Rendiconti

 del
SEMINARIO MATEMATICO

 della Università di Padova
Francesco Barioli

Decreasing diagonal elements in completely
positive matrices
Rendiconti del Seminario Matematico della Università di Padova, tome 100 (1998), p. 13-25
http://www.numdam.org/item?id=RSMUP_1998__100__13_0
© Rendiconti del Seminario Matematico della Università di Padova, 1998, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Decreasing Diagonal Elements in Completely Positive Matrices.

Francesco Barioli (*)

All matrices considered in this paper are real matrices ${ }^{(1)}$.
It is well known that a diagonally dominant symmetric matrix with nonnegative diagonal elements is positive semidefinite; actually, this fact is an immediate consequence of the Gerschgorin circles theorem.

An analogous result, not equally well known, holds for completely positive matrices, i.e. for those matrices A that can be factorized in the form $A=V V^{T}$, where V is a nonnegative matrix. In fact Kaykobad [4] proved that a nonnegative symmetric diagonally dominant matrix is completely positive.

Hence, if the diagonal elements of a symmetric matrix A have sufficiently large positive values, then A is positive semidefinite and, if A is nonnegative, it is completely positive.

In this paper we consider the question arising by assuming the opposite point of view. Let A be a positive semidefinite or a completely positive matrix; then we will consider the following question: how much a diagonal element of A can be decreased while preserving the semidefinite positivity or, respectively, the complete positivity of A ?

We will answer this question concerning positive semidefinite matrices in Section 2; the answer is simple and follows from an inductive test
(*) Indirizzo dell'A.: Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Belzoni 7, 35131 Padova, Italy.
${ }^{(}{ }^{1}$) This paper is part of the doctoral dissertation under the supervision of Prof. Luigi Salce.
for semidefinite positivity (see [7], Cor. 1.3]), which involves the MoorePenrose pseudo-inverse matrix of a maximal principal submatrix.

As to completely positive matrices the answer arises from the connection of the above question with the property PLSS (positivity of least square solutions) introduced in [7]. More precisely, we will consider in Section $3 i$-minimizable matrices $(1 \leqslant i \leqslant n$, where n is the order of the considered matrix), which are those completely positive matrices such that the minimal value of the $i^{\text {th }}$ diagonal element making the matrix positive semidefinite makes the matrix completely positive too. We will show that 1-minimizability is equivalent to property PLSS, that singular completely positive matrices are i-minimizable for some i, and that completely positive matrices with completely positive associated graph (see [5]) are i-minimizable for all i.

Recent results (see [1]) show that completely positive matrices with cyclic graph of odd lenght are not i-minimizable for any i. Conversely, it follows from results by Berman and Grone [2] that completely positive matrices with cyclic graph of even lenght are i-minimizable for all i. Thus the following problem arises: to find examples of completely positive matrices with more complicate behaviour with respet to minimizability.

In Section 4 we will investigate excellent completely positive matrices, already introduced in [1], and defined in terms of their graphs, which are «almost» completely positive. We will give a characterization of excellent 1-minimizable completely positive matrices, which enables us to produce several examples of excellent matrices with different behaviour with the respect to minimizability.

2. - Minimized positive semidefinite matrices.

We recall the following definitions. A symmetric matrix A of order n is positive semidefinite if $\underline{x}^{T} A \underline{x} \geqslant 0$ for all vectors $\underline{x} \in \mathbb{R}^{n}$. The matrix A is doubly nonnegative if it is both semidefinite and (entrywise) nonnegative; it is completely positive if there exist a nonnegative (not necessarily square) matrix V such that $A=V V^{T}$.

It is well known that a completely positive matrix is doubly nonnegative and that the converse is not generally true for matrices of order larger than four.

We will denote by $R(A)$ the column space (range) of the matrix A, by A^{+}its Moore-Penrose pseudo-inverse and by rk (A) its rank. For unexplained notation we refer to [6].

Let A be a symmetric semidefinite matrix of order $n>1$ in bordered form

$$
A=\left(\begin{array}{ll}
a & \underline{b}^{T} \tag{1}\\
\underline{b} & A_{1}
\end{array}\right)
$$

In [7] the following result, which provides an inductive test for semidefinite positivity, was proved:

Lemma 2.1. The symmetric matrix A in (1) is positive semidefinite if and only if A_{1} is positive semidefinite, $\underline{b} \in R\left(A_{1}\right)$ and $a \geqslant \underline{b}^{T} A_{1}^{+} \underline{b}$.

It follows from Lemma 2.1 that the minimal value of $t \in \mathbb{R}$ such that the matrix

$$
A(t)=\left(\begin{array}{ll}
t & \underline{b}^{T} \tag{2}\\
\underline{b} & A_{1}
\end{array}\right)
$$

is positive semidefinite is $\underline{b}^{T} A_{1}^{+} \underline{b}$; we will denote it by a_{μ}. The matrix

$$
A_{\mu}=\left(\begin{array}{ll}
a_{\mu} & \underline{b}^{T} \tag{3}\\
\underline{b} & A_{1}
\end{array}\right)
$$

is called the 1 -minimized of A. We say that A itself is 1 -minimized if $A=A_{\mu}$. If $1 \leqslant i \leqslant n$, the i-minimized of A is the matrix $\left(P_{i}^{T} A P_{i}\right)_{\mu}$, where P_{i} is the permutation matrix obtained from the identity matrix by transposing the first and the $i^{\text {th }}$ row. The matrix A is said to be i-minimized if $P_{i}^{T} A P_{i}=\left(P_{i}^{T} A P_{i}\right)_{\mu}$.

A 1-minimized (or, more generally, an i-minimized) matrix is singular. This fact is trivial if A_{1} is singular, otherwise it follows from the equality $\operatorname{Det}(A)=\operatorname{Det}\left(A_{1}\right)\left(a-\underline{b}^{T} A_{1}^{-1} \underline{b}\right)$ applied to $A=A_{\mu}$.

The converse is not generally true, as the trivial example

$$
\left(\begin{array}{ll}
1 & 0 \tag{4}\\
0 & 0
\end{array}\right)
$$

shows. Howewer, we have the following result:

THEOREM 2.2. A singular positive semidefinite matrix n-by-n is i-minimized for some $i \leqslant n$.

In order to prove the preceding theorem, we need two lemmas, whose straightforward proofs are given for sake of completeness.

Lemma 2.3. Let A be a positive semidefinite n-by-n matrix. Then its rank coincides with the maximum order of a non-singular principal submatrix.

Proof. Let $\operatorname{rk}(A)=k$. Since A is positive semidefinite, there exists a real n-by- k matrix W such that $A=W W^{T}$. Since $\operatorname{rk}(W)=k$ too, we can find a non-singular k-by- k submatrix of W. Let it W_{1}. Finally $A^{\prime}=W_{1} W_{1}^{T}$ is a non-singular principal submatrix of A of order k.

The second result that we need is the following:
Lemma 2.4. Let A be a positive semidefinite matrix in bordered form (1), with $\operatorname{rk}\left(A_{1}\right)=k$, and let M a non-singular principal submatrix of A_{1} of order k. Then $a_{\mu}=\underline{c}^{T} M^{-1} \underline{c}$, where \underline{c} is the vector obtained by taking the coordinates of \underline{b} corresponding to the rows of M.

Proof. The existence of M is ensured by Lemma 2.3. There is no loss of generality if we consider A in the form
(5)

$$
\left(\begin{array}{lll}
a & \underline{c}^{T} & \underline{d}^{T} \\
\underline{c} & M & D^{T} \\
\underline{d} & D & N
\end{array}\right)
$$

There exists a matrix W_{1} of rank k such that $A_{1}=W_{1} W_{1}^{T}$ and clearly $A_{\mu}=W W^{T}$ for $W^{T}=\left(W_{1}^{+} \underline{b} W_{1}^{T}\right)$, because

$$
a_{\mu}=\underline{b}^{T} A_{1}^{+} \underline{b}=\underline{b}^{T}\left(W_{1} W_{1}^{T}\right)^{+} \underline{b}=\underline{b}^{T}\left(W_{1}^{T}\right)^{+} W_{1}^{+} \underline{b}=\left(W_{1}^{+} \underline{b}\right)^{T} W_{1}^{+} \underline{b} .
$$

Thus $\operatorname{rk}\left(A_{\mu}\right)=k$ and the principal submatrix

$$
\left(\begin{array}{ll}
a_{\mu} & \underline{c}^{T} \tag{6}\\
\underline{c} & M
\end{array}\right)
$$

is singular and positive semidefinite, thus $a_{\mu}=\underline{c}^{T} M^{-1} \underline{c}$, by Lemma 2.1.

We are now able to give the
Proof of Theorem 2.2 Let B the singular positive semidefinite matrix, $k=\operatorname{rk}(B)$. There exists a permutation matrix of the form P_{i} for some $i \leqslant n$, such that $A=P_{i}^{T} B P_{i}$, written in bordered form (1), has $\operatorname{rk}\left(A_{1}\right)=k$.

By Lemma 2.4, there exists a non-singular principal submatrix M of order k of A_{1}, so that A is cogredient to the matrix

$$
A^{*}=\left(\begin{array}{ccc}
a & \underline{c}^{T} & \underline{d}^{T} \tag{7}\\
\underline{c} & M & D^{T} \\
\underline{d} & D & N
\end{array}\right) .
$$

We will show that this matrix is 1 -minimized, hence the matrix B will be i-minimized. The principal submatrix

$$
\left(\begin{array}{ll}
a & \underline{c}^{T} \tag{8}\\
\underline{c} & M
\end{array}\right)
$$

is singular, hence $a=\underline{c}^{T} M^{-1} \underline{c}$ and, by Lemma 2.4, this is the minimal value that makes A^{*} positive semidefinite.

From the preceding results we get the following
Corollary 2.5. Let A be a singular positive semidefinite matrix in bordered form (1). Then A is 1-minimized if and only if $\operatorname{rk}(A)=$ $=\operatorname{rk}\left(A_{1}\right)$.

Proof. Assume A 1-minimized. The proof of Lemma 2.4 shows that W has the same number of columns as W_{1}, hence $\operatorname{rk}(A)=\operatorname{rk}\left(A_{1}\right)$. Conversely, if $\operatorname{rk}(A)=\operatorname{rk}\left(A_{1}\right)$, in the proof of Theorem 2.2, M can be choosen as a submatrix of A_{1} without using the permutation matrix P_{i}, and one can conclude that A itself is 1-minimized.

3. - Minimizable completely positive matrices.

Let A be a completely positive matrix of order n in bordered form (1). An immediate consequence of the fact that the class of the completely positive matrices of order n is closed in the class of the symmetric matrices of the same order (see [3]) is that there exists a minimal value $a_{e} \in \mathbb{R}$
such that the matrix

$$
A_{e}=\left(\begin{array}{ll}
a_{e} & \underline{b}^{T} \tag{9}\\
\underline{b} & A_{1}
\end{array}\right)
$$

is completely positive; obviously $a_{e} \geqslant a_{\mu}$. The matrix A_{e} is called the 1-extremized of A. A itself is called an 1-extreme matrix if $A=A_{e}$. If $i \leqslant n$, the i-extremized of A is the 1-extremized of $P_{i}^{T} A P_{i}$ and A itself is an i-extreme matrix if $P_{i}^{T} A P_{i}$ is 1-extreme.

Definition. We say that a completely positive matrix A in bordered form (1) is i-minimizable if the i-minimized matrix of A is also completely positive, i.e. if $\left(P_{i}^{T} A P_{i}\right)_{\mu}=\left(P_{i}^{T} A P_{i}\right)_{e}$.

Definition. We say that a completely positive matrix A in bordered form (1) is totally minimizable if it is i-minimizable for all $i \leqslant n$; equivalently, if all the matrices cogredient to A are 1-minimizable.

The apparently new notion of 1-minimizable completely positive matrix is equivalent to the notion of «property PLSS» already introduced in [7], and simply called «property (P)» in [6]. Recall that the symmetric non-negative matrix A in bordered form (1) satisfies property PLSS if there exists a nonnegative matrix V_{1} such that $A_{1}=V_{1} V_{1}^{T}$ and $V_{1}^{+} \underline{b} \geqslant \underline{0}$.

Proposition 3.1. A completely positive matrix A in bordered form (1) is 1-minimizable if and only if it satisfies the property PLSS.

Proof. Let A satisfy the property PLSS. Then A_{μ} also satisfies this property; hence, by ([7], Theorem 2.1), A_{μ} is completely positive.

Conversely, let A be 1-minimizable. By ([7], Proposition 1.2), there exists a nonnegative matrix V_{1} and a nonnegative vector \underline{v} such that:

$$
A_{1}=V_{1} V_{1}^{T} \quad \underline{b}=V_{1} \underline{v} \quad \underline{b}^{T} A_{1}^{+} \underline{b}=\underline{v}^{T} \underline{v} .
$$

From the equalities

$$
\begin{aligned}
& \|\underline{v}\|_{2}^{2}=\underline{v}^{T} \underline{v}=\underline{b}^{T} A_{1}^{+} \underline{b}=\underline{b}^{T}\left(V_{1} V_{1}^{T}\right)^{+} \underline{b}= \\
& \\
& \quad=\underline{b}^{T}\left(V_{1}^{T}\right)^{+} V_{1}^{+} \underline{b}=\underline{b}^{T}\left(V_{1}^{+}\right)^{T} V_{1}^{+} \underline{b}=\left\|V_{1}^{+} \underline{b}\right\|_{2}^{2}
\end{aligned}
$$

and from the uniqueness of the least square solution of the linear system
$V_{1} \underline{x}=\underline{b}$, there follows that $\underline{v}=V_{1}^{+} \underline{b}$. Thus $V_{1}^{+} \underline{b} \geqslant \underline{0}$ and property PLSS holds.

The class of totally minimizable matrices is quite large, as the following result shows. Recall that a graph Γ is called completely positive if every doubly nonnegative matrix A whose associated graph $\Gamma(A)$ equals Γ is completely positive. Kogan and Berman [5] proved that a graph is completely positive if and only if it does not contain a cycle of odd length larger than three.

Proposition 3.2. The class of totally minimizable matrices contains all the completely positive matrices with completely positive graphs.

Proof. Let A be a completely positive matrix such that its graph $\Gamma(A)$ is completely positive. Let B the i-minimized matrix of A for some $i \leqslant n$. Obviously $\Gamma(B)$ is completely positive, thus B, which is obviously doubly nonnegative, is completely positive.

The connection between singularity and minimizability is illustrated in the following

Proposition 3.3. Let A be a singular completely positive matrix in bordered form (1). Then A is i-minimizable for some $i \leqslant n$ and is 1 -minimizable if $\operatorname{rk}(A)=\operatorname{rk}\left(A_{1}\right)$.

Proof. By Theorem 2.2, A is i-minimized for a certain i; let $A^{*}=$ $=P_{i}^{T} A P_{i} . A^{*}$ is completely positive and 1-minimized, so it is obviously 1 -minimizable, hence A is i-minimizable. Furthermore, if $\operatorname{rk}(A)=$ $=\operatorname{rk}\left(A_{1}\right)$, by Corollary 2.5 it follows that A is 1 -minimizable.

We conclude this section with a result providing the construction of a completely positive singular matrix (hence i-minimizable for some $i \leqslant n$) which fails to be 1-minimizable; this matrix is obtained by bordering in a suitable way a non-singular not 1 -minimizable completely positive matrix. Such a matrix does exists (see Example 4.6).

Proposition 3.4. Let C be a non-singular completely positive matrix of order $n>1$ in bordered form

$$
C=\left(\begin{array}{ll}
a & \underline{c}^{T} \tag{10}\\
\underline{c} & C_{1}
\end{array}\right)
$$

which is not 1-minimizable. Then there exists a completely positive matrix A obtained by suitably bordering the matrix C

$$
A=\left(\begin{array}{lll}
a & \underline{c}^{T} & d \tag{11}\\
\underline{c} & C_{1} & \underline{d} \\
d & \underline{d}^{T} & e
\end{array}\right)
$$

which is not 1 -minimizable, but is i-minimizable for some $1<i \leqslant n$.
Proof. There exists a matrix $V \geqslant 0$ such that $C=V V^{T}$. Let $V^{T}=$ $=\left(\underline{v}_{1} V_{1}^{T}\right)$. Then $\operatorname{rk}(V)=\operatorname{rk}(C)=n$ and $\operatorname{rk}\left(V_{1}\right)=\operatorname{rk}\left(C_{1}\right)=n-1$. Let $W^{T}=\left(\underline{v}_{1} V_{1}^{T} \underline{v}\right)$, where \underline{v} is a nonnegative vector of the column space $R\left(V_{1}^{T}\right)$. Obviously $\operatorname{rk}\left(W^{T}\right)=n$. Let now $A=W W^{T}$. Then A is completely positive of order $n+1$ and rank n, and has the form (11) for $d=\underline{v}_{1}^{T} \underline{v}, \underline{d}=$ $=V_{1} \underline{v}$ and $e=\underline{v}^{T} \underline{v}$. By Proposition 3.3, A is i-minimizable for some i. Assume, by way of contraddiction, that A is 1 -minimizable; then the 1 -minimized matrix A_{μ} of A is completely positive, hence the its submatrix

$$
\left(\begin{array}{ll}
a_{\mu} & \underline{c}^{T} \tag{12}\\
\underline{c} & C_{1}
\end{array}\right)
$$

is completely positive too. By Lemma 2.4, $a_{\mu}=\underline{c}^{T} C_{1}^{-1} \underline{c}$, hence we reach the contraddiction, since C is not 1-minimizable.

4. - Minimizability of excellent completely positive matrices.

A cycle of even length is a bipartite graph, hence it is a completely positive graph; therefore, in view of Proposition 3.2, a cyclic completely positive matrix of even order is totally minimizable.

Cyclic doubly nonnegative matrices of odd order which are not completely positive can be easily produced (see [3]). In [1] it is proved that a doubly nonnegative cyclic matrix A of odd order is completely positive if
and only if $\operatorname{Det}(A) \geqslant 4 h_{1} h_{2} \ldots h_{n}$, where the h_{i} 's are the non-zero elements over the main diagonal. It follows that such a matrix cannot be singular and consequently, given any $i \leqslant n$, it is not i-minimizable.

In this section we study a family of completely positive matrices, containing the cyclic ones, which provides more interesting examples with respect to minimizability.

In [1] doubly nonnegative matrices $A=\left(a_{i j}\right)$ in bordered form (1) have been considered satisfying the following properties:

1) $a_{2, n}=a_{n, 2}=0$;
2) $\underline{b}=\left(\beta_{2} 00 \ldots 0 \beta_{n}\right)^{T}$ with $\beta_{2} \neq 0 \neq \beta_{n}$;
3) The graph $\Gamma\left(A_{1}\right)$ associated to A_{1} is completely positive.

The graph $\Gamma(A)$ associated to the matrix A is obtained from the graph $\Gamma\left(A_{1}\right)$ by adding one more vertex, connected with only two vertices of $\Gamma\left(A_{1}\right)$, which are not connected each other. We will say that such a graph is an excellent graph, and that a doubly nonnegative matrix A satisfying the preceding properties is an excellent matrix.

In the preceding notation, let us denote by A^{-}the matrix obtained from A by substituting β_{n} by $-\beta_{n}$, or, equivalently, substituting the vector \underline{b} by the vector $\underline{b}_{1}-\underline{b}_{2}$, where $\underline{b}_{1}=\left(\beta_{2} 00 \ldots 0\right)^{T}$ and $\underline{b}_{2}=$ $=\left(00 \ldots 0 \beta_{n}\right)^{T}$. In [1], part of the following result was proved.

Theorem 4.1. Let A be an excellent doubly nonnegative n-by-n matrix with $n>2$ in bordered form (1), with $\underline{b}=\left(\beta_{2} 00 \ldots 0 \beta_{n}\right)^{T}$. The following facts are equivalent:

1) A is completely positive;
2) A^{-}is positive semidefinite;
3) The vector $(10 \ldots 00)^{T}$ of \mathbb{R}^{n-1} belongs to the column space $R\left(A_{1}\right)$ of A_{1} and $a \geqslant a_{\mu}-4 \beta_{2} \beta_{n} \alpha$, where α is the element in the first row and last column of $A_{1}{ }^{+}$.

Proof. For 1) $\Leftrightarrow 2$) see [1]. For 2$) ~ \Leftrightarrow 3$), observe that, by Lemma 2.1, A^{-}is positive semidefinite if and only if $\underline{b}_{1}-\underline{b}_{2} \in R\left(A_{1}\right)$ and $a \geqslant$ $\geqslant\left(\underline{b}_{1}^{T}-\underline{b}_{2}^{T}\right) A_{1}^{+}\left(\underline{b}_{1}-\underline{b}_{2}\right)$. But since $\underline{b}=\underline{b}_{1}+\underline{b}_{2} \in R\left(A_{1}\right), \underline{b}_{1}-\underline{b}_{2} \in R\left(A_{1}\right)$ if and only if $\underline{b}_{1} \in R\left(A_{1}\right)$ (or equivalently $\underline{b}_{2} \in R\left(A_{1}\right)$), if and only if
$\underline{b}=\left(\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right)^{T} \in R\left(A_{1}\right)$. Moreover, we have:

$$
\begin{aligned}
& \left(\underline{b}_{1}^{T}-\underline{b}_{2}^{T}\right) A_{1}^{+}\left(\underline{b}_{1}-\underline{b}_{2}\right)=\underline{b}_{1}^{T} A_{1}^{+} \underline{b}_{1}+\underline{b}_{2}^{T} A_{1}^{+} \underline{b}_{2}-2 \underline{b}_{2}^{T} A_{1}^{+} \underline{b}_{1}= \\
& \quad=\underline{b}_{1}^{T} A_{1}^{+} \underline{b}_{1}+\underline{b}_{2}^{T} A_{1}^{+} \underline{b}_{2}+2 \underline{b}_{2}^{T} A_{1}^{+} \underline{b}_{1}-4 \underline{b}_{2}^{T} A_{1}^{+} \underline{b}_{1}=a_{\mu}-4 \beta_{2} \beta_{n} \alpha
\end{aligned}
$$

We must remark that it is not possible to eliminate in Theorem 4.1 the hypothesis that A is doubly nonnegative, since there are symmetric nonnegative matrices A with A_{1} positive semidefinite and $\underline{b} \in R\left(A_{1}\right)$, which fail to be positive semidefinite, and such that A^{-}is positive semidefinite. This happens (by using the preceding notation and with A in bordered form (2.1)) when $\alpha>0$ and $\underline{b}^{T} A_{1}^{+} \underline{b}>a>\underline{b}^{T} A_{1}^{+} \underline{b}-4 \beta_{2} \beta_{n} \alpha$. On the other hand, in the hypothsis of Theorema 4.1, if $\alpha \geqslant 0$, the condition $a \geqslant a_{\mu}-4 \beta_{2} \beta_{n} \alpha$ is automatically verified, since $a \geqslant a_{\mu}$. An immediate consequence of this remark is the following

Corollary 4.2. Let A be an excellent completely positive matrix od order $n>1$ in bordered form (1), with $\underline{b}=\left(\beta_{2} 00 \ldots 0 \beta_{n}\right)^{T}$, and let α be the element in the first row and last column of $A_{1}{ }^{+}$. Then

1) $a_{e}=\max \left(a_{\mu}, a_{\mu}-4 \beta_{2} \beta_{n} \alpha\right)$;
2) A is 1-minimizable if and only if $\alpha \geqslant 0$.

Proof. 1) is an immediate consequence of Theorem 4.1.
2) If A is 1 -minimizable, then $a_{e}=a_{\mu}$, hence $\alpha \geqslant 0$ by point 1). Conversely $\alpha \geqslant 0$ and point 1) imply $a_{e}=a_{\mu}$.

We give now some examples of excellent matrices with different behaviour with respect to 1 -minimizability.

Example 4.3. Consider the following symmetric matrix with excellent associated graph

$$
A(a)=\left(\begin{array}{llllc}
a & 1 & 0 & 0 & 1 \tag{13}\\
1 & 2 & 2 & 1 & 0 \\
0 & 2 & 5 & 3 & 1 \\
0 & 1 & 3 & 2 & 2 \\
1 & 0 & 1 & 2 & 11
\end{array}\right)
$$

The principal submatrix A_{1} (obtained from the last four rows and columns) is singular and completely positive, and the vector $\underline{b}=$ $=\left(\begin{array}{lll}1001\end{array}\right)^{T} \in R\left(A_{1}\right)$, hence $A(a)$ is doubly nonnegative for $a \geqslant \underline{b}^{T} A_{1}^{+} \underline{b}$. Howewer, the matrix $A(a)$ is not completely positive for any value of a, since, according to Theorem 4 the vector (1000$)^{T}$ does not belong to $R\left(A_{1}\right)$.

Example 4.4. Consider the following symmetric matrix with excellent associated graph

$$
A(a)=\left(\begin{array}{lllll}
a & 1 & 0 & 0 & 1 \tag{14}\\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 1 & 2 & 1 \\
1 & 0 & 1 & 1 & 2
\end{array}\right)
$$

In this case the principal submatrix A_{1} is non-singular and completely positive, so the vectors $\underline{b}=\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)^{T}$ and $\underline{b}_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ belong to $R\left(A_{1}\right)$, hence $A(a)$ is doubly nonnegative for $a \geqslant \underline{b}^{T} A_{1}^{+} \underline{b}=7$. Moreover, the element α in the first row and last column of A_{1}^{+}equals 1 , hence $A(a)$ is completely positive and 1 -minimizable for all $a \geqslant 7$. If $7>a \geqslant 3=$ $=7-4 \beta_{2} \beta_{n} \alpha, A$ is not doubly nonnegative and A^{-}is positive semidefinite.

Example 4.5. Consider the following symmetric matrix with excellent associated graph

$$
A(a)=\left(\begin{array}{lllll}
a & 1 & 0 & 0 & 1 \tag{15}\\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 1 & 2 & 3 \\
1 & 0 & 1 & 3 & 6
\end{array}\right)
$$

In this case A_{1} is non-singular and completely positive, so $\underline{b}=$
$=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ and $\underline{b}_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ belong to $R\left(A_{1}\right)$, hence $A(a)$ is doubly nonnegative for $a \geqslant \underline{b}^{T} A_{1}^{+} \underline{b}=3$. Moreover $\alpha=-1$, hence $A(a)$ is completely positive if and only if $a \geqslant a_{\mu}-4 \alpha=7$ and one can conclude that A is not 1-minimizable.

Example 4.6. Consider the following completely positive cyclic matrix of order 5

$$
C=\left(\begin{array}{lllll}
2 & 1 & 0 & 0 & 1 \tag{16}\\
1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 1 & 2 & 1 \\
1 & 0 & 0 & 1 & 2
\end{array}\right)
$$

which is not i-minimizable for any i. A factorization of $C=V V^{T}$ is obtained for

$$
V=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \tag{17}\\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

Using Proposition 3.4, one can see that, setting $W^{T}=\left(V^{T} \underline{b}\right)$ where $\underline{b}=(00011)^{T}$, the following completely positive matrix

$$
A=W W^{T}=\left(\begin{array}{llllll}
2 & 1 & 0 & 0 & 1 & 1 \tag{18}\\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
1 & 0 & 0 & 1 & 2 & 2
\end{array}\right)
$$

is singular, hence i-minimizable for some i, but it is not 1 -minimizable.

REFERENCES

[1] F. Barioli, Completely positive matrices with a book-graph, Linear Algebra and its Applications, 277 (1998), pp. 11-31.
[2] A. Berman - R. Grone, Bipartite completely positive matrices, Proc. Cambridge Phil. Soc., 103 (1988), pp. 269-276.
[3] A. Berman - D. Hershkowitz, Combinatorial results on completely positive matrices, Linear Algebra and its Applications, 95 (1987), pp. 111-125.
[4] M. Kayкоbad, On nonnegative factorization of matrices, Linear Algebra and its Applications, 96 (1988), pp. 27-33.
[5] N. Kogan - A. Berman, Characterization of completely positive graphs, Discrete Math., 114 (1993), pp. 287-299.
[6] L. Salce, Lezioni sulle Matrici, Decibel-Zanichelli, Padova (1993).
[7] L. Salce - P. Zanardo, Completely positive matrices and positivity of least square solutions, Linear Algebra and its Applications, 178 (1993), pp. 201-216.

Manoscritto pervenuto in redazione il 9 maggio 1996.

