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Interior Differentiability of Weak Solutions
to Parabolic Systems

with Quadratic Growth Nonlinearities.

J. NAUMANN - J. WOLF

SuNTO - Sia u E W2 ~ o (Q; e) f1 e) x ( 0, T), 92 aperto)
una soluzione debole di un sistema nonlineare parabolico ad adamento qua-
dratico. Utilizzando nuove stime sulle differenze di u rispetto a t E ( o, T), di-
mostriamo che Vu E + y/n)(Q; RnN). Da questo risultato si deduce facil-
mente 1’esistenza delle derivate seconde spaziale di u in 

1. - Introduction. Statement of the main result.

Let S~ (n ; 2) be a bounded open set, and let 0  T  + oo. In

the cylinder Q = S~ x ( o, T) we consider the following system of nonli-
near PDE’s:

where

Vu i ~ ( = matrix of spatial derivatives ) .

Throughout the whole paper, the functions At and Bi are assumed to

(*) Indirizzo degli AA.: Institut fur Angewandte Mathematik, Humboldt-
Universitat zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany.

(1) ggt = 3(pl,3t, (a = 1, ..., n). - In what follows, repeated
Greek (resp. Latin) indices imply summation over 1, ..., n (resp. 1, ..., N).
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satisfy the following conditions:

continuous on

REMARK. For the sake of technical simplicity and clarity of
the presentation of our method, we assumed that At, Bi depend on
~( E only. Indeed, an inspection of the proofs below shows that our
main result continues to hold for Carath6odory functions

obeying (1.3) and (1.4) uniformly for all ( x, and all 
= const (ci, C2 = const  + 00 possibly depending on M). This is readily
seen by some additional elementary calculations of our arguments
below. 8

Let ( 1 ~ ~  + (0) denote the usual Sobolev space. Given
0  0  1, let

Define

Next, let 1  p  +00 and - 00  a  b  +00, and let X be a nor-
med vector space with Then LP (a, b; X ) denotes the vector
space of all (classes of equivalent) Bochner measurable functions
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~ such that

In what follows, we identify the spaces T ; and (2).
Finally, set

etc. 0

We introduce the notion of weak solution to (1.1) regardless of whe-
ther or not the solution under consideration is subject to any boundary
or initial condition.

Let (1.2) and (1.4) be satisfied. A vector function u E W2 ~ o (Q; is
called a weak solution to (1.1) if

The local square integrability of the second order spatial derivati-
ves of a weak solution to (1.1) can be easily proved by the method of dif
ference quotient when

is known.

By adapting the method from [2], it has been proved in [3] that for
any weak solution u E n ( o  y  1) (3) there
holds

(2) This identification is possible by virtue of the linear isometry
Lp(0, T; Lp(Q)) = Lp(Q).

(3) A function v is in Cy (Q) if there exists a constant K  + oo (depending on
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These techniques have been further developed in [4] (however, without
achieving (1.6)).

In [5], the integrability property (1.6) has been proved under addi-
tional differentiability properties on Bi and the (generally non verifia-
ble and unpleasant) condition 1/2  y  1 on the Holder exponent y of
the weak solution under consideration. The aim of the present paper is
to remove these two restrictions. Our main result is the following

Obviously, the growth condition (1.4) on Bi, and (1.9) imply E

E L1~1 + yln) (Q) (i = 1, ... , N). Then the method of difference quotient gi-
ves straightforwardly:

We impose the following stronger conditions upon At:

(a, ~8 = 1, ... , n; i, j = 1, ... , N). Clearly, (1.11)-(1.13) imply the respec-
tive conditions upon A a in (1.3) and ( 1.4).

COROLLARY 2. Let At and Bi satisfy ( 1.11 )-( 1.13) and (1.2), (1.4),
respectively. 

-- - u

) be a weak solution
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Indeed, observing (1.10) we obtain from (1.5) by integration by
parts

for all q E C," (Q; Whence (1.14). 8

The technical preliminaries for the proof of our theorem are presen-
ted in Section 2. In Section 3 we derive L2-estimates on appropriate dif-
ferences of u with respect to t. These estimates are substantial refine-
ments of those in [5] and play the key role for the proof of our theorem.
This proof will be given in Section 4. It makes use of (1.7) and our resul-
ts from Section 3, combined with an interpolation argument.

REMARK. An inspection of the proof of our theorem (as well as the
proof in [3]) shows that (1.8), (1.9) remain true for weak solution u E
E (resp. u E RN) n L 00 ( Q ; 1~ ) in the more gene-
ral situation of [3]) such that u E for any subcylinder Q’ c
c Q’ c Q. This local character of Holder continuity is well-known from
the theory of partial regularity of weak solutions to nonlinear elliptic
and parabolic systems. 8

2. - Preliminaries.

In this section, we present some elementary technical results which
will be used in our subsequent discussion.

2.1. Change Let 

1) Let ~, E ( - to , 0 ). Then:
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2) Let Ae(0, T - to ). Then:

Statements 1) and 2) can be easily proved by combining the change of
variables theorem and Fubini’s theorem. 0

2.2. Steklov mean. x R), f = 0 a.e. in Q x (( - oo , 0) U
U ( T, +00)). The Steklov mean of f (with respect to t) is defined by

By H61der’s inequality and Fubini’s theorem,

Observing the density of C(Q) in we as

A-~0.
The function h. possesses a weak derivative more

precisely, there holds



259

Indeed, let 99 E Cc°° ( ~ ), and assume A &#x3E; 0. We have

for all 0  h  A. An analogous reasoning is true when A  0. Whence
(2.4).

In addition, assume x R) (a = 1, ... , n ). Then, for any
~, e R (À. ;1! 0),

2.3. Differences.
For defines

The Steklov mean (with A = h) of the function L1 hf is

An elementary calculation gives

Finally, let ~ J



260

and let i E C(R), supp ( z) c ( to , tl ). Then it is easily
seen that

for

3. - Difference estimates.

Let u E be a weak solution to (1.1). Let Q’ and
0  to  tl  T be arbitrary. We localize (1.5) with respect to t as
follows:

(notice that the exceptional set in (to, tl ) depends neither on 1/J nor
on ~,).

To prove (3.1), we first assume 0  A  T - tl. Let E
E w2l, 0 (Q; e) fl .~ °° (Q; e) have its support in Q x (0, tl ). We extend
qg by zero onto SZ x (( - oo , 0) U (tl , +00)) and denote this extension
again by 99. Then the function

is admissible in (1.5). Observing (2.2) (with tl in place of to) and (2.4),
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(2.5) we obtain

Next, fix Q * such that Q’ c c Q* C C Q and 3S* is of class C 1. Let 1jJ E
0

E W1p(Q*; RN) (1) (n  p  + oo). We extend 1jJ by zero onto and

keep the notation 1jJ for this extension. Thus 1jJ E RN). Finally,
let ?7 E C~ ((0, tl )). Inserting q?(x, t) = ip(x)t7(t)((x, t) E Q) in (3.2) we get
by a standard argument

for a.a. t E (to, t1 ), where the exceptional set possibly depends on 0 and
À. Observing the separability of and R we obtain (3.1’) for all

tp E RN ) and a.a. t E with an exceptional set indepen-
dent of ip and À.

Let a.e. in QBQ’. Let y~ m
(m = 1, 2, ...) denote the standard mollification of We have 

(Q * ; RN ) for sufficiently large m, and max ! ess sup for
Q Q

all m. Inserting tp m into (3.1’) and letting gives (3.1).
Let have its

support x ( to , T). Then we insert the test function

into (1.5) and make use of (2.1) and (2.4), (2.5). By an analogous argu-
ment as above we obtain (3.1)..

Let S~ ’ c c S~ and 0  to  tl  ?’. The localized form (3.1) of the no-
tion of weak solution to (1.1) is the point of departure for proving the
following

LEMMA 1. Let be a weak solution
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to ( 1.1 ). Then:

with CI = const not depending on h.

PROOF. Let and be a cut-off fun-
ction such that 0 ~ ~ ~ 1 in Q, ~ --- 1 on S~ ’ .

Let 0  h  T - tl. Setting A = h, (2.4) gives

and (3.1) (with in place of S~ ’ ) implies

for a.a. t E (to , tl ) and aU1jJ E W2(Q; n L 00 (Q; = 0 a.e. in

S~~SZ ". The function y~(x) _ t) ~(x) (t E (to , being admissi-
ble in (3.4) it follows that

By (1.4) and (2.3),

(1) By c we denote positive constants which may change their numerical value
from line to line, but do not depend on h.
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The estimation of the other terms on the right of (3.5) is readily seen
by the same arguments. Whence (3.3).

Let - to  h  0. From (2.4) it follows that

Then (3.1) gives

Inequality (3.3) is now easily seen. 8

As above, let c c Q and 0  to  tl  T. We 6x cut-off functions

supple Q’, 0 ~ ~ ~ 1 in R~ and supple
c ( to , t1), 0  r - 1 in R. The following result plays the key role for the
proof of our theorem.

LEMMA 2. Let u E f1 L 00 (Q; e) be a weak solutions
to ( 1.1 ). Assume

Then:

with C2 = const not depending on h.

PROOF. We extend u by zero onto S2 x (( - oo , 0) U (T, +00)). Let
0 h ~ I  mm{l,(~/4),(?’-~i)/4}. The function



264

is admissible in (1.5). By (2.4),

a.e. in Q. We insert q? into (1.5) (and multiply by -1 in the case h &#x3E; 0).
Using (2.8) and (2.9) it follows that

We estimate the integrals I I, ... , Is . First, we have

Here the first integral on the right can be bounded by using (3.41).
Clearly, d h (d - h ( ~ )) = d _ h (d h ( ~ )). Thus, by (2.6),
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Observing (2.3) and (2.7) we obtain

where the last integral can be bounded again by using (3.3) (with 3to /4
and (T + 3t1 )/4 in place of to and tl, respectively). Hence

From the structure of I2 it is easily seen that this integral can be es-
timated by the same bound as I,.

To estimate 13 we make use of (1.4):

Again combining (2.6) and (2.3), (2.7) (cf. (3.9)) it follows that

(7 ) Note that ~=(./~.
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and thus

The estimation of 14 parallels the one of I, and 13:

Finally, the estimation of 15 makes essential use of (3.6). First, by
(1.4) and H61der’s inequality,

Next, using once more (3.9) and observing that

(for a.a. (x, t) e Q), we find
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Thus,

Inserting the estimates on I,, ..., 15 into (3.8) and multiplying by
lhl I gives (3.7). 0

4. - Proof of the Theorem.

We divide the proof of the theorem into four -steps.

. From [3] it
follows that I

(cf. also [5; p. 60]).
In particular, q = 2( 1 + 8 ) gives

Whence (3.52).

2) 
T E Coo (R) be cut-off functions such that supp ( ~) c S~ ’, 0 ~ ~ ~ 1 in R"
and supp (T) c (to , t1 ), 0 ~ r ~ 1 in R. Set

Let 0 We consider (3.1) for a.a. t E (to , and 0  1"-1 I ~
form the difference L1 h and insert the test function =
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integration the interval (t’ , tí) then gives

We let tend ~, -~ 0 and make use of (1.3). It follows that

where the second integral on the right can be estimated by the aid of
Lemma 1.

The estimation of 12 by an appropriate power of ~ h ~ I is the crucial

point. To this end, we combine (4.2) and Lemma 2 above. Observing
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(~~4) and (2-.8) we obtain

Finally, we estimate 13 by using once more Lemma 1.
Let Q" c c S~’ and t’  to  tí’  t’. Specializing the cut-off functions

such that ~ = 1 on ~ z = 1 on (~, t") from (4.3) it follows that

here the constant C3 depends on but is indepen-
dent of h. Thus, 

w R

where 04-~+00 as Q -~ (p - 2)/4. *

3) Estimate (4.4) implies the fractional differentiability of Vu
with respect to t: there exists 0  ð 0 ~ ho such that



270

for all 0  ~o  (p - 2 )/4, the constant c being independent of p
(cf. [5]).

Next, set

Then (4.47) and (4.5) imply

Hence, by virtue of Sobolev’s imbedding t1 )
(cf. e.g. [1]), i.e.

4) Proof of (1.8). Let 4 ~ s  4n/(n - 2y). Then we fix q such
that

Letting denote

we have

Obviously, F( o ) &#x3E; 1/4 &#x3E; F( 1 ). The continuity of F implies the existence
of a (0, 1) such that
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Now we fix 81 E [00, 1) satisfying

The function F being decreasing on [ o, 1 ] it follows that F( 81 ) ~
~ 1 /4 .

From (4.1), (4.6) we get by virtue of (4.7), (4.8) ( e = 81 ) via

interpolation

(cf. e.g. [6; Th. 1.18.4, p. 128]). Whence (1.13).

Hence, there exists q such that Q  q  4n/n - 2y) and

As above, let denote

Then

Now we first choose 3  p  4 and then 1/4  O  (p - 2)/4 such
that

It follows that F( o ) &#x3E; 1 /4 ~ 1/7 &#x3E; F( 1 ). By an analogous argument as
above we find a 0 * E (0, 1) such that

As above, interpolation gives
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