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Connections on Infinite Dimensional Manifolds

with Corners.

J. MARGALEF-ROIG (*) - E. OUTERELO-DOMÍNGUEZ (**)
E. PADRÓN-FERNÁNDEZ (***)

ABSTRACT - In this paper we study connections for surjective C~°-submersions on
manifolds with corners, invariant by CP-actions of Lie groups which are com-
patible with the equivalence relation defined by the submersion. In this con-
text the principal connections and linear connections are studied as particular
cases of these connections. Previously we adapt the vector bundle theory to
be used in the paper, to the field of infinite dimensional manifolds with
corners.

1. - Introduction. 
’

In [5], P. Liberman defined connections for surjective submersions
~: M --~ B, as excisions of the exact sequence of vector bundles

An analogous definition of connections on smooth vector bundles
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was given by J. Vilms in [11], and a systematic study of this type of con-
nections on fibre bundles can be found in [3].
The present paper concerns on G-connections, i.e., connections on sur-
jective CP-submersions a: M - B that are invariant by CP-actions of
Lie groups on M which are compatible with the equivalence relation
defined by a in M.
A first original feature of this construction is that has been made in

the realm of Banach differentiable manifolds with corners. A second
main feature of this viewpoint is that principal connections and linear
connections become particular cases of G-connections.

First we introduce a paragraph 2. about vector bundles on Banach
manifolds with corners in order to have the results that will be used la-
ter. The paragraph 3. concerns with G-connections and the main result
is Proposition 3.2 which establishes several characterizations of this
type of connections. An existence theorem in this general context is an
open problem.

In Paragraph 4. the principal connections has been studied as parti-
cular cases of G-connections and an important characterization by 1-for-
ms is established.

Finally, in paragraph 5, linear connections are considered as (R -
- {0})-connections, where the is the scalar product in
the fibers. Although a general existence theorem is not available, in 4
and 5, we prove existence theorems for principal connections and linear
connections respectively.

2. - Vector bundles on manifolds with corners.

Firstly we recall the definition of a vector bundle of class p on inf’mi-
te dimensional manifolds with corners.
Let M be a set, B a CP-manifold, 1l: M - B a surjective map, r =
-(M,B,~t) and 
We say that ( U, 1/J, F) is a vector chart on r if F is a real Banach spa-

ce, U is an open set of Band 1/J: U x F --~ ~c -1 ( U) is a bij ective map
such that :rc ° 1jJ = p1, where PI is the first projection from U x F onto U.
In this case the map 1/J b: = Mb , defined by 1/J(b, v),
is bijective.

Let ( U, 1/J, F), ( U’ , 1/J’ , F’ ) be vector charts of r. We say that they
are CP-compatible if there is a Cp-map p : Un U’ - L(F, F’ ) such that
1/Jb o,u(b) = 1/Jb for every be un u’ . Note that li(b) is a linear homeo-
morphism for every b cun U’ .
A set ’V of vector charts on r is called a vector atlas of class p if the

domains of the charts of v cover B and any two of them are

Cp-compatible.
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_ 

Two vector atlases V, V’ of class p on r are called CP-equivalent
if v U ’V’ is a vector atlas of class p on r.

One proves that Cp is an equivalence relation over the vector atla-
ses of class p on r.

If v is a vector atlas of class p on r, then th- class of equivalence [’~]
is called a C~°-structure of vector bundle on r, and the pair ( r, [ v]) is cal-
led a vector bundle of class p or CP-vector bundle. The vector bundle
(r, [ V]) will be denoted by (M, B, ir).

Let r = (M, B, ~c) be a vector bundle of class p. For every b E B the-
re is a unique structure of topological real linear space on ,~ -1 ( b ) such
that for every vector chart ( U, 1jJ, E) of r with b E U, the map

is a linear homeomorphism. This topological real vector space Mb is
a real banachable space. Moreover, there is a unique structure of
differentiable manifold of class p on M such that for every chart

of B and every vector chart (U, 1jJ, F) of r,
c’ = (1l-I(U), a, (E x F, 4pi )) is a chart of M, being

the map given by a(x) _ (qJ(1l(x», y~,~x~ (x)). Thus 1l: M - B is a sur-
jective CP-submersion that preserves the boundary (Jr(8M) = aB), for
every x E M and Bk M =
= 1l -I (Bk (B)) for every k e N U 10 1. Therefore for every b e B, Mb is a
CP-submanffold of M without boundary whose Cp-differentiable struc-
ture coincides with the usual differentiable structure of the banachable

space Mb . Let r = (M, B, 1l) and r’ _ (M’ , B’ , 1l’) be vector bundles
of class p and f : B - B’ a CP-map. A map g: M - M’ will be called f-
morphism of class p if for every bo E B there are vector charts ( U, 1jJ, F)
and ( U’ , y’ ’ , F’ ) of r and r’ respectively, with bo E U and/(!7) c U’ and
there is a CP-map h: U ~ L(F, F’ ) such that for every b E U the

diagram

is commutative. If B = B’ , f = 1B and g is an f-morphism of class p, one
says that g is a B-morphism of class p. If g: M ~ M’ is a bijective B-
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morphism of class p, one says that g is a B-isomorphism of class p. In
this case g is a Cp-diffeomorphism, g-1 is a B-isomorphism of class p and
(g -1 )b = gb 1 for every b e B .

Note that if g: M --~ M’ is an f-morphism of class p, then

’ -map and f

and

(2) gb : is a linear continuous map for every b E B.

The converse is not always true. We can only prove that g is an f
morphism of class p - 1, (p &#x3E; 2). If (1) and (2) hold true and P = 00 or
r = (M, has finite range ( dim Mb  00 for every b e B ), then g is
an f-morphism of class p.

Every f-morphism g of class p verifies that f(aB) g,3B’ if and only if
c aM’ . Moreover, f preserves the index if and only if g preserves

the index. Consequently, every B-morphism of class p preserves the
index.

Let r = (M, B, 7l) be a vector bundle of class p. One says that r is
trivializable if there is a real Banach space F such that the trivial vector
bundle (B x F, B, p1 ) is B-isomorphic to r.

Let r = (M, B, ~) be a vector bundle of class p, B’ a C~°-manifold and
f: B’ --~ B a CP-map. Consider the set

and the maps and g : B ’ x B M -~ M given by
~c ’ ( b ’ , x ) = b ’ , g ( b ’ , x ) = x . Then there is a unique vector bundle
structure of class p on r’ _ (B ’ x B M, B ’ , ;r’) such that g is an f mor-
phism of class p from r’ to r. This vector bundle is also denoted by
f * (r) _ ( f * (M), B’ , f * (~c)) and called pullback of r by f. If t =
= ( U, y~ , E ) is a vector chart of r, then t ’ = ( f -1 ( U), ~ ’ , E ) is a vector
chart of f * (r), where

is given by y~’ (b’ , v) _ (b’ , 
Finally it can be easily proved that for every b’ E B’

is a linear homeomorphism,
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for every (b’ , x) E f * (M) and ( f * (M), f * (~), g) is a fibered product
of the 

Note that, in general, the set f * (M) is not a submanifold of B’ x M.
For example: IfB=jB’=[0, oo),/(&#x26;~)==(&#x26;~)2 for every b’ E B’ and
we consider the trivial C°’ vector bundle (M = B x R, B, pi ), then
f * (M) = {(&#x26; B (b’ )2, t)/t E R, b’ E [0, oo)} is not a submanifold
of B’ x B x R. Nervertheless if r = (M, B, jr) is a CP-vector bundle

and f: B’ -~ B is a CP-map such n I is transversal (these hypo-
theses imply that (Int (B’ ) x aM) fl f * (M) = ø. Indeed, if (b’ , x) E
E (Int (B’ ) x aM) fl f * (M), then f(b’ ) _ ~c(x) = b E Bk, (B), k’ &#x3E; 0 and

Tb, f - Tx Tb, B’ x Tx (Bk- M) -~ Tb (B) is not a surjective map
since and Tx (1l 
which contradicts the transversality then the set f * (M)
is a totally neat CP-submanifold of B’ x M ([7], 7.2.7) and

is the fibered product Thus,
this structure of CP-manifold coincides with the structure of manifold
induced by the structure of vector bundle on f * (M).

PROPOSITION 2.1. Let (M, B, ;r) and (M’ , B’ , n’) be vector bun-
dles of class p and f: B’ -~ B a CP-map. If h: M’ -~ M is an f-mor-
phism of class p then there is a unique B’-morphism h * : M’ --+f * (M)
of class p such that g o h * = h being g: f* (M) - M the map defined by
g(b’ , x) = x.

Now if (M, B, yr) is a Cp-vector bundle and B’ is a Cp-submanifold of
B, then the and j * (M) are CP-dfffeomorphic,
where j: B’ -~ B is the inclusion map, and there is a unique C~°-vector
bundle structure on ( ~ -1 (B ’ ), B ’ , such that the inclu-
sion jr’~(J5’)-~M is a j-morphism of class p . Moreover the

map h: j * (M) -~ ~ -1 (B’ ) defined by h(b’ , x) = x, is a B’-isomorphism
and the Cp-differentiable structure given by is the one given by
the submanifold 

As a particular case, for every k E N U 10 there is a unique CP-vee-
tor bundle structure on (Bk (M), Bk (B), such that jl: Bk (M) -~
~ M is a j-morphism ( j: Bk (B) -~ B) of class p.

Let r = (M, B, ;r) be a vector bundle of class p and M’ c M. One sa-
ys that M’ is a CP-subbundle of .r if for every b E B there is a vector
chart t = ( U, E) of r with b E U and there is a closed linear subspace
F of E which admits topological supplement in E such that

In this case there is a unique CP-vector bundle structure on
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such that the inclusion j: M’ - M is a B-morphism of
class p. Moreover for every b E B, M’ is a closed linear sub-

space of Mb which admits a topological supplement in M , the set M’ is
a closed totally neat Cp-submanifold of M (Indeed, for every x E M’ ,
n(x) = b E B and there is a vector chart ( U, 1jJ, E) of r with b e U and
there is a closed linear subspace F of E which admits a topological
supplement in E such that Let

( U, ~, (H, 4 )) be a chart of B. Then (jr’~(!7), a, (H x E, A - pl)) is a
chart of M where a(y) _ (~p(,~(y)), yy~) (y)), 
= fl Ha x F and fl Ha x F is an open set in
Ha x F. Thus M’ is a closed totally neat submanifold of M) and M’
as submanifold of M coincides with M’ as manifold induced by
(M , B, ~c ~ M. ).

Let r" _ (M" , B, a"), r = (M, B, jr) be CP-vector bundles, M’ a CP-
subbundle of r and f: M" - M a map such Then, f is a
B-morphism of class p of r" into r if and only iff is a B-morphism of class
p of r" into (M’ , B, nIM’).

Let r = (M, B, Jt) be a Cp-vector bundle, M’ a Cp-subbundle of r and
R the equivalence relation on M defined by

xRy if and only if there is b E B such that x, y E Mb and x - y E Mb .

Then there is a unique CP-vector bundle structure on (M/R, 
where such that the natural projection p: M - M/R is a
B-morphism of class p. This vector bundle is called quotient vector bun-
dle. If b E B, there is a vector chart ( U, 1jJ, E) of r with b E U and there
is a closed linear subspace F of E which admits a topological supple-
ment in E such 
is a vector chart of (M’ , and ( U, ~" , E/F) is a vector chart of
(M/R, B, 5), where y~" (b, [v]) _ [~(b, v)]. For every bEB,95b:

(MIR)B defined + Mb ) _ is a linear homeomor-

phism. Finally : M ~ M/R is a CP-submersion (with the differentia-
ble structures induced by the vector bundles), = 8(M/R) and R
is a regular relation.

Let r = (M, B, a), rl = (Ml , B, jri) be vector bundles of class p and
g: M 2013~ M1 a B-morphism of class p. One says that g is locally direct if
ker (g ) = U ker (gb ) is a vector subbundle of r and im (g ) = U 

beB beB

is a vector subbundle of rl (it is clear that = B and
~c1 (im(g)) = B). In this case g: M/ker (g) ~ im (g) defined by g([x]) _
= g( x ) is a B-isomorphism.

Let (M, B, n),(M1, B, nl) and (M2 , B, n2) be vector bundles of
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class p and f: g: M --~ M2 B-morphisms of class p. One says
that

is an exact sequence if f and g are locally direct and ker (g ) = im ( f ). (If
more than two B-morphisms are considered, the generalized definition
is the obvious one). 

’

We have the following results:

PROPOSITION 2.2. Let r = (M, B, ¡r), r’ = (M’ , B, a’) be CP-
vector bundles and f : M ’ - M a B-morphism of class p. Then the follo-
wing statements are equivalent:

1) 0 ~ M is exact, where 5 is the trivial vector bundle
(B x 0, B, p1 ) and e: B x is the locally direct B-morphism
given by e(b, 0 ) = Ob E Mb .

2) f is injective and im ( f ) is a CP-vector subbundle of r.

3) im ( f ) is a CP-vector subbundle of r and f: M ’ - im ( f ) is a
B-isomorphism.

4) For every b E B, there exist ( U, 1jJ’ , E’ ) vector chart of r’ with
b E U and ( U, 1jJ, E) vector chart of r such that E’ is a closed linear sub-
space of E that admits a topological supplement in E and f o 1jJ’ (x, v) =

v), (x, v) E U x E’ .

5) For every b E B, fb : Mb -~ Mb is injective and im (fb) admits a
topological supplement in Mb .

PROPOSITION 2.3. Let B be a paracompact CP-manifold which ad-
mits partitions of unity of class p, (M, B, R), (M’ , B, R’) vector bun-

dles W classfp and f: M’ - M a B-morphism of class p such that B x
x 0 - M’ -~ M is exact. Then there is a B-morphism g: M - M ’ of
class p such that g o f = 1M, and ker gb admits topological supplement in
Mb for every b E B .

PROPOSITION 2.4. Let r = (M, B, ,~), r’ = (M’ , B, ¡e’) be vector
bundles of class p and f: M ~ M’ a B-morphism of class p. Then the
following statements are equivalent:

is exact.

2) f is surjective and ker( f ) is a CP-vector subbundle of r.

3) ker( f ) is a CP-vector subbundle of r and f: M/ker( f ) ~ M’ ,
given by f([x]) = f(x), is a B-isomorphism of class p.
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4) For every be B, there exist ( U, 1jJ, E) vector chart of r with be
E U and ( U, 1/1’ , E/F) vector chart of r’ , where F is a closed linear sub-
space of E that admits a topological supplement in E, such that
f 0 v) = 4,’(x, p(v)), where p: E - E/F is the natural projection,
(x, v) E U x E.

5) For every b E B, fb : Mb ~ Mb is surjective and ker ( fb ) admits a
topological supplement in 

Notice that the sequence of vector bundles and B-morphisms of
class p

where M has finite rank, is exact if and only if Mb is exact
for every b E B.

PROPOSITION 2.5. Let us consider the sequence o, f C,-vector bun-
dles and B-morphisms of class p

Then this sequence is exact if and only if im ( f ) is a CP-vector sub-
bundle of (M, B, a), f: M’ --~ im ( f ) is a B-isomorphism of class
p, im ( f ) = Ker (g) and g: is a B-isomorphism of
class p. n

PROPOSITION 2.6. Let B be a paracompact CP-manifold which ad-
mits partitions of unity of class p, (M, B, ~), (M’ , B, a’), (M" , B, ¡c")
vector bundles of class p and f: M’ - M, h: M ~ M" B-morphisms of
class p such that

is exact. Then M" is B-isomorphic to a vector subbundle of M and there
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is a B-morphism s: M" - M of class p such that h 0 s = 1M". D

Let f: X - X’ be a CP-map (p &#x3E; 2). Then Tf: TX - TX’ is a f mor-
phism of class p - 1 and there is a unique X-morphism T * f: TX -
-~ f * (TX’ ) such that g o T * f = Tf where g is the second projection. Mo-
reover X x 0 - TX % f * ( TX ’ ) is exact if and only if Tx f is injective
and admits a topological supplement in for every x E X

(if f( 8X) c 9X’ and ind (v) = ind Tx f(v) for every v E ( Tx X)i , then X x
x 0 - TX ~ f * ( TX ’ ) is exact if and only if f is an immersion (see 3.2.11
of [7])). Now if Tx f is injective and im (Tx f ) admits a topological supp-
plement in Tf(x) (X’), we can consider the quotient vector bundle

(/*(7~~))/!r~rX),~~(jr~)) where is the tangent
vector bundle of X’ . This quotient vector bundle will be called normal
vector bundle of f.. T*f

If f: X - X’ is a CP-map (p &#x3E; 2), then TX t*f - f * (TX’ ) - X x 0 is
exact if and only if Tx f is surj ective and ker ( Tx f ) admits a topological
supplement in TxX for every (If /(3Z)c3ZB then

TX % f* (T(X’ )) -X x 0 is exact if and only if f is a CP-submer-
sion). If, for every x E X, Tx f is surjective and ker ( Tx f ) admits a
topological supplement in Tx X then ker ( T * f ) is a Cp - 1-subbundle of
(TX, X, 7r) (which will be called the relative tangent vector bundle
and will be denoted T(X/X’ ) or V(X)) and if moreover f(aX) c 3X’
we have that Tx (f -’(f(x))) = T(X/X’)x for every x E X and 0 -

. Txfi- TxX txf- Tf(x) X’ - 0 is exact.
Let ~: M - B be a CP-submersion (p ~ 2). Then there exists a uni-

que T * ¡e: ( TB ) such that g o T * n = Tn,
where g is the second projection and

is exact I
Let I be a finite set such that I = I- U I + and 7. fl 1+ = 0, C, the

class of objects {E = {Ei}iEI/Ei is a real Banach space} and 
the set for e CI. For

every 1 e Hom (E, E) x Hom(E’, E") one defines
Hom (E, E" ). It is clear that Gi =

= (CI, 
, 

U E’)) with the preceding composition is a catego-
(E, E’) E C1 x C1

ry, where 1, = for every E = lEi I E CI .
If r: 0152¡ 2013~ ? is a covariant functor, where 33 is the category of real
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Banach spaces and linear continuous maps, such that for every (E, E’ ) E
E C¡ x C/, the map

is of class p, one says that r is a vector functor of type I and class p.
Let r: be a vector functor of type I and class p and M =

I a family of vector bundles of class p . Then there is a
unique vector bundle structure of class p on

where IDlb and such that if is a

vector chart of (M i , e I then ( II Ui , is a vec-
tor chart of this structure, where 

i E I

is defined bv
If Bi = B for all i E I , then there is a unique vector bundle structure

of class p on 1 , where and

such that if ( U, Ei ) is a vector chart of (Mi , B, 
then is a vector chart of this structure,

where

is defined by
As a particular case we obtain the vector bundle of linear continuous

maps. Indeed, let us consider I = {1,2},7+ =={2},7-. = { 1 },

the covariant functor defined by = L(E1, E2 ) and
for every 

and the family of vector bundles of class p 3K =
= ~(M 1, B1, 1r1)’ (M2 , B2 , jf2 )}. Then r is a vector functor of type I and
class 00 and there is a unique vector bundle structure of class p on

) such that if ( Ul , E1 ) and

( ~I2 , V2, E2 ) are vector charts of (M’, Bi, yri) and (M2 , B2 , ;r2) re-
spectively, then (1 )) is a vector chart of this struc-
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ture, where

is defined by We adopt the notation
there is a unique

vector bundle structure of class p on

= L(M , M2 ), B, jr) such that if ( U, ~ 1, E1 ) and ( U, 1/J2, E2 ) are vec-
tor charts of and (M2 , B, ~2 ) respectively, then
(U, 1/J, L(E1, E2 )) is a vector chart of this structure, where

is defined by v ) = (b, (tfJ2)b o v o ( y~ 1 )b 1 ) .
Let I be a finite set such that I = I + and I = 0, r: ~I --* 93 the cova-

riant functor defined by = R Ei and = II fi and
ieI ieI

a family of vector bundles of class p. Then z is a
vector functor of type I and class p and there is a unique vector bundle
structure of class p on where 

that if ( U, 1jJ i, Ei ) is a vector chart of (Mi , B, i E I, then
(U, y, fl Ej) is a vector chart of this structure, where 1jJ( b, v) =

i e i

- (b, II ( y j )b )(v). This vector bundle will be called Whitney sum of 9 and
i E I

r will be called Whitney vector functor. Notice that pi : i

defined by pi (b, r ) = xi E Mb is a B-morphism for every i E I and
(Di,=- IM’ defined by (,?Li (xi ), ( o ... , xi , ..., 0)) is a B-

morphism for every z E I.
Let z be the Whitney vector functor, f: B -~ B’ a CP-map, =

- ~((M’ )2, B’ , I a family of vector bundles of class p, (M, B, ~) a
vector bundle of class p and ui : M -~ (M’ )~ an f-morphism of class p for
every Then defined by u(x) _
= (j(n(x», (ui (X»ieI), is an f-morphism of class p.

Let r be the Whitney vector functor, f: B - B’ a CP-map, 
= ~(M2 , B, a family of vector bundles of class p, (M’ , B’ , a

vector bundle of class p and vi : an f-morphism of class p for
every i E I. Then

’ defined by 
is an f-morphism of class p

Let r be the Whitney vector functor, where I
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and

a family of vector bundles of class p. Then

is exact.

PROPOSITION 2.7. Let

be an exact sequence of CP-vector Then the following state-
ments are equivalent:

a) There exists a B-morphism of class p, s: M" -~ M such that
gos = 1M",

b) There exists a B-morphism of class p, r: M - M’ such that
rof = 1M,.

c) There exists a CP-vector subbundle M"’ of (M, B,.7r) such that
(M, B, n) is B-isomorphic of class p to ( f(M’ ) ED M"’, B, ¡e * ) by means
of the map 1jJ(b, (xl , X2)) = Xl + X2 E Mb (consequently ®TM"’b =
= Mb for every b E B).

Moreover if a), then f + s: M’ ED M" -~ M is a B-isomorphism of
class p.

PROOF. a) - c). We have that a = s o g: M - M is a B-morphism of
class p, a o a = a and ker(a) = im ( f ) is a CP-vector subbundle of

(M, B, On the other hand im ( a ) = s(M" ) is a CP-vector subbundle of
(M, B, n). Indeed, for every b E B we have gb 0 Sb = 1Mb , Sb is injective,
by (3.2.18 of [7]) is closed in Mb and im (Sb) admits a topological
supplement, ker(gb ), in Mb . Thus s: M" - M is injective and s(M" ) is a
CP-vector subbundle of (M, B, n).

Then im ( fb ) EÐT im ( a b ) = ker ( a b ) (DT im ( a b ) = Mb for every b E B
and (f(M’) EÐ im a = ker a fli im a, B, ~t * ) is B-isomorphic to (M, B, n).
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b) - a) We have that 8 = f o r: M -~ M is a B-morphism of class p,
= # and im(#) = f(M’ ) is a Cp-vector subbundle of (M, B, 1C). On

the other hand, since rb = 1, , ker(r) is a CP-vector subbundle of
(M, B, jr) and = ker(r). Moreover the map cp: im( f ) ®
? ker (r) - M,. defined by 99(b, (xl , x2 )) = x, + x2 E Mb , is a B-isomor-
phism, ker (r) -~ M -~ M" is a B-isomorphism, s - M
is a B-morphism and g o s = 1Mn .

c) - b) Let c~: M - f(M ’ ) Q3 M"’ be the B-isomorphism given by c).
Then

is a B-morphism which verifies b).
We know that f + s: M’ ® M" --~ M is a B-morphism of class p. But,

if a) holds (see proof a) - c)) f + s is bijective. Thus f + s is a B-isomor-
phisms of class p.

Let 3R = {(MB be a finite family of vector bundles of
class p, U an open set of B and si : a CP-section of (Mi , B, ni)
for every i E I. Then defined by (

is a CP-section of B, 1l) and

~ S¡i E 1 Mi ( U) defined by .)-module isomor-
phism. 

" IF= I

Let be a finite family of vector
bundles of class p such that is a transversal

family of maps. Then is a totally neat sub-
manifold of class p of Ml x ... and f E)

are Sbered products
defined by

~~~(~)t=i,...,~)=(~~=i,...,~ is a CP-diffeomorphism.
Let us consider Xi, X2 manifolds of class p, 

X2, jp2) the tangent vector bundles of X, and X2 respectively, pi:
Xi x X2 - Xl, P2: Xl x ~2 -~ X2 the projections. Then x X2),

12-isomor-
phic by means ot where

and



34

the covariant functor defined by

(continuous multilinear maps) and

Then 17 d is a vector functor of type I and class oo and if we have the fa-
mily of CP-vector bundles, we can consider the
CP-vector bundle of class p

This vector bundle will be called multilinear vector bundle and will
be denoted by

is a vector chart of (MB B, E I, then

is a vector chart of the multilinear vector bundle where

is given by The particular case I =

= { 0, 1}, 7+ = { 0} and I _ _ ~ 1 ~ has been already considered. In this ca-
se if 3ll = ((M, B, 7r), (B x R, B, then (L(M, B x R), B, will
be called dual vector bundle of (M, B, Jt) and will be denoted by
(M * , B, 7r * ), (Mb = L(Mb, R)).

Let X be a CP-manifold, ( TX, X, Jt) the tangent bundle
of X and

the dual vector bundle of ( TX, X, ;r) (Also called cotangent vector bun-

and from the vector charts t, and t ) and
(X x R, X, pi ) respectively we have that ( U, y~ ’ , L(E, R)) is a vector
chart of ((TX)*, X, .7r * ), where’
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PROPOSITION 2.8. Let _ ~ (M 1, B, ~ 1 ), (Mo, B, be a fa-
mily of CP-vector bundles,

the associated linear vector bundle, mo) (B) the CP (B, 
of CP-sections, 

’

the CP (B, R)-module of B-morphisms of class p and 2,7: -

- M0) the map defined by (s(,7r (x))(x). Then
17 is an isomorphism of CP (B, 

LEMMA 2.1. Let be of vector bun-
dles of class p. Then there is a differentiable structure of class p on P =
=M~x~... 

Let ~i )~i = l, ..., a U f(MO, B, be a family of CP-vector
bundles and u : M x B ... M ° a map. One says that u is a mul-
tilinear morphism if for every bo there are t = ( U, Ei ) vector
chart of (MB B, .1li) for every i = 0, 1, ... , d with and a CP-map
,1,: ... , Ed; Eo ) such that for every b E U, the diagram

is commutative. In this case ub : Mb x ... x M~ is a d-linear con-
tinuous map, u is a CP-map, cP i: defined by 
= 

... , ... , 0), is a B-morphism of class p, i = 1, ... , d, and, if
is transversal (which is equivalent to 3B = 0,

4.1.19 and 7.2.4 of [7]), M 1 x B ... x B Md is a totally neat submanifold of
M1 1 x ... x M d and both differentiable structures coincide.

Let ~(Mi, B, U ~(M° ~ B, 7ro)l be a family of CP-vector
bundles, 

’ ’
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the multilinear vector bundle and MultMorph (M’ x B ... 
the set of multilinear morphisms. Then there is a bij ective map

such that ~(s)(xl , ... , xd ) = (Xl »(XI, ... , xd ).
Let (M, B, Jt) be a CP-vector bundle, (L(M, B x R), B, ~ * ) the dual

vector bundle of (M, and s: B --~ M, s * : B - L(M, B x R) sec-
tions of class p. Then Q: B --~ B x R, Q( b ) _ (( b, s * ( b )(s( b))) is a CP-see-
tion of (B x R, B, pl).

Let us consider I = I + U I _ , 1, { 0 ~, I_ _ ~ 1 ~, d &#x3E; 1, md :
93 the covariant functor defined by 
= Multd(E1, E0), md((f0, f1))(u) = f0 o u o fd1 and M = {(M0, B, R0),
(M’, a family of Cp-vector bundles. Then md is a vector functor
of type I and class p, which will be called d-linear functor and the CP-
vector bundle Mg), B, yr) will be called d-li-

beB

near vector bundle and will be denoted by

Let us consider
- » the covariant functor defmed by

whenever there exist ... , d ~ with 

and .9 = {(M°, B, B, ~t1 )~ a family
of CP-vector bundles. Then a d is a vector functor of type I and class p,
which will be called d-linear alternating functor, and the CP-vector bun-
dle , Altd(Ml, Mg), B, n), will be called d-linear alterna-

bEB

ting vector bundle and will be denoted by M° ), B, ~c).
Moreover Altd (M 1, M 1) is a CP-vector subbundle of

(Multd (M 1, M° ), B, and the associated vector bundle structure
coincides with one given by the d-linear alternating vector bundle.
Finally if w: is a Cp-section and s1, ... , sd are

Cp-sections of there exists a unique Cp-section
such that 2v(s1, ... , 8d)( b) =

Let be a family of CP-vector
bundles, u: M1 1 X B ... a multilinear morphism and

sl , ... , sn Cp-sections of (M1, B, yri),..., (Mn , B, Jt n ) respectively.
Then there is a unique CP-section ,
such that
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Let (J ) and (M° , B, be vector
bundles of class p, 1jJ: M a bilinear morphism and d ~
~ 1, 1 ~ 1. Then up : Altd (MO, M) M’ ) - Altd + 1 (MO, M ~~ ),
defined by

where a(1)  ...  a(d), a(d + 1)  ...  a(d + 1), (Xl ... Xd+l) E (Mg )d+l , ,
b = ~(hl ) _ is a bilinear morphism and if Jt ’ ) is transversal,
then is transversal. Here .7=r:

denote the projections of the respective vector
bundles.

Let (M, B, ~c), (M’ , B, ~’ ), (M" , B, and (MO, B, jro) be vector
bundles of class p, 1/1: M x B M’ ~ M" a bilinear morphism, d ; 1, L ~ 1,
uv: the bilinear

morphism previously defined , w: and wl: B --~

M’ )Cp-sections and si: = 1, ... , d + 1.
Now we consider the Cp-section up (w, B --~
- Ale + 1 (MO, M") defined by (w = up (w(b), WI (b)) and the
CP-section ... sd + L ): B -~ M" defined by

Then

3. - Connections associated to regular equivalence relations.

Let M be a CP-manifold and S a regular equivalence relation on M.
Then there exists a unique Cp-differentiable structure on M/S such
that q: M -~ M/S is a CP-submersion (q is the natural projection).

Thus the sequence TM ~ q * 
bundles is exact,

subbundle of TM and
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is an exact sequence of bundles.

Note that if S( 8M) = aM, for every x E M, q -1 (q(x)) is a CP-subma-
nifold of M without boundary and = Ty jx (Ty )q -1 (q(x))) for
every y E q -1 ((q(x)), where jx : (q(x)) - M is the inclusion map.
Hence VS(M) = L 

xeM

PROPOSITION 3.1. Let M be a CP-manifold, S a regular equivalence
relation on M and t7: M x G ~ M a CP-action on the right over M of a
Lie group G of class p, which is compatible with S, i.e., (x, g)) E S
for every (x, g) E M x G. For every g E G, we consider the Cp-di, ffeomor-
phism ng: M - M defined by t7 g (x) = g). Then, for every (x, g) E
E M X G, Tx n g (Vx(M)) = 

PROOF. Let q: be the natural projection. Then 

DEFINITION 3.1. Let M be a CP-manifold, S a regular equivalence
relation on M and 17: M x G ~ M a CP-ccction on the right over M of a
Lie group of class p, compatible with S. We say that HS (M) C TM is a
G-connection on M associated to S if

(i) HS (M) is a CP - I-vector subbundle of TM and the map
~ TM defined by e

a M-isomorphism of class p - 1.

~ 

(ii) For every i where

The Proposition 2.7 suggests the following characterizations of
G-connections:

PROPOSITION 3.2. Let M be a CP-manifold, S a regular equivalence
relation on M and 7y: M x G --&#x3E; M a CP-action on the right over M of a
Lie group G of class p, compatible with S. Then the following statemen-
ts are equivalent:

(i) There is a G-connection HS (M) on M associated to S.
(ii) There is a M-morphism of class p - 1

such that:
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( a ) T * q 0 1/J = (Hence, im 1/J is a vector subbundle of
class p - 1 of TM).

(b) For every ( x, g) E M x G, y~ ,~~x, g) = Tx where

1/Jx: Tx M is the continuous linear map induced by

(iii) There is a M-mor~phism of class p - 1 jJ: TM -~ VS (M) such
that:

(a) = (Hence, kero is a vector subbundle of class
p - 1 of TM).

(b) For every

PROOF. (i) - (iii) We have that 0 = PI 0 (8s )-1: TM - V (M) is a
M-morphism of class p - 1, ~ o j = lvs (m) and ker 0 = HS (M). Let (x, g)

We have that Ker ~ is a subbundle of TM, cp: 
EÐ KerØ ~ TM, defined by CP(X,(VI, v2 )) = (x, v, + v2), - is a M-isomor-
phism of class p - 1 and

M-isomorphism of class p - 1. We define y by y =
q * (T(M/,S)) -~ TM. Then 1/J is a M-morphism of

class and
Let (x, g) be an element of M x G and u E Tqex) (MjS). Then

= v E Tx M where Tx q(v) = u and v E KerØx. On the other
hand the implies that

and Therefore

(ü) - ( i ) The condition T * q 0 1jJ = implies that im 1jJ is a
subbundle of TM and the map 0 s VS (M) EÐ im ( - TM,

defined by 8s (x, (Vl, V2)) = (x, Vl + v2 ), is a M-isomorphism of class
p - 1.

Let (x, g) be an element of M x G, then by ( b) of (ii), =
’

REMARK 3.1. With the hypotheses of Proposition 3.2, we have:

(1) If1/J: q * (T(M/S)) - TM verifies the conditions of ( ii ), then
is a G-connection on M associated to S.

( 2 ) If 0: TM -~ VS (M) verifies the conditions of (iii), then 
is a G-connection on M associated to S.
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4. - Connections on principal bundles with corners.

Let A =. (P, G, ~) be a principal bundle of class p and ¡C,t: P -~ P/G
the canonical projection. In [9] we proved that Jti is a surjective CP-sub-
mersion that preserves the boundary (¡C,t(8P) = 8(P/G» and RG is a re-
gular equivalence relation on P that verifies = 8P and ii: P x
x G --~ P is a Cp-action compatible with RG . Hence Ro is a neat Cp-subma-
nifold of P x P and RG --~ P is a surjective CP-submersion.

Then we have the exact sequence of bundles

In this case the bundle (VRG (P), P, (i p ) ~ is triviali-
zable.

PROPOSITION 4.1. Let ~, = (P, G, r~ ) be a principal bundle of
class p. For every x E P, consider the Cp-diffeomorphism nx: G -

defined by 17 x (g) = x. g. Then Yf: P x 

defined by fJI(x, u) = (x, a P-isomorphism of class
~ - 1, where jx : is the inclusion map.

PROOF. Firstly we note that Tx¡C Â Txjx Te 1J x (u) = 0. Let x be an ele-
ment of P, cl = ( Ul , E1 ) a chart of G centred at e, c = ( U, ~, (E, 4 ))
a chart of P centred at x and V an open neighbourhood of x in U such
that U. We consider t = (V, vector chart of
(P x Te G, P, PI) and t, = (V, E) vector chart of (TP, P, rp) where

is defined by w ~ (y , v) = (y , 0 j (v)).
Let A: be the CP - ’-map defined by

for every y E V. Then, for every y E V, the diagram

is commutative. This proves that ~: P x Te G 2013~ TP is a P-morphism
of class p - 1. Since x Te G) c VRG (P) and W: P x 
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is a bijective map, we have that W is a P-isomorphism of class

p-1.

DEFINITION 4.1. Let _ (P, G, 1]) be a principal bundle of class p.
A principal connection on I is a G-connection H(P) on P associated
to RG .

If H(P) is a principal connection on ~,, then = pi TP
is a P-morphism of class p - 1, Ker ø = H(P),

is a P-isomorphism of class p - 1
is a P-morphism of

class p - 1, which will be called P-morphism associated to H(P), and
= H(P), T * 1jJ = 1R*A (T(PIG)) and y x. g = Z’x In the se-

quel 1jJ will be also called principal connection on A.
From Remark 3.1, if

is a P-morphism of class p - 1 such that o y = and for

every (x, g) E P x G

then im 1jJ is a principal connection on À, whose associated P-morphism
is 1jJ.

Let À = (P, G, q) be a principal bundle of class p, H(P) a principal
connection of À and X:" P 2013&#x3E; TP a vector field on P of class p - 1. Then
the maps Xv: and XH: P --~ H(P), defined by Xv =
= pi o(ø~G)-1 ° X, and XH = p2 o(ø~G)-1 o X are vector fields of class
p - 1 which verify X(x) = XV (x) + XH(x) for every x e P.

Let À = (P, G, q) be a principal bundle of class p, H(P) a principal
connection of À and the Cp-diffeomorphism defi-
ned by q z (g)) = r¡(x, g). Then the map w: P x Te G) defined
by with 

will be called connection form of H(P).

PROPOSITION 4.2. Let À = (P, G, q) be a principal bundle of class P
and H(P) a principal connection of À. Then the connection form
w: P x Te G) of H(P) is a 

PROOF. By Proposition 4.1 the map fw : defined

by
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is a P-morphism of class p - 1 since fw using
Proposition 2.8 one obtains that w is a 

Clearly for every v E Tx P, v E if and only if wx (v) = 0.

PROPOSITION 4.3. Let A = (P, G, ~ ) be a principal bundle of class
p. Then for every u E Te G the map Zu : P- TP defined by Zu (x) _
= (x, Te1/x(u», is a vector field of (Zu is called the Killing
vector field associated to u). Hence Zu : P ~ VRG (P) is a CP - 1-sec-
tion.

PROOF. The map Xu : P - P x Te G defined by Xu (x) = (x, u) is a
CP-section of the CP-vector bundle (P x Te G, P, PI). Then the result
follows from Proposition 4.1, since Zu = j o (j: 
--~ TP) .

The following result establishes a bijection between the principal
connections and the set of one-forms that verifies some properties.

PROPOSITION 4.4. Let A = (P, G, t7) be a principal bundle of class
p and w: P -~ L( TP, P x Te G) a Cp-I-section. Then the following sta-
tements are equivalent:

1) There is a principal connection H(P) on A such that w is the
connection form of H(P).

2) w verifies the following conditions

(a) For every (x, g) E P x G

where CPg: G -~ G is given by (T, 99 g is usually denoted
by 

(b) For every u E Te G,

PROOF. Suppose that w is the connection form of a principal con-
nection H(P). Then
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is a P-morphism of 1 and

Suppose that w verifies (a) and (b). TP - P x Te G be the P-
morphism of class p - 1 associated to w and ~: P x VRG (P) the
P-isomorphism of class p - 1 given by Proposition 4.1. Then g5 =

TP - VRG (P) is a P-morphism of class p - 1. We have that:

(ii) Let (x, g) E P x G and v E Tx P. Then q5x. g o Tx?7g = 0 

By Remark 3.1 (2) H(P) = Ker q5 is a principal connection on A. It is ea-
sy to check that w is the connection form of H(P). (If v E Tx P,
v = OX(V) + (v - OX(V))). 0

Now we will study the existence of principal connections on princi-
pal bundles.

Let A = (P, G, q) be a principal bundle of class p and y E P/G. We
consider the set

and for every

Let us consider the set E ~

map p : E -~ P/G defined by j

with g = r(a, z), is an element of E~~ ~a~ .
PROOF. Let zo be an element of

) a chart of G centred at i( a, zo ) and V* an open set

Then for every
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Consequently the map i

B-morphism of class p - 1.
Moreover the map

B-isomorphism of class p - 1. Consequently
’ is a But this last map coincides with Xf»’ w) .

The other conditions are trivial to be checked.

PROPOSITION 4.5. There is a vector trundle structure of class p - 1
on (E, P/G, p) such that for every s: U--&#x3E; P local section of class p of

P ~ P/G and every chart c = (V, cp, (F, L1» of P such that
s  (V) ;d 0 then (s -1 (V), 1jJ, F) is a vector chart of such structure,
where

is given by 1jJ(y, v) = (y, X(S(Y), 9~w&#x3E;w~~ ).

PROOF It is easy to prove that y is a bijective map and p o 1/J =
" Pi . ·

If tl = (si- 1 (vi ), Fi ) and t2 = (S2-1 ( T~2 ), 1jJ 2, F2 ) are vector char-
ts associated to the CP-sections sl : Ul - P, s2 : U2 -~ P and the charts

the map

given by 41
is a being g = s2 ( y )) . lndeed, let zo be an element of

Let Z be an open set such that Z c A, zo E Z,
Then for every

Finally = and the charts t, and t2 are compati-
ble.

PROPOSITION 4.6. Let E- T(P/G) be the map defined by
X) = (y, (Xx )) where :Tl ¡ (x) = y (Note that if (x’ ) = y then

= (Xx, ) E because of Xx. g = where

g = i(x, x’ )). Then 0 is a surjective P/G-morphism of class p - 1.

PROOF. If y = E PIG, there is an open neighbourhood V of y
and there is a CP-map s: V -~ P such that s(y) = x and = lv.
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Let be a chart of P and (

a chart of such that ’ and

respectively., where and

given by
1) is a and

which prove that 0 is a P/G-morphism of class

PROPOSITION 4.7. The set
is a subbundle of I

PROOF. We have that 95 y is surjective for every y E P/G (Prop. 4.6).
From the of the proof of 4.6, we have that
Ker ø y admits topological supplement. Then by Proposition 2.4 KerO =
= E ’ is a subbundle of E .

Now the sequence

is exact. By Proposition 2.6 if P/G is a paracompact manifold that ad-
mits partitions of unity of class p - 1, then there is a P/G-morphism
g : T(P/G) - E of class p - 1 such that = 

·

This P/G-morphism g of class p-1 induces a unique P-morphism of
class p - 1 g * : such that 1C,t(X), v) =
= g(,7rl (x), v)), v E (PjG), where

PROPOSITION 4.8. The map Ø2::Jl! (E) - TP defined by
Ø2(X, RA(x), X) = (x, Xx) is a P-isomorphism of class p - 1.

PROOF. Let x be an element of P, s: V - P a local section of class p
of with (x) E V, (x)) = x and c = ( U, T(F, L1» a chart of P
with s( V) c U. Then (;rA 1 (s -1 ( U)) f1 U, 1jJ, F) and (s -1 ( U)) n
fl U, 1jJ’ , F) are vector charts of (E) and TP respectively, where

defined by
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where (W, a, L) is a convenient chart of G, being g = r(s(;rA (z)), z), is a
Cp-I-map and ((~ 2 )b~ ~ ~ b = ~ b ~ ~(b) for every 
which proves that 0 2 is a P-morphism.

Now the is a principal con-
nection on A. Indeed, F is a P- morphism of class p - 1 which veri-
fies that · Moreover ~x_ 9 = Tx for every
(x, g) E P x G, because of = Xx where g(;rl (x), v) = (;rl (x), X),

where g(nA (x. g), v) = (¡Cl (x. g), X’ ) and X = X’ E

Then we have the following theorem.

THEOREM 4.1. Let A = (P, G, 1]) be a principal bundle of class p.
Suppose that PIG is a parcLCOmpact CP-rrcanifold which admits parti-
tions of unity of class p - 1. Then A admits principal connections.

5. - Linear connections.

In this paragraph we explain the linear connections as (R - {0})-
connections. To obtain this objetive we previously establish some speci-
fic properties of vector bundles.

PROPOSITION 5.1. Let (M, B, jr) be a vector bundle of class 1.
Then (TM, TB, Tn) is a vector bundle of class p - 1.

for every
Let us consider the map 1J
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T y M defined by

where CF = (F, 1F , F). Then Q = x F) is a vector chart
of (TM, TB, Tn). If c’ = ( U’ , cp’ , (E’, d ’ )), t’ = ( U’ , y~’ , F’) are

other charts of B and (M, B, ~c) respectively, then the map

defined by

is a and v) = )(x, v) ) -1 0 (V2 )(x, v) (see (4)). Thus we
have proved that and are CP - ’-compatible vector charts and there-
fore we have the vector bundle ( TM, TB, 

Now using the charts x x E, d o p1 )) and
a, one obtains the chart of TM, (as total space of (TM, TB, 

Finally using the chart ct , one obtains the vector chart

(~’ -1 ( ~)~ ~ ~t ~ E X. ~’), of where y~ ~t ( y,-w) _ ,(y, 6 ~ (w)) ~
x E x F, L1 0 pl )) of TM (as total space of (TM, M, z~ )). It is easy to pro-
ve that the two differentiable structures on TM coincide.

Using the vector chart o~, we have that

is a linear homeomorphism and if
then

Let (M, B, n) be a vector bundle of class p. Then we know
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that

is exact and If c = ( U, cp, (E, d )) is
a chart of B and t = ( U, ’lfJ, F) is a vector chart of (M, B, .7l),
then is a vector chart of ( TM, M, rM )
where w) = (y, and ct = x x F,
4 o pi)) is the associated chart of M.

Moreover x 0 x F) = n V(M) and

(rMl (~ -1 ( U)) n V(M)~ ~ ~ (E x F x {0} x F, 

is a chart of V(M) where v) = ((99 x o ~ -1 (y), 0, P2 o (8~ )-1 (v)).
In fact this chart is the one induced on V(M) by ct and the vector chart
on V(M), 

PROPOSITION 5.2. There is a unique R-morphism of class p - 1,
o : V(M) - M such that for every chart c = ( U, cp, (E, d )) of B
and every vector chart of (M, B, ~c), ~o(x, v) _

for every (x, v) E V(M) n ( E Tx M) (ct =
x E R-1(U)

= (R-1(U), (q x x F, 
map.

PROOF. For other charts,

because of (see (4))

where ( 8 ~ ) -1 (v) _ (v1, v2 ) and Thus ~o is a well defmed

map.
We know that i ~ is a vector chart

of V(M).
Now the map # ’ : defined by ,u ’ ( b ) = 1 F for

every verifies that for

every 

PROPOSITION 5.3. Let i = (M, B, ;r) be a vector bundle. of class p.
(i) The macp t7: M x (R - 10 1) ~ M defined by r) = rx is a
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CP-action on the right of the Lie on M. In particular,
= rx, is a CP-diffeomorphism for every re R -

- {0}.
(ii) The map a: M defined by a(x, y) = x + y, is a

Cp-submersion that preserves the index, where (M x B M, M, .7l * ) is the
pullback of ; by .7r.

(iff) If (M X B M, M, ~c * ) is the of ~ by .7l, then for every

is a linear homeomorphism and the linear continuous map

will be denoted by ’. is the CP-map defined by

) for every I

= (z, u + v), for every c, t charts of B a~nd ~ respectively, E V,

PROOF. (i) It is easy to be checked.

(ii) Let c = ( U, cp, (E, L1» be a chart of a

vector chart of (M, B, jr). Then
is a chart of M and

where ~*: jr’’(~)xF~(~)’’(jr’’(i7)) is the map defined by
1jJ * (x, v) = (x, v)), is a vector chart of (M M, -7r * )-
Therefore = ((yr*)-’(jr~(~)), = x 

o(~*)’~(E’ x F x is a chart of the CP-manifold M x M.

x F x x F verifies a(z, u, v) = (z, u + v), we have that a is a
CP-map.

Note that D a(z, u, v)(zi , ul , v1 ) _ (zl , ul + VI) for every (z, u, v) E
e cp( U) x F x F and (zl , ul , E E x F x F, which proves that a is a
submersion and preserves the index.

(iii) With the notations established in the proof of (ii), we have
that the map

verifies jr* ((z, u, v)) = (z, u) and the map -7r 2 = 99 c, t - o.7C 2 " 99 et t. :
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verifies

where 3 : E x F x F - (E x F) x E (E x F) is the map defined by
6((z, u, v)) _ ((z, u), (z, v)), is a linear homeomorphism.

(iv) It is easy to be checked.

DEFINITION 5.1. Let I = (M, B, yr) be a vector bundle of class p. A
linear connection on ~ is a H(M) on M associa-
ted to 1~~ such that

for every (x, Y) E M X BM (see Proposition 5.3 (iii)).

Let ~ = (M, B, n) be a vector bundle of 1 and H(M) a li-
near connection on ~. Then by Proposition 3.2 there is a unique
M-morphism of class p - 1 ~ : TM --~ V(M) such that 0 j =

for every and

kero = H(M). Then by Proposition 5.2, we have the n-morphism of
class

DEFINITION 5.2. Let ~ _ (M, be a vector bundle of class p
and H(M) a linear connection on ~. The map K = e - 0: TM - M, con-
structed above, will be called the connector of H(M).

The following proposition collects the main properties of connectors
of linear connections.

PROPOSITION 5.4. Let (M, B, n) be a vector bundle of class p,
H(M) a linear connection on ~ and K = ~o ° ~ : TM - M the connector
of H(M). Then:

(i) K is a a-morphism of class p - 1 from (TM, M, zM ) into
(M, B, and kerK = H(M).

(ii) If c = ( U, cp, (E, L1» is a chart of B and t = ( U, 1/J, F) is a vec-
tor chart of ~, then there exists a r c, t : cp( U) -~ L(E, F; F)
(bilinear continuous maps), that will be called the Christoffel symbols
of the linear connection H(M), such that Kc,t(x, y, w) = (x, y’ +
+ rc,t(x)(x’, t = (cp x x

X and w = 8 ~~«~X (cp( U), i, (E, L1», for every
(x, y) E gg(u) x F and every w E T(x, y) (cp( U) x F) = x F).
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(ill) K is a tB-morphism of class p - 1 from (TM, TB, TR) into
(M, B, a).

(iv) Let r be an element and 17 r: M - M the CP-diffeo-
morphism defined = rx. Then K - T17 r is a B-iso-

morphism and (rJr)-1 = 77 1 /r -

PROOF. (i) Since K = TM - M, the result follows of Proposi-
tion 3.2 and Proposition 5.2.

(ii) We have that

for every (r,

Thus
for every I

It is obvious that the map is linear for

every Let r be an element of

where
and therefore

Thus
be elements of F. The conditions

and (iv) of Proposition 5.3 imply that

By localization on the corresponding vector bundles one proves
that E L(E, F; F) and that r,, t: F; F) is of class
p - 1. 

’

(iii) Let c = ( U, cp, (E, L1» be a chart of B, t = ( U, y, F) a vector
chart of (M, B, n) and o~ _ (iB 1 ( U), y~ 2 , F x F) the induced vector
chart of (TM, TB, Consider the map A: zB 1 ( U) -~ L(F x F, F) de-
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fined by Then A is a 
and 1

chart of (M, B, 7r) and the
associated chart of M. Then

where and

Now we prove that the properties ¡c 0 K = ¡c 0 zM of (ii) of Proposition
5.4 characterize the connector of linear connections.

PROPOSITION 5.5. Let i = (M, B, yr) be a vector bundle of class p
and K: TM ~ M a map such that

where 1

Then there is a M-morphism of class p - 1, V: TM -~ VM such that
V o j = 1 vtM) and V = K. Moreover V = H(M) is a linear connection
on S, K = H(M) and the connector of H(M) is K.

PROOF. Let (

tor chart of (M, B, ~) and (
the induced chart on M.

For every consider the element

It is clear that Tx n(p2 w(x, v)) = 0 and consequently w(x, v) E V(M).
For other charts, if Ty M, then w(x, v) =

)



53

(see (3)). Then we can defined V locally as follows: V(x, v) = w(x, v) for
every (x, v) E ( U)).

We know that (~ -1 ( U), x F), where

is a vector chart of ( TM, M, ’eM) and

is a vector chart of The map
I, defined by)

class p - 1 and

because of

Thus V is a M-morphism of class p - 1.
Notice that for every

where 1A
It is clear, from the definitions, that and V o j = Iv(M). Fi-

nally (V) is a subbundle of ( TM, because of Vx is a
surjective map and = 

We have

where i Thus, for every

by Proposition 3.2, H(M) = V is a (R - {0})-connection associated

to R 1C .
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Indeed, let (u, v) be an element of
Then

where
, The aim is to prove that )

1 where

because of Thus we have proved that

Conversely if u by Proposition 5.3 (iii) there exists (a, b ) E

Finally we consider the problem of existence of linear connec-
tions.

PROPOSITION 5.6. Let i = (M, B, yr) be a vector bundle of class p.
Suppose that B admits partitions of unity of class p - 1. Then there is
a linear connection on ~.

PROOF. Leta= ( Ui , 
= (Ui, a family of vector charts of ~ a parti-
tion of unity of class p - 1 of B subordinate r . For every i E I,
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be the map defmed by:

Consider the map K: TM - M defined by K(m, v) =
= 2 so (.7r(m)) Ki (m, v), for every (m, v) E TM. It is easy to check that K

iEI

is the connector of a linear connection on ~.
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