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Convolution in (WpM,a)’-Space.
R. S. PATHAK - S. K. UPADHYAY(*)

ABSTRACT - A characterization of convolutors in (WL, a)’ -space is given using
the properties of the translate r  : WL, a - WL, a- Using the theory of Fouri-
er transform in these spaces, the Fourier transform of convolution is
studied.

1. - Introduction.

A characterization of convolution operators on the space was

given by Swartz [9] generalizing the characterizations of the space 0~
of Schwartz [8] and of convolutors on the spaces of distributions of ex-
ponential growth by Hausmi [5]. This chracterization naturally yields a
characterization for WM, a-space, which is a special case space.
A similar characterization of convolution operators in Kp was given by
Sampson and Zielezny [10]. All these results are related to L °°-
norms.

In terms of L p norms the spaces WD, P, WD, b, p were de-
fined and their Fourier transforms were studied in [6]. We recall the
definition of the spaces WL, WL, a’ Let p(~) be a contin-
uous increasing function on [0, oo ] such that /~(0)==0,~(oo)= oo~ and
for x ~ 0 define an increasing convex continuous function M by
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sity, Varanasi 221005, India.
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Then M( 0 ) = 0, M( OJ ) = OJ , and

Now the space is defined as the set of all infinitely differen-
tiable functions lP(x) (- 00  x  oo) satisfying

for each non-negative integer k where the positive constants a and Ck, p
depend upon 0. Clearly WM is a linear space. The space WM can be re-
garded as the union of countably normed spaces WM, a of all complex
valued Coo-functions O which for any 6 &#x3E; 0 satisfy

Let Q be another increasing, continuous, convex function possessing
properties similar to those of M. Then WD, P is defined to be the set of
all entire analytic functions Ø(z) ( z = x + iy ) satisfying the inequali-
ties

The space defined to be set of all those functions in WQ, P
which satisfy the inequalities

In this paper the translate T h: WM, a ~ WM, a defined by T h 
= + is shown to be continuous, bounded and differentiable.
A characterization of convolutors in WIt, a is given. Furthermore, by
using the theory of Fourier transform of f E E 1 /p +
+ = 1, we show that
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2. - Characterization theorems.

THEOREM 2.1.

(i) For each h E R the 7: h ø is continuous from
WM, a into Wlt, a.

(ii) For a bounded subset A of WM, a and E &#x3E; 0, the set

~ ih ~: ~ E, 0 E=- A I is bounded in WM, a .

PROOF. For 0 E WM, a and we have

Now, using the convexity property (1), we get

so that (i) and (ii) follow from inequality (6).

THEOREM 2.2. For each 0 E WM, a the translate rh (P is differen-
tiable in 1.

PROOF. From [6, p. 734] we know that a function 0 E WM, a is dif-
ferentiable in WM, a space. Since E it follows that is dif-
ferentiable in WM, a .

Now, we recall the definition of a convolute [3, p. 137].
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DEFINITION 2.3. Let V be any test function space and V be its
dual. A generalized function is said to be a convolute if for each
~ E E V, and 0, -~ 0 implies - 0 in the topology of V.
If f is a convolute and g E V, the convolution of f and g is given
by

THEOREM 2.4. Let f E (WM, a)’ and ø E then E WM, b ,
where ~,r~l and 

PROOF. From [6, p. 734] we have

Therefore for 0 E WM, a we have

So that for 1/p + 1/g = 1, we have
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Therefore, for ( b &#x3E; a &#x3E; 0), we have

Hence for

In particular, taking r = p we have f* ø E WIt, b, b &#x3E; a. Therefore f is a
convolute in 

THEOREM 2.5. Assume that b &#x3E; a &#x3E; 0. Then WM, b is a dense sub-
space of WM, a for 1 ~ ~  00.

PROOF. Let 1 .) such that I

. Defme

Set uv u. Then uv E D(R). It can be easily seen that uv - u in
WL, a. Therefore D is dense in WL, a. Since D c (WM, b), it follows that
WM, b is dense in WL, a. Consequently 

3. - Fourier transform.

PROOF. From [6, p. 734] we again have

and
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Now,

which is known to be an element in
Since

is an element of ( WM, b )’ , ( a ~ b). Also, since (WM, b)’ is closed with

respect to differentiation, hence the distributional derivative

] is also an ele-
ment of ( WM, b)’. Furthermore b)’ implies that 
E (Wll, lib)’ by Gel’fand and Shilov [4].

Now, Then,
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DEFINITION 3.1. is said to belong 1

THEOREM 3.2. If f E (0:)’ and then

. F(g) in the sense of equality in 

PROOF. Let O E WQ, 1/a, p, then we have

Since belongs to

WL, b by Theorem 2.4, then right-hand side is meaningful. Now, using
(8) we have
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where Then the last expression
equals

Therefore,
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