gamma}\right\}$ and $\Gamma_{2}=\left\{\gamma \in \Gamma: I \nsubseteq P_{\gamma}\right\}$, in addition let $I_{i}=\cap P_{\gamma}$, for $\gamma \in \Gamma_{i}, i=1,2$. Since R is semisimple $I_{1} I_{2} \subseteq I_{1} \cap I_{2}=(0)$.

Since R is a domain we must have either $I_{1}=(0)$ or $I_{2}=(0)$. If $I_{1}=$ $=(0)$ then $I \subseteq I_{1}=(0)$, a contradiction. Hence $I_{2}=(0)$ and so R is a subdirect product of primitive rings $R_{\gamma} \cong R / P_{\gamma}$, such that $I \nsubseteq P_{\gamma}$. Of course $I_{\gamma}=$ $=\left(I+P_{\gamma}\right) / P_{\gamma}$ is a non-zero two-sided ideal of R_{γ} and we also have $R_{\gamma}=H_{R \gamma}\left(\left[I_{\gamma}, I_{\gamma}\right]\right)$.

Therefore, by Lemma 2.4, $S_{4}\left(x_{1}, \ldots, x_{4}\right)$ is a polinomial identity for R_{γ}, for each $\gamma \in \Gamma_{2}$, and so R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Lemma 2.6. Let R be a prime ring satisfying a polynomial identity. If $R=H_{R}([R, R])$ then R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. Since R is a P.I. ring, by Posner's theorem, the ring of central quotients of R, i.e. the ring $Q=\left\{r z^{-1}: r \in R, 0 \neq z \in Z(R)\right\}$ is a finite dimensional central simple algebra. Of course $Q=H_{Q}([Q, Q])$, hence by Lemma 2.4 Q must satisfy $S_{4}\left(x_{1}, \ldots, x_{4}\right)$ and we are done.

Lemma 2.7. Let R be a prime ring without non-zero nil right ideals. If $R=H_{R}([R, R])$ then R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. Let ϱ be a non-zero right ideal of R; we claim that if ϱ satisfies a polynomial identity then ϱ satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right) x_{5}$.

In fact let $l(\varrho)=\{x \in R: x \varrho=0\}$ the left annihilator of ϱ. Then the quotient ring $\bar{\varrho}=\varrho /(l(\varrho) \cap \varrho)$ is also a prime P.I. ring such that $H_{\bar{\varrho}}([\bar{\varrho}, \bar{\varrho}])=\bar{\varrho}$. Hence, by Lemma $2.6, S_{4}\left(x_{1}, \ldots, x_{4}\right)$ is a polynomial identity of $\bar{\varrho}$, that is $S_{4}\left(r_{1}, \ldots, r_{4}\right) \in l(\varrho)$, for all $r_{i} \in \varrho$, and so ϱ satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right) x_{5}$, as required.

Now if R is a domain then our result follows by Lemma 2.5. Suppose that R is not a domain and let $a b=0$ for some non-zero elements $a, b \in R$. Then $b R a \neq(0)$ and so there exists $r \in R$ such that $c=b r a$ is a non-zero square-zero element of R. Let $\varrho=c R$,
and, as above let $l(\varrho)$ its left annihilator. We consider the prime ring $\bar{\varrho}=\varrho /(l(\varrho) \cap \varrho)$ which is without non-zero nil right ideals.

Let $r_{1}, r_{2} \in R$, since $c \in H_{R}([R, R])$ there exist positive integers n, m such that $0=\left[c,\left[c r_{1}, c r_{2}\right]^{n}\right]_{m}$. Hence $\left[c r_{1}, c r_{2}\right]^{n m} c=0$, since $c^{2}=0$. In other words the polynomial $\left[x_{1}, x_{2}\right]$ is nil on $\bar{\varrho}$, and so, by Theorem 1 of [3], $\bar{\varrho}$ is commutative, that is $\left[r_{1}, r_{2}\right] r_{3}=0$, for all $r_{i} \in \varrho$. Therefore R contains non-zero right ideals satisfying a polynomial identity; thus, by first part of the proof, they must satisfy $S_{4}\left(x_{1}, \ldots, x_{4}\right) x_{5}$.

Hence, by Zorn's Lemma, there exists a non-zero right ideal ϱ^{\prime} which is maximal with respect to the property that it satisfy $S_{4}\left(x_{1}, \ldots, x_{4}\right) x_{5}$. Now let $r \in R$ and $s_{1}, s_{2}, s_{3}, s_{4}, s_{5} \in \varrho^{\prime}$, then, since each $s_{i} r \in \varrho^{\prime}$, we have

$$
S_{4}\left(r s_{1}, r s_{2}, r s_{3}, r s_{4}\right) r s_{5}=r S_{4}\left(s_{1} r, s_{2} r, s_{3} r, s_{4} r\right) s_{5}=0
$$

This says that the right ideal ro' satisfies the identity $S_{4}\left(x_{1}, \ldots, x_{4}\right) x_{5}$. Since both ϱ^{\prime} and re' satisfy a polynomial identity then, by a theorem of Rowen [11], $\varrho^{\prime}+r \varrho^{\prime}$ also satisfies some identity.

Therefore, as we showed above, $\varrho^{\prime}+r \varrho^{\prime}$ satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right) x_{5}$. By the maximality of ϱ^{\prime} we have $r \varrho^{\prime} \subseteq \varrho^{\prime}$, for all $r \in R$, that is ϱ^{\prime} is a nonzero two-sided ideal of R. Hence, by Lemma 1 of [4], R is a P.I. ring and by Lemma 2.6 it satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

3. - Some results on invariant subrings.

As we said in remark $3, H_{R}(S)$ is a subring of R which is invariant under any automorphism φ of R such that $\varphi(S) \subseteq S$. This fact is enough to focus our attention on invariant subrings A of R. In this section we will consider the following situation:
R will be a prime ring with non-zero Jacobson's radical $J(R)$ and A will be a subring of R which is invariant under the automorphisms of R which are induced by all the elements of $J(R)$. More precisely, let a be a quasi-regular element of R with quasi-inverse a^{\prime}, that is $a+a^{\prime}+a a^{\prime}=$ $=a^{\prime} a+a^{\prime}+a=0$.

Notice that if R has a unit element 1 then $1+a$ is invertible and $(1+a)^{-1}=1+a^{\prime}$.

Let $\varphi_{a}: R \rightarrow R$ be the map defined by

$$
\varphi_{a}(r)=r+a r+r a^{\prime}+a r a^{\prime}
$$

φ_{a} is an automorphism of R, we write $\varphi_{a}(r)=(1+a) r(1+a)^{-1}$ and we
say that a is formally invertible. As in the proof of Lemma 1.2 , we also write $r(1+a)$ for $r+r a$ and $(1+a) r$ for $r+a r$.

Some of the following results are implicitly contained in [6]. We include these statement in this form for the sake of clearness and completeness.

Let R, A be as described in the beginning of this section; we have

Lemma 3.1. Let I be a non-zero two-sided ideal of R then either $A \subseteq Z(R)$ or $A \cap I \neq(0)$.

Proof. Since R is a prime ring $V=I \cap J(R)$ is a non-zero two-sided ideal of R. Since the centralizer of a non-zero two-sided ideal in a prime ring is equal to the center of the ring then either $A \subseteq Z(R)$ or there exist $a \in A, r \in V$ such that $(1+r) a(1+r)^{-1} \neq a$, that is $a+r a+a r^{\prime}+$ $+\operatorname{rar}^{\prime} \neq a$.

Since $a+r a+a r^{\prime}+r a r^{\prime}$ is an element of A then $0 \neq r a+a r^{\prime}+$ $+\operatorname{rar}^{\prime} \in A \cap I$.

Lemma 3.2. If A has no non-zero nilpotent elements then any nonzero element of A is regular in R and $Z(A) \subseteq Z(R)$.

Proof. See [6] page 423, rows 10-30.
We remark that the same argument used in the previous Lemma (of course $« x \in D-\{-1\}$ » instead of $« x \in J(R) »$) shows the following result

Lemma. 3.3. Let R be a division ring. If A is a subring of R which is invariant under all inner automorphism of R then $Z(A) \subseteq Z(R)$.

In the next Lemma we will use the following definition:
Let R be a prime ring with non-zero Jacobson's radical $J(R)$, then we put
$\varrho_{a}=\{x \in J(R): a x=0\}$. Clearly ϱ_{a} is a right ideal of R which is the right annihilator of a in $J(R)$.

Lemma 3.4. If A does not contain a non-zero two-sided ideal of R, then the set $\left\{\varrho_{a}: a \in A\right\}$ is linearly ordered, that is: for all $a, b \in A$ either $\varrho_{a} \subseteq \varrho_{b}$ or $\varrho_{b} \subseteq \varrho_{a}$.

Proof. See [6] page 424, rows 10-24.
We conclude this section by proving the following result:
Lemma 3.5. Let A be a domain such that $Z(R) \subseteq A$; if A satisfies a polynomial identity then either $A=Z(R)$ or Q, the ring of central quotient of R, is a simple ring with 1 .

Proof. Since A is a P.I. domain then by Posner's theorem its center $Z(A)$ is non-zero and any non-zero element of A is invertible in $Q(A)=$ $=\left\{a z^{-1}: a \in A, 0 \neq z \in Z(A)\right\}$. Moreover, by Lemma 3.2, $Z(A)=Z(R)$, hence $Q(A)$ is a subdivision ring of Q, the ring of central quotients of R, and it has the same unit element of R. Assume now that $A \nsubseteq Z(R)$ and let V be a non-zero two-sided ideal of Q. Then $V \cap R$ is a non-zero two-sided ideal of R and so, by Lemma 3.1, $A \cap(V \cap R) \neq(0)$.

Therefore V contains an invertible element of A and so $V=Q$.

4. - The general case.

We begin with the case when R is a division ring.
Lemma 4.1. Let R be a division ring then either $H_{R}([R, R])=$ $=Z(R)$ or R satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. Let $A=H_{R}([R, R])$, as we said above A is invariant under all the automorphisms of R. Hence $Z(A) \subseteq Z(R)$ by Lemma 3.3 and so $Z(A)=Z(R)$.

Since $H_{A}([A, A])=A$, by Lemma 2.5, we obtain that A satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$. By Posner's theorem the ring $B=$ $=\left\{a z^{-1}: a \in A, 0 \neq z \in Z(A)\right\}$ of central quotients of A is a finite dimensional central simple algebra which satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$. Of course B is a subdivision ring of R, moreover it is invariant under all automorphism of R. Therefore, by Brauer-Cartan-Hua theorem, either $B=R$ or $B \subseteq Z(R)$.

In the latter case $H_{R}([R, R])=A=B=Z(R)$, while in the first case R satisfies the standard identity $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Lemma 4.2. Let R be a prime ring with no non-zero nil right ideals and $J(R) \neq 0$. Let I be a non-zero two-sided ideal of R. If
$H_{R}([I, R])=A$ does not contain a non-zero two-sided ideal of R then $H_{R}([I, R])=Z(R)$.

Proof. Since A does not contain a non-zero two-sided ideal of R, then, by Lemma 3.4, for all $a, b \in A$ we must have either $\varrho_{a} \subseteq \varrho_{b}$ or $\varrho_{b} \subseteq \varrho_{a}$.

We claim that A does not contain non-zero nilpotent elements. Let $a \in A$ be such that $a^{2}=0$ and $a \neq 0$.

If a annihilates on the left every square-zero element of A then

$$
a(1+x) a(1+x)^{-1}=0 \quad \text { for all } x \in J(R)
$$

Hence, since $a^{2}=0$, we have $a J(R) a=(0)$ and so $a=0$, a contradiction.

Thus there exists $b \in A$ with $b^{2}=0$ and $a b \neq 0$. Then $0 \neq a b J(R) \subseteq$ $\subseteq a \varrho_{b}$, so $\varrho_{b} \nsubseteq \varrho_{a}$. Hence $\varrho_{a} \subseteq \varrho_{b}$, in particular we have:

$$
b a J(R) \subseteq b \varrho_{a} \subseteq b \varrho_{b}=(0) \quad \text { and so } b a=0
$$

Since $a \in H_{R}([I, R])$, for any $r \in I$, there exist positive integers n, m such that $0=\left[a,[r, a b]^{m}\right]_{n}$. And so, since $a^{2}=b^{2}=b a=0$, we obtain $0=\left[a,[r, a b]^{m}\right]_{n} b r=(-1)^{n}(a b r)^{n m}$, that is $a b I$ is a nil right ideal of R. Hence $a b I=(0)$ and so $a b=0$, a contradiction again.

Therefore $A=H_{R}([I, R])$ does not contain non-zero nilpotent elements and, by Lemma 3.2, we obtain that any non-zero element of A is regular in R and $Z(A)=Z(R)$. In particular A is a domain, moreover if $A \nsubseteq Z(R)$ then $A \cap I \neq(0)$, by Lemma 3.1.

Therefore $A \cap I$ is a non-zero two-sided ideal of A and we also have $A=H_{A}([I \cap A, A])$. Hence, by Lemma $2.5, A$ satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$. Since $A \nsubseteq Z(R), Q$, the ring of central quotients of R, is a simple ring with 1 (see Lemma 3.5), and so it is a primitive ring.

Of course $A=H_{R}([I, R]) \subseteq H_{Q}([Q, Q])$. But, by Lemmas 2.3 and 4.1, either $H_{Q}([Q, Q])=Z(Q)$ or Q satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

In the first case we obtain $A \subseteq Z(R)$ which contradicts with our last assumption. In the last case Q is a simple algebra which is at most 4 -dimensional over its center.

Therefore Q must satisfy all the polynomial identities of 2×2 matrices over its center (see [9]), hence $\left[x_{1},\left[x_{2}, x_{3}\right]^{2}\right]$ is a polynomial identity for $R \subseteq Q$.

In other words $A=H_{R}([I, R])=R$, that is A contains a non-zero two-sided ideal of R, and this is a contradiction again.

Hence $A \subseteq Z(R)$ and we are done.
A special case of our final result is the following
Proposition 4.1. Let R be a prime ring without non-zero nil right ideals. Let I be a non-zero two-sided ideal of R and let $A=H_{R}([I, R])$. Then either $A=Z(R)$ or R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$ and $A=R$.

Proof. Suppose R is semisimple. Then, as in the proof of Lemma 2.5, R is a subdirect product of primitive rings $R_{\gamma}=R / P_{\gamma}$, such that $I \nsubseteq P_{\gamma}$, for each γ in the set Γ of indeces.

For each $\gamma \in \Gamma$, let A_{γ} and I_{γ} be the images in R_{γ} of A and I respectively. Then, since $A_{\gamma} \subset H_{R_{\gamma}}\left(\left[I_{\gamma}, R_{\gamma}\right]\right)$, by Lemmas 2.3 and 4.1, either $A_{\gamma} \subseteq$ $\subseteq Z\left(R_{\gamma}\right)$ or R_{γ} satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Now, let $\Gamma_{1}=\left\{\gamma \in \Gamma: A_{\gamma} \subseteq Z\left(R_{\gamma}\right)\right\}$ and $\Gamma_{2}=\left\{\gamma \in \Gamma: A_{\gamma} \notin Z\left(R_{\gamma}\right)\right\}$.
Then $\Gamma=\Gamma_{1} \cup \Gamma_{2}$. Let $I_{1}=\cap P_{\gamma}, \gamma \in \Gamma_{1}$ and $I_{2}=\cap P_{\gamma}, \gamma \in \Gamma_{2}$.
So (0) $=J(R)=I_{1} \cap I_{2}$, moreover if $\gamma \in \Gamma_{2}$ then R_{γ} satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Since R is prime and $I_{1} I_{2} \subseteq I_{1} \cap I_{2}=(0)$ we must have either $I_{1}=0$ or $I_{2}=0$. If $I_{1}=0$ then we conclude that $A \subseteq Z(R)$. Hence if $A \nsubseteq Z(R)$ then $I_{2}=(0)$ and consequentely R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$. In this case, by Posner's theorem, R is an order in a simple algebra at most 4 -dimensional over its center. Hence R satisfies the polynomial identity $\left[\left[x_{1}, x_{2}\right]^{2}, x_{3}\right]$ and so $A=H_{R}([I, R])=R$.

Therefore we must assume that $J(R) \neq 0$.
If A does not contain a non-zero ideal of R then, by Lemma 4.2, $H_{R}([I, R])=Z(R)$.

Hence we may assume that A contains a non-zero ideal V of R. Since R is prime, $R_{1}=V \cap I$ is a prime ring without non-zero nil right ideals, moreover, as $V \subseteq A$, we have that $I \cap V=H_{I \cap V}([I \cap V, I \cap V])$. By Lemma 2.7, $I \cap V$ satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$, and so R too. As above this implies $H_{R}([I, R])=R$ and we are done.

Thorem 4.1. Let R be a prime ring without non-zero nil right ideals, U a noncentral Lie ideal of R. Then either $H_{R}(U)=Z(R)$ or R satisfies $S_{4}\left(x_{1}, \ldots, x_{4}\right)$.

Proof. By Lemma 1.3 if R does not satisfy $S_{4}\left(x_{1}, \ldots, x_{4}\right)$ then there exists a non-zero two-sided ideal I of R such that $[I, R] \subseteq U$. Since $H_{R}(U) \subseteq H_{R}([I, R])$, we conclude by previous proposition.

REFERENCES

[1] L. Carini, Centralizers and Lie ideals, Rend. Sem. Mat. Univ. Padova, 78 (1987), pp. 255-259.
[2] C. L. Chuang - J. S. Lin, On a conjecture by Herstein, J. Algebra, 126 (1989), pp. 119-138.
[3] C. L. Chuang - J. S. Lin, Rings with nil and power central k-th commutators, Rend. Circ. Mat. Palermo Serie II, XLI (1992), pp. 62-68.
[4] O. M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. Un. Mat. Ital. (7), 3-A (1989), pp. 77-85.
[5] O. M. Di Vincenzo - A. Valenti, On n-th commutators with nilpotent or regular values in rings, Rend. Circ. Mat. Palermo Serie II, XL (1991), pp. 453-464.
[6] B. Felzenszwalb - A. Giambruno, Centralizers and multilinear polynomials in noncommutative rings, J. London Math. Soc. (2), 19 (1979), pp. 417-428.
[7] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago (1969).
[8] I. N. Herstein, On the hypercenter of a ring, J. Algebra, 36 (1975), pp. 151-157.
[9] N. Jacobson, P.I. Algebras, an Introduction, Lecture Notes in Mathematics, no. 441, Springer-Verlag, Berlin, New York (1975).
[10] C. Lanski - S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42, n. 1 (1972), pp. 117-135.
[11] L. M. Rowen, General polynomial identities II, J. Algebra, 38 (1976), pp. 380-392.

Manoscritto pervenuto in redazione il 9 aprile 1997.

