RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

R. S. PATHAK

S. K. UPADHYAY

Convolution in $(W_{M,a}^p)'$ -space

Rendiconti del Seminario Matematico della Università di Padova, tome 98 (1997), p. 57-65

http://www.numdam.org/item?id=RSMUP_1997__98__57_0

© Rendiconti del Seminario Matematico della Università di Padova, 1997, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Convolution in $(W_{M,a}^p)'$ -Space.

R. S. PATHAK - S. K. UPADHYAY (*)

ABSTRACT - A characterization of convolutors in $(W^p_{M,\,a})'$ -space is given using the properties of the translate $\tau_h\colon W^p_{M,\,a}\to W^p_{M,\,a}$. Using the theory of Fourier transform in these spaces, the Fourier transform of convolution is studied.

1. - Introduction.

A characterization of convolution operators on the $K\{M_p\}$ space was given by Swartz [9] generalizing the characterizations of the space O'_c of Schwartz [8] and of convolutors on the spaces of distributions of exponential growth by Hausmi [5]. This chracterization naturally yields a characterization for $W_{M, a}$ -space, which is a special case of $K\{M_p\}$ space. A similar characterization of convolution operators in K'_p was given by Sampson and Zielezny [10]. All these results are related to L^∞ -norms.

In terms of L^p norms the spaces W_M^p , $W_{M,a}^p$, $W^{\Omega,p}$, $W^{\Omega,b,p}$ were defined and their Fourier transforms were studied in [6]. We recall the definition of the spaces W_M^p , $W_{M,a}^p$, $W^{\Omega,p}$, $W^{\Omega,b,p}$. Let $\mu(\xi)$ be a continuous increasing function on $[0,\infty]$ such that $\mu(0)=0$, $\mu(\infty)=\infty$, and for $x\geq 0$ define an increasing convex continuous function M by

$$M(x) = \int_0^x \mu(\xi) d\xi, \qquad M(-x) = M(x).$$

(*) Indirizzo degli AA.: Department of Mathematics, Banaras Hindu University, Varanasi 221005, India.

MSC (1991): 46F12.

Then M(0) = 0, $M(\infty) = \infty$, and

(1)
$$M(x_1 + x_2) \leq M(x_1) + M(x_2)$$
.

Now the space $W_M^p(\mathbb{R})$ is defined as the set of all infinitely differentiable functions $\Phi(x)$ ($-\infty < x < \infty$) satisfying

$$(2) \qquad \left(\int_{-\infty}^{+\infty} \left|\exp\left[M(ax)\right]\Phi^{(k)}(x)\right|^{p} dx\right)^{1/p} \leqslant C_{k,p}, \qquad 1 \leqslant p < \infty$$

for each non-negative integer k where the positive constants a and $C_{k,\,p}$ depend upon Φ . Clearly W_M^p is a linear space. The space W_M^p can be regarded as the union of countably normed spaces $W_{M,\,a}^p$ of all complex valued C^∞ -functions Φ which for any $\delta>0$ satisfy

(3)
$$\left(\int_{-\infty}^{+\infty} \left| \exp \left[M(a - \delta) x \right] \Phi^{(k)}(x) \right|^p dx \right)^{1/p} \leq C_{k, \, \delta, \, p}, \qquad k = 0, \, 1, \, 2 \, \dots .$$

Let Ω be another increasing, continuous, convex function possessing properties similar to those of M. Then $W^{\Omega, p}$ is defined to be the set of all entire analytic functions $\Phi(z)$ (z=x+iy) satisfying the inequalities

(4)
$$\left(\int_{-\infty}^{+\infty} |\exp[-\Omega(by)] z^k \, \Phi(z)|^p \, dx \right)^{1/p} \leq C_{k, \, p}, \qquad k = 0, \, 1, \, 2 \, \dots.$$

The space $W^{\Omega, b, p}$ is defined to be set of all those functions in $W^{\Omega, p}$ which satisfy the inequalities

(5)
$$\left(\int_{-\infty}^{+\infty} \left|\exp\left[-\Omega[(b+\varrho)y]\right]z^k \Phi(z)\right|^p dx\right)^{1/p} \leq C_{k,\varrho,p}.$$

In this paper the translate $\tau_h\colon W^p_{M,\,a}\to W^p_{M,\,a}$ defined by $\tau_h[\varPhi(x)]==\varPhi(x+h), h\in\mathbb{R}$, is shown to be continuous, bounded and differentiable. A characterization of convolutors in $W^p_{M,\,a}$ is given. Furthermore, by using the theory of Fourier transform of $f\in(W^p_{M,\,a})',\,g\in(W^q_{M,\,a})',\,1/p+1/q=1$, we show that

$$F(f*g) = F(f) \cdot F(g) \text{ in } (W^{\Omega, 1/a, p})'.$$

2. - Characterization theorems.

THEOREM 2.1.

- (i) For each $h \in \mathbb{R}$ the function $\Phi \to \tau_h \Phi$ is continuous from $W^p_{M,a}$ into $W^p_{M,a}$.
- (ii) For a bounded subset A of $W_{M,a}^p$ and $\varepsilon > 0$, the set $\{\tau_h \Phi \colon |h| \leq \varepsilon, \ \Phi \in A\}$ is bounded in $W_{M,a}^p$.

PROOF. For $\Phi \in W_{M,a}^p$ and $h \in \mathbb{R}$, we have

$$\begin{split} \|\tau_h \Phi\|_p &= \left(\int_{-\infty}^{+\infty} |\exp\left[M[(a-\delta)x]\right] \tau_h [\Phi^{(k)}(x)]|^p dx \right)^{1/p} = \\ &= \left(\int_{-\infty}^{+\infty} |\exp\left[M[(a-\delta)x]\right] \Phi^{(k)}(x+h)|^p dx \right)^{1/p} = \\ &= \left(\int_{-\infty}^{+\infty} |\exp\left[M[(a-\delta)x] - M[(a-\delta)(x+h)]\right] \times \\ &\times \exp\left[M[(a-\delta)(x+h)]\right] \Phi^{(k)}(x+h)|^p dx \right)^{1/p}. \end{split}$$

Now, using the convexity property (1), we get

$$(6) \|\tau_h \Phi\|_p \leq$$

$$\leq \exp\left[-M[(a-\delta)h]\right] \left(\int_{-\infty}^{+\infty} \left|\exp\left[M[(a-\delta)(x+h)\right]\right] \Phi^{(k)}(x+h)\right|^p dx\right)^{1/p}$$

so that (i) and (ii) follow from inequality (6).

THEOREM 2.2. For each $\Phi \in W_{M,a}^p$ the translate $\tau_h \Phi$ is differentiable in $W_{M,a}^p$, $p \ge 1$.

PROOF. From [6, p. 734] we know that a function $\Phi \in W^p_{M, a}$ is differentiable in $W^p_{M, a}$ space. Since $\tau_h \Phi \in W^p_{M, a}$, it follows that $\tau_h \Phi$ is differentiable in $W^p_{M, a}$.

Now, we recall the definition of a convolute [3, p. 137].

DEFINITION 2.3. Let V be any test function space and V' be its dual. A generalized function $f \in V'$ is said to be a convolute if for each $\Phi \in V, f * \Phi \in V$, and $\Phi_v \to 0$ implies that $f * \Phi_v \to 0$ in the topology of V. If f is a convolute and $g \in V$, the convolution of f and g is given by

$$\langle f * g, \Phi \rangle = \langle g, f * \Phi \rangle.$$

THEOREM 2.4. Let $f \in (W_{M,a}^p)'$ and $\Phi \in W_{M,a}^p$ then $f * \Phi \in W_{M,b}^r$, where $p, r \ge 1$ and b > a > 0.

PROOF. From [6, p. 734] we have

$$f = \sum_{j=0}^{n} D^{(j)} [\exp [M[(a-\delta)t]] f_j(t)], \quad f_j \in L^q.$$

Therefore for $\Phi \in W_{M,a}^p$ we have

$$\begin{split} \big| (f * \Phi)(x) \big| &= \bigg| \int\limits_{-\infty}^{+\infty} f(t) \, \Phi(x+t) \, dt \, \bigg| \leq \int\limits_{-\infty}^{+\infty} \big| f(t) \, \Phi(x+t) \big| \, dt \leq \\ &\leq \int\limits_{-\infty}^{+\infty} \bigg| \int\limits_{j=0}^{n} D^{(j)} \big[\exp \big[M \big[(a-\delta) \, t \big] \big] f_j(t) \big] \, \Phi(x+t) \, \bigg| \, \, dt \leq \\ &\leq \int\limits_{-\infty}^{+\infty} \bigg| \int\limits_{j=0}^{n} (-1)^j \big[\exp \big[M \big[(a-\delta) \, t \big] \big] f_j(t) \big] D_t^{(j)} \, \Phi(x+t) \, \bigg| \, \, dt \leq \\ &\leq \int\limits_{j=0}^{n} \int\limits_{-\infty}^{+\infty} \big| \exp \big[(a-\delta) \, t \big] \big] f_j(t) D_t^{(j)} \, \Phi(x+t) \, \bigg| \, \, dt \, . \end{split}$$

So that for 1/p + 1/q = 1, we have

$$\begin{split} &|D_{x}^{(\beta)}(f*\Phi)(x)| \leq \sum_{j=0}^{n} \int_{-\infty}^{+\infty} |f_{j}(t) \cdot \exp\left[M[(a-\delta)t]\right] D_{x+t}^{(\beta+j)} \Phi(x+t) |dt \leq \\ &\leq \sum_{j=0}^{n} \|f_{j}(t)\|_{q} \cdot \|\exp\left[M[(a-\delta)t]\right] D_{x+t}^{(\beta+j)} \Phi(x+t)\|_{p} \leq \\ &\leq \sum_{j=0}^{n} \|f_{j}(t)\|_{q} \|\exp\left[M[-(a-\delta)(x+t)] + M[(a-\delta)t]\right] \cdot \\ &\cdot \exp\left[M[(a-\delta)(x+t)]\right] D_{x+t}^{(\beta+j)} \Phi(x+t)\|_{p} \leq \end{split}$$

$$\leq \exp \big[- M [a - \delta) x \big] \big] \sum_{j=0}^{n} \ \big\| f_{j} \big\|_{q} \big\| \exp \big[M [(a - \delta) (x + t)] \big] D_{x+t}^{(\beta + j)} \, \varPhi(x + t) \big\|_{p} \leq$$

$$\leq \exp\left[-M[(a-\delta)x]\right]C_{q,n}\|\Phi\|_{\delta,p}$$
.

Therefore, for (b > a > 0), we have

$$\|\exp[M[(b-\delta)x]]D_x^{(\beta)}(f*\Phi)(x)\| \le C_{q,n}\|\Phi\|_{\delta,p}\exp[-M[(b-a)x]].$$

Hence for $r \ge 1$,

$$\|\exp[M[(b-\delta)x]]D_x^{(\beta)}(f*\Phi)(x)\|_r \le C_{q,n}\|\Phi\|_{\delta,p}\|\exp[-M[(b-a)x]]\|_r.$$

In particular, taking r=p we have $f*\Phi\in W^p_{M,\,b}$, b>a. Therefore f is a convolute in $(W^p_M)'$.

THEOREM 2.5. Assume that b > a > 0. Then $W_{M,b}^p$ is a dense subspace of $W_{M,a}^p$ for $1 \le p < \infty$.

PROOF. Let $u \in W^p_{M, a}$ and $\Phi \in D(\mathbb{R})$ such that $\Phi(x) \ge 0$, $\Phi(x) = 1$ for |x| < 1 and $\Phi(x) = 0$ for $|x| \ge 2$. Define $\Phi_{\nu}(x) = \Phi(x/\nu)$, $\nu \in \mathbb{N}$.

Set $u_{\nu} = \Phi_{\nu} \cdot u$. Then $u_{\nu} \in D(\mathbb{R})$. It can be easily seen that $u_{\nu} \to u$ in $W^p_{M,\,a}$. Therefore D is dense in $W^p_{M,\,a}$. Since $D \in (W^p_{M,\,b})$, it follows that $W^p_{M,\,b}$ is dense in $W^p_{M,\,a}$. Consequently, $(W^p_{M,\,a})' \in (W^p_{M,\,b})'$.

3. - Fourier transform.

THEOREM 3.1. If $f \in (W^p_{M, a})'$, $g \in (W^q_{M, a})'$, 1/p + 1/q = 1 then $f * g \in (W_{M, b})'$, $a \le b$ and $F(f * g) = F(f) \cdot F(g)$ in $W^{(\Omega, 1/b)}$.

PROOF. From [6, p. 734] we again have

(7)
$$f = \sum_{j=0}^{n} D^{j} \left[\exp[M[(a-\delta)u]] f_{j}(u) \right], \quad f_{j} \in L^{q}$$

and

(8)
$$g = \sum_{k=0}^{l} D^{k} [\exp[M[(a-\delta)u]] g_{k}(u)], \quad g_{k} \in L^{p}.$$

Now,

$$\begin{split} & \big[(\exp\big[M[(a-\delta)u]\big]f_j(u)) * (\exp\big[M[(a-\delta)u]\big]g_k(u)\big](t) = \\ & = \int\limits_{-\infty}^{+\infty} \exp\big[M[(a-\delta)(t-u)]\big]f_j(t-u) \exp\big[M[(a-\delta)u]\big]g_k(u)du \le \\ & \leq \int\limits_{-\infty}^{+\infty} \exp\big[M[(a-\delta)t]\big]f_j(t-u)g_k(u)du \end{split}$$

which is known to be an element in L^r , 1/r = 1/p + 1/q - 1. Since

$$L^r \in (W_{M,b})', (\exp[M[(a-\delta)u]]f_i(u)) * (\exp[M[(a-\delta)u]]g_k(u))$$

is an element of $(W_{M,\,b})'$, $(a \le b)$. Also, since $(W_{M,\,b})'$ is closed with respect to differentiation, hence the distributional derivative $D^{j+k} \left[\exp \left[M[(a-\delta)\,u] \right] f_j(u) * \exp \left[M[(a-\delta)\,u] \right] g_k(u) \right]$ is also an element of $(W_{M,\,b})'$. Furthermore $f * g \in (W_{M,\,b})'$ implies that $F(f * g) \in (W^{\Omega,\,1/b})'$ by Gel'fand and Shilov [4].

Now, let $\Phi \in W^{\Omega, 1/b}$. Then,

$$\begin{split} \langle F(f*g)(x), \, \varPhi(x) \rangle &= \langle (f*g)(u), F[\varPhi](u) \rangle = \\ &= \left\langle \sum_{j=0}^{n} \sum_{k=0}^{l} D^{j+k} [\exp[M[(a-\delta)u]] \, f_{j}(u)] * \right. \\ &* [\exp[M[(a-\delta)u]] \, g_{k}(u)], \, F[\varPhi](u) \right\rangle = \\ &= \left\langle \sum_{j=0}^{n} \sum_{k=0}^{l} (-1)^{j+k} [\exp[M[(a-\delta)u]] \, f_{j}(u)] * \right. \\ &* \exp[M[(a-\delta)u]] \, g_{k}(u), \, D^{j+k} F[\varPhi](u) \right\rangle = \\ &= \left\langle \sum_{j=0}^{n} \sum_{k=0}^{l} (-1)^{j+k} [\exp[M[(a-\delta)u]] \, f_{j}(u)] * \right. \\ &* \exp[M[(a-\delta)u]] \, g_{k}(u), \, F[(-i)^{j+k} x^{j+k} \varPhi](u) \right\rangle = \end{split}$$

$$= \left\langle \sum_{j=0}^{n} \sum_{k=0}^{l} (i)^{j+k} x^{j+k} F[\exp[M[(a-\delta)u]] f_{j}] \cdot F[\exp[M[(a-\delta)]u] g_{k}], \Phi(x) \right\rangle =$$

$$= \left\langle \sum_{j=0}^{n} (i)^{j} x^{j} F[\exp[M[(a-\delta)u]] f_{j}] \cdot \left[\sum_{k=0}^{l} (i)^{k} x^{k} F[\exp[M[(a-\delta)u]] g_{k}], \Phi(x) \right\rangle =$$

$$= \left\langle F\left[\sum_{j=0}^{n} D^{j} [\exp[M[(a-\delta)u]] f_{j}(u)] \right] \cdot F\left[\sum_{j=0}^{l} D^{k} [\exp[M[(a-\delta)u]] g_{k}(u)] \right], \Phi(x) \right\rangle = \left\langle F(f) \cdot F(g), \Phi \right\rangle.$$

DEFINITION 3.1. $f \in (W_{M,a}^p)'$ is said to belong $(O_c^p)' \subset (W_{M,a}^p)'$ if for all $g \in (W_{M,a}^p)'$, $f * g \in (W_{M,a}^p)'$.

THEOREM 3.2. If $f \in (O_c^p)'$ and $g \in (W_{M,a}^p)'$, then $F(f*g) = F(f) \cdot F(g)$ in the sense of equality in $(W^{\Omega, 1/a, p})'$.

PROOF. Let $\Phi \in W^{\Omega, 1/a, p}$, then we have

$$\left\langle F(f*g)(x), \Phi(x) \right\rangle = \left\langle (f*g)(t), F[\Phi](t) \right\rangle = \left\langle f(x), \left\langle g(t), F[\Phi](x+t) \right\rangle \right\rangle.$$

Since $f \in (O_c^p)' \subset (W_{M,a}^p)' \subset (W_{M,b}^p)'$, and $\langle g(t), F[\Phi](x+t) \rangle$ belongs to $W_{M,b}^p$ by Theorem 2.4, then right-hand side is meaningful. Now, using (8) we have

$$\begin{split} \langle g(t), F[\boldsymbol{\Phi}](x+t) \rangle &= \left\langle \sum_{j=0}^{n} D^{j} \left[\exp\left[M[(a-\delta)t]\right] g_{j}(t) \right], F[\boldsymbol{\Phi}](x+t) \right\rangle = \\ &= \left\langle \sum_{j=0}^{n} \left[(-1)^{j} \exp\left[M[(a-\delta)t]\right] g_{j}(t) \right], D^{j} F[\boldsymbol{\Phi}](x+t) \right\rangle = \\ &= \left\langle \sum_{j=0}^{n} (-1)^{j} \exp\left[M[(a-\delta)(u-x)]\right] g_{j}(u-x), D_{u}^{j} F[\boldsymbol{\Phi}](u) \right\rangle = \end{split}$$

$$\begin{split} &=\left\langle \sum_{j=0}^{n} \exp\left[M[(a-\delta)(u-x)]\right]g_{j}(u-x), F[(i)^{j}y^{j}\Phi](u)\right\rangle =\\ &=\left\langle \sum_{j=0}^{n} (i)^{j} \exp\left[M[(a-\delta)(u-x)]\right]g_{j}(u-x), F[y^{j}\Phi](u)\right\rangle =\\ &=\sum_{j=0}^{n} (i)^{j} (\Psi * F[(y^{j}\Phi)])(x), \end{split}$$

where $\Psi = \exp[M[(a-\delta)(u-x)]g_j(u-x)]$. Then the last expression equals

$$\sum_{j=0}^{n} (2\pi)^{-n} (i)^{j} (F(\overset{\vee}{F}[\varPsi])) * F[y^{j} \Phi](x) = \sum_{j=0}^{n} (2\pi)^{-n} (i)^{j} F[\overset{\vee}{F}(\varPsi) \cdot y^{j} \Phi](x).$$

Therefore,

$$\begin{split} &\langle F(g*f), \Phi \rangle = \langle f(x), \langle g(t), F[\Phi](x+t) \rangle \rangle = \\ &= \left\langle f(x), \sum_{j=0}^{n} (2\pi)^{-n} F(\check{F}[\Psi] \cdot (i)^{j} y^{j} \Phi)(x) \right\rangle = \\ &= \left\langle F(f), \sum_{j=0}^{n} (i)^{j} (2\pi)^{-n} \check{F}[\Psi] y^{j} \Phi \right\rangle = \\ &= \left\langle F(f), \sum_{j=0}^{n} (i)^{j} (2\pi)^{-n} y^{j} \check{F}[\exp[M[(a-\delta)x]] g_{j}(x)], \Phi \right\rangle = \\ &= \left\langle F(f) \cdot F\left[\sum_{j=0}^{n} D^{(j)} [\exp[M[(a-\delta)x] g_{j}(x)]]\right], \Phi \right\rangle = \langle F(f) \cdot F(g), \Phi \rangle. \end{split}$$

Acknowledgement. The work was supported by the N.B.H.M. Grant No. 48/1/94-R&D-II.

REFERENCES

- R. D. CARMICHAEL, Generalized Cauchy and Poisson integrals and distributional boundary values, SIAM J. Math. Anal., 4 (1) (1973), pp. 198-219.
- [2] A. FRIEDMAN, Generalized Functions and Partial Differential Equations, Prentice-Hall, New Jersey (1963).
- [3] I. M. Gel'fand G. E. Shilov, Generalized Functions, Vol. 2, Academic Press, New York (1968).

- [4] I. M. Gel'fand G. E. Shilov, Generalized Functions, Vol. 3, Academic Press, New York (1969).
- [5] M. HAUSMI, Note on n-dimensional tempered ultradistributions, Tôhoku Math. J., (2), 13 (1961), pp. 94-104.
- [6] R. S. PATHAK S. K. UPADHYAY, W^p spaces and Fourier transform, Proc. Amer. Math. Soc., 121 (3) (1994), pp. 733-738.
- [7] S. PILIPOVIC, Multipliers, convolutors and hypoelliptic convolutors of tempered ultradistributions, in Proceedings of International Symposium on Generalized Functions and their Application held in Varanasi, Dec. 23-26 (1991), edited by R. S. PATHAK, Plenum Press, New York (1992), pp. 183-195.
- [8] L. Schwartz, Théorie des distributions, Hermann, Paris (1966).
- [9] C. SWARTZ, Convolution in $K\{M_p\}$ spaces, Rocky Mountain J. Math., 2 (1972), pp. 259-163.
- [10] G. SAMPSON Z. ZIELEZNY, Hypoelliptic convolution equations in K'_p , p > 1, Trans. Amer. Math. Soc., 223 (1976), pp. 133-154.
- [11] Z. ZIELEZNY, On spaces of convolutor operators in K'_1 , Studia Math., 31 (1968), pp. 111-124.

Manoscritto pervenuto in redazione il 9 novembre 1995.