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On Some Schroedinger-Type Variational Inequalities.

MARCO LUIGI BERNARDI - FABIO LUTEROTTI (*)

1. - Introduction.

Many results are well known for various classes of evolution varia-
tional inequalities (see e.g., in particular, Lions [16], Brezis [6], Bar-
bu [2]). However, by our knowledge and before our recent note [4], we
found no references for evolution variational inequalities concerning
Schroedinger-type operators. On the other hand, it must be noted that
Schroedinger-type evolution equations were widely studied by several .

authors, both in the linear case, and in various different nonlinear cases.
For the linear case, we can refer e.g. to Lions [15], Lions and Ma-
genes [17], Carroll [7], Pozzi [20], [21], Kato [13]. Some nonlinear cases
were firstly studied by Pozzi [21], Bardos and Brezis [3], Lions [16].
Moreover, from the mid-seventies, several authors investigated differ-
ent problems concerning various Schroedinger-type nonlinear partial
differential equations. For the sake of brevity, we mention here only a
few papers (with their bibliographies, where other important refer-
ences can be found): Cazenave [8], Cazenave and Lions [9], Ginibre and
Velo [10], [11], Kato [14], Merle [19]. ~

This paper deals with a class of abstract Schroedinger-type evolu-
tion variational inequalities, where the unilateral constraints concern

(*) Indirizzo degli AA.: Dipartimento di Elettronica per 1’Automazione (Se-
zione Matematica), Facolti di Ingegneria, Universita degli Studi di Brescia, Via
Branze 38, 1-25123 Brescia, Italy.

This work was supported in part by the «Ministero dell’Università e della Ri-
cerca Scientifica e Tecnologica» (Italy) (through 60% and 40% grants), and by the
«G.N.A.F.A. del C.N.R.» (Italy).
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the time derivative of the unknown function. We investigate, precisely,
the following Cauchy problem:

where 0  T  + 00; V c H = H * c V* is the standard complex Hilbert
triplet; ( ~, ~ ) denotes the antiduality pairing between V* and V; x is a
closed non-empty convex subset of V; «~2013&#x3E;.4(~)» is a suitably smooth
operator function such that, for every t E [0, T], A(t) E 2(V, V*), and
A( t ) is an hermitian and strictly V-coercive operator; uo E V is given;
f(t) is some given V*-valued function on [0, T]. We deal with strong
solutions u(t) of (1.1)-(1.2)-(1.3); i.e., we ask for some V-valued u(t) on
[ o, T], such that u ’ ( t ) is also a V-valued function. For the sake of sim-
plicity, we do not consider here more general formulations of the prob-
lem (1.1)-(1.2)-(1.3) (e.g., the ones involving multivalued operators).

The problem (1.1)-(1.2)-(1.3) concerns a variational inequality for the
linear abstract Schroedinger-type operator S(u( t )) = u ’ ( t ) + iA(t) u(t).
We could also consider other types of variational inequalities related to
the operator S( ~ ). It must be noted, for example, that the problems with
unilateral constraints on u( t ) seem to be more complex, as in the case of
hyperbolic variational inequalities.

We remark that, in our recent note [4], we announced a first exis-
tence and uniqueness result for the problem (1.1)-(1.2)-(1.3), under
some stronger hypotheses, in particular on the assumption that A(t) _
= A does not depend on t. An interesting matter is that such result (with
a suitable specialization of V, H, ~,, A) implies, as a corollary, a «stan-
dard» result for a wide class of hyperbolic variational inequalities (see
Remark 3 in [4]; see, in particular, Luterotti [18] for the details, and for
other remarks and results in this direction). This fact also justifies our
interest in the problem (1.1)-(1.2)-(1.3).

We will prove, in sections 2 and 3, an existence and uniqueness re-
sult for the problem (1.1)-(1.2)-(1.3), under some general hypotheses. A
suitable procedure of penalization will be used as a main tool, for the
existence proof. It must be noted that some serious technical difficul-
ties arise from the fact that A( t ) actually depends on t. To overcome
such difficulties (without additional assumptions on A(t)), a main tool
will be to rewrite the inequality (1.2) in a suitable integral form (see
section 3, step a) (in particular (3.1)), and step e)). Such device (which
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was formerly employed by Lions [15], chap. 8, in the context of various
classes of linear abstract differential equations) is also very useful in
the case of certain hyperbolic variational inequalities with time-depen-
dent operator coefficients (see [5]).

These authors would like to thank Claudio Baiocchi for some useful
discussions.

2. - Notation. Statement of the main result. Proof of the unique-
ness result.

Let (as e.g. in Lions and Magenes [17])

be the standard complex Hilbert triplet. ( ’, ’ ) denotes both the scalar
product in H and the antiduality pairing between V* and V. 11.11, I. I, ,

denote respectively the norms in V, H, and V*.
Let also

(2.2) x be a closed non-empty convex subset of V.

Throughout the paper, T denotes a real number, such that 0  T 
 + oo. Let now « t -~ A( t ) » be an operator function satisfying

We also assume that

We state now the main result of this paper, i.e. the following exis-
tence and uniqueness theorem for the Cauchy problem (1.1)-(1.2)-

THEOREM 2.1. Let
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be give?4 with

Then, there exists ac unique u( t ) E W1, oo ( o, T; V), satisfying ( 1.1 )-( 1.2)-
(1.3).

Before giving the proof of Theorem 2.1, we make some comments on
such result, by presenting some simple examples in the following Re-
marks 2.1 and 2.2.

REMARK 2.1. Fix any T &#x3E; ~/2, and take: 1T = H = TT * = C; x =
- ~ z E C 0};A(~) = I (identity operator); f ( t ) = 0; uo = ib ( b E R).
It is clear that (2.1)-(2.5) hold; moreover, (2.6) holds, if and only if b ~ 0.
By making some calculations, and putting u(t) ( t ) + iu2 ( t ) (where
UI (t) are real-valued), we see that ( 1.1 )-( 1.2)-( 1.3) can be here
rewritten as

First, it is clear from (2.7) that, when the « compatibility condition- (2.6)
does not hold (i.e. when b  0), there exists no solution u(t) E
E W1’ °° ( o, T; C) to (1.1)-(1.2)-(1.3). On the other hand, when b ~ 0, it re-
sults that the unique solution u(t) = (ui (t) + E W 1 ~ °° ( o, T; C)
to (1.1)-(1.2)-(1.3) is given by

Thus, we observe that, when b &#x3E; 0, u ’ ( t ) E L °° ( o, T ), but (and
hence u ’ (t)) is not continuous at t = ~/2 . This example shows that, un-
der the assumptions in Theorem 2.1, it is not true, in general, that
« t -~ u ’ ( t ) » is a continuous function, even if « t ~ f ( t ) » and « t -~ A( t ) »
are arbitrarily smooth functions. Let us also give briefly another
example in the same direction, when A(t) actually depends on t. Fix
now any T &#x3E; 1, and take: TT = H = V* = C, and x as above; A(t) =
=exp(~7;/(~)= -~2exp(2-2~)+exp(2~)+~); uo = - (e2 + 1 ) +
+ i(e 2 - 1 ). Clearly, (2.1)-(2.6) hold. By making some calculations, it can
be seen here that the unique solution u(t) E Wi, 00 (0, T ; C) to (1.1)-
(1.2)-(1.3) is such that u ’ ( t ) is not continuous at t = 1.
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REMARK 2.2. By considering Theorem 2.1, we observe that we are
assuming (through (2.5)) that A(t) is a strictly V-coercive operator. Of
course, we can raise the question whether our result still holds true, by
assuming more generally that A( t ) is a weakly V-coercive operator, i.e.
by replacing (2.5) with the following condition:

Recall that (2.9) (instead of (2.5)) suffices for various classes of

hyperbolic or parabolic variational inequalities (see e.g. [2], [6], [16]),
and also in the case of linear abstract differential equations of

Schroedinger-type (see e.g. [15], [17], and [20]). Now, we have here a
negactive answer to such a question. To see this, we can consider the fol-
lowing examples.

Firstly, fix any T &#x3E; 0, and take: V = H = V * = C; [
Re z &#x3E; 0}; A(t) = 0; uo = 0; f(t) = 0. Clearly (2.1)-(2.4), (2.6) and (2.9)
hold, but (2.5) does not hold. By making some calculations, and putting

(with real-valued UI (t) we see that

(1.1)-(1.2)-(1.3) can be here rewritten as

Then, it is clear from (2.10) that (1.1)-(1.2)-(1.3) has here infinitely
many solutions u(t) = iu2 (t) E WI, 00 ( 0, T ; C).

On the other hand, take now: T &#x3E; 0, V = H = V * _ C, X, A( t ) = 0,
and uo = 0 as above; take, moreover, f ( t ) _ - t. Of course, (2.1)-(2.4), (2.6),
and (2.9) hold, but (2.5) does not hold. By putting u(t) = UI (t) + as

before, it results that (1.1)-(1.2)-(1.3) can be here rewritten as

Hence, it is clear, from the first and the second condition in (2.11), that,
in this case, there exists no solution to (1.1)-(1.2)-(1.3).

We now deal with the proof of Theorem 2.1. The proof of the existence
result will be carried out in the following section 3. As regards the
uniqueness, we can prove, in fact, a result (Theorem 2.2 below), which is
more general than the one contained in Theorem 2.1. Towards this aim,
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let us consider, instead of (2.3), the following weaker assumption:

(and hence, in particular,

(Also remark that, in the next Theorem 2.2, (2.6) is not assumed; more-
over, a less regular f ( t ) is taken).

THEOREM 2.2. Let (2.1), (2.2), (2.12), (2.4), and (2.5) hold. Take any
f(t) E L 1 (0, T; V*), and any uo z V Let u(t) = ul (t) and u(t) = u2 (t)
both belong to W1~ °° (0, T; ~, and satisfy (1.1)-(1.2)-(1.3) (with the
same previous f(t) and uo ) . Then UI (t) = u2 ( t ), Vt E [0, T].

PROOF. Let us define w(t) ul (t) - u2 ( t ). Consider now (1.2) with
u(t) = ul (t) (resp. u(t) = U2 (t)), and take v = u2 (t) (resp. v = u’ (t)).
(This is allowed, since u(t) = and u(t) = u2 ( t ) satisfy ( 1.1 )). Then,
by adding up the resulting inequalities, we obtain:

Take now any s E [0, T], and integrate (2.13) from 0 to s. Thanks to

(2.12), (2.4), (2.5), and to = 0, we get:
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By also using (2.12), we can deduce that

Hence, thanks to the generalized Gronwall lemma, we obtain that
0, Vs E [o, T], i.e. u1 (s) = u2 (s), t/s E [ 0, T].

3. - Proof of the existence result in Theorem 2.1.

We now prove the existence result in Theorem 2.1. Our proof is
based on the method of penalization (see Lions [16], chap. 3, as a main
reference; also see [5]), and consists of several steps.

a) A preliminary remark. We observe at once that, in our exis-
tence proof, (1.2) can be replaced by the following condition:

(3.1) 3p E R, such that

Indeed, under the assumptions in Theorem 2.1 (and also under more gen-
eral hypotheses), it is equivalent to require that u(t) ( E W 1 ~ °° ( 0, T; V))
satisfies either ( 1.1 )-( 1.2 ) or ( 1.1 )-(3.1 ). Firstly, it is obvious that, if u(t)
satisfies (1.2), then (3.1) also holds (Vp E R). Conversely, suppose that
u(t) satisfies (1.1)-(3.1). Then, we can see that (1.2) also holds, by adapt-
ing a procedure given in Remarque 7.9 of chap. 3 in Lions [16], for the
case of hyperbolic variational inequalities (also see [5], section 3). Such
procedure is here based on the consideration of the Lebesgue points for
both the V*-valued function «t - + iA(t) u(t) - f(t)]» and
the scalar function 
Without entering into details (also see [16] and [5]), we can obtain that
(1.2) holds, by using some well known facts concerning Lebesgue points
(also in the case of vector-valued functions; see e.g. Hille and

Phillips [12]).
So, in our proof (see, later on, the step e)), it will be convenient to re-

place (1.2) with (3.1 ), where some p  - M2 ~ c -1 is fixed (recall the as-
sumptions (2.3) and (2.5)).

b) Approximation by the method of penalization. Let PK, be the
projection operator from V tao,%; let moreover J be the canonical antidu-



8

ality operator from V onto V* (defined by (Ju, v) = ((u, v)), Vu, v E V,
where (( ~, ~ )), denotes the scalar product in V). Then, we define

We can verify that ~8 is a penalty operator connected with x. Now, we are
working, in fact, in a complex Hilbert spaces framework. However, by
reviewing and adapting some proofs performed in the. real case (see e.g.
Lions [16], Baiocchi and Capelo [1]), we can easily obtain that ~8 has the
following properties.

(3.3) ~8( ~ ): V -+ V* is a strongly Lipschitz continuous

(and hence bounded and hemicontinuous) operator, with ker (P) = x ;

moreover, ~B has the following monotonicity property:

We can also remark that, if e.g. v(t) E W 1 ~ °° ( o, T ; V), it results:

Clearly, (3.5) follows from (3.3) and (3.4), by using a standard differential
quotients argument.

Now, let us take any integer k &#x3E; 1. We could approximate (1.1)-(1.2)-
(1.3) (i.e. (1.1)-(3.1)-(1.3)) by means of the following «penalized» prob-
lem :

However, (3.6) (I) is an implicit differential equation. On the other hand,
we can deduce formall y, from (3.6), that 
- (0)). Hence, thanks also to (2 :6), we see that another «more conve-
nient» approximation of (1.1)-(1.2)-(1.3) is given by the following prob-
lem :

Next, we deduce formally, from (3.7) and (2.6), that = 0. Then, by
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differentiating formally (3.7) (I), we can also consider the following
problem:

Now, we can prove that, any integer k &#x3E; 1,

(3.9) the problem (3.7) has a unique solution

As regards the uniqueness, such result can be obtained by using a «natu-
ral» procedure. In fact, let Ukl ( t ) and un ( t ) both satisfy (3.7), and define
w( t ) = Hence, from (3.7), it results that = w ’ (0) =
= 0, and that

Next, we consider the imaginary parts in (3.10), and we take into account
(3.4). Hence, by integrating the resulting inequality from 0 to t ( 0  t ~

~ T), and using the properties of A( t ) and the Gronwall lemma, we can de-
duce that w(t) = 0, dt E [ 0, T].

As regards the existence result in (3.9), we can use the Faedo-
Galerkin method. So (recall (2.1)), we choose

(3.11) a countable basis

such that uo and u1 = f(0) - iA( 0) Uo both belong to span [Wl, w2 ] .
Then, for every integer 2, we look for E span[w1, ... , wm ],
solution of the following Cauchy problem:

Now, thanks to (3.11) and to the properties of A( t ) and ,8(.), we can de-



10

duce, from the theory of ordinary differential systems, that

(3.13) there exists a unique

, which is a classical solution of (3.12).

We also observe that, from (3.12) and (2.6), it results that = 0.

Moreover, we can differentiate (3.12)(I) (and this is correct, since, in par-
ticular, (3.3) holds). Hence, ukm (t) also satisfies:

Now, we could get some estimates for the The start-

ing point for the first estimate would be to multiply both sides of (3.12)(I)
by and to sum over j (from 1 to m). Then, we could obtain
that

is bounded

(independently of k and of m) in L °° (o, T; V);

j- is bounded

(independently of k and of m) in L °° (0, T; H) .

The starting point for the second estimate would be to multiply both
sides of (3.14)(1) by gkmj (t), and to sum over j (from 1 to m). So, we could
get that

is bounded

(independently of k and of m ) in L °° (0, T ; V);

is bounded

(independently of k and of m) in L °° (0, T; H) .

Then, we could obtain that, when any integer k ::-- 1, we can ex-
tract 2} a 1 ~, which con-
verges (as r- + 00, in a suitable topology) to a function E
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E W 1’ °° ( o, T ; V) (with Uk (t) E L °° (0, T ; H)), solution of the problem
(3.7). So, the result (3.9) would be proved.

Moreover, thanks to (3.15)-(3.16), we could also get that we can ex-
tract 1 ~ a subsequence, still denoted by 1 ~ ,
which converges (as k - + oo, in a suitable topology) to a function E

E W1’ °° (0, T; ~, solution of (1.1)-(1.2)-(1.3).
Now, for the sake of brevity, we carry out the detailed proof, by start-

ing from the assumption that (3.9) holds. Then, we prove directly the two
main estimates (as (3.15)-(3.16) the calculations
are essentially the same one has to make, in order to obtain (3.15)-
(3.16).

c) A priori estimates (I). We start from the result (3.9) for the
problem (3.7). We fix any z E ~,, and we «multiply» (in the antiduality
pairing between V* and V) both sides of (3.7)(I) by Uk (t) - z. So (being

= 0), we get

Next, we take the imaginary parts in (3.17). We obtain (thanks also to
(2.3), (2.4), (3.4))

Now, we integrate (3.18) from 0 to t (0 ~ t ~ T). By using (3.7) (II), and
defining u, = ( f( 0) - e x (as we already did), we get
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Next, starting from (3.19), we can carry out some calculations, by using
in particular (2.3) and (2.5), and assuming e.g. (without loss of generality;
see (2.1)) that Then, by taking any 1/ such that
0  1/  min ( 1; c/2) (and considering that k &#x3E; 1), we obtain

Now, by taking n sufficiently small (in particular, by also requiring that
~  c ~ ( 3 + Mr )-1 ), we can get from (3.20)

Vt E [ 0, T ], and for every integer k ~ 1,

where the positive quantities CI and c2 are independent of k and of t. (In
. fact (see (3.20)), c2 depends only on c, 1/, Ml, M2, while CI depends only on
c, 1/, Ml, T, u1, uo, z, f ) . Hence, thanks to the Gronwall lemma, we obtain
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from (3.21) that

(3.22) k ; 1} is bounded (independently of k) in L °° (0, T ; V).

Moreover, from (3.20) and (3.22), we also get that

is bounded 
°

(independently of 1~) in L °° ( o, T; H) .

d) A priori estimates (II). The starting point is here to «multiply»
both sides of (3.8) (1) by uk (t). Clearly, by considering (3.7) and (3.9), this
is a formal procedure (which we adopt only for the sake of brevity). In
fact (as we already observed in subsection b) above), we should have to
start from (3.14), in order to obtain (3.16), and then we should pass to the
limit with respect to m (as in - + oo). Anyway, by «multiplying» both
sides of (3.8) (1) by uk (t), and taking the imaginary parts, we obtain

Now, we integrate (3.24) from 0 to t (0 ~ t  T). By using (2.3), (2.4) (also
for A’ (t)), (3.5), and (3.8) (II) (always with ui = ( f ( o) - iA(0) uo )), we
can get

Next, starting from (3.25), we can carry out some calculations, by using
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in particular (2.3) and (2.5). Then, by taking any t7 such that 0  ~ 
 min (1; c/2), we obtain 

.

Now, by considering the right-hand side in (3.26), we take into ac-
count the previous estimate (3.22), the fact that T) (see
(2.3)), and the fact that f(t) E W 2’ 1 ( o, T ; V*) (hence f(t) E
E C~ ([0, T ]; V* ) too). Then, by taking t7 sufficiently small (in particular,
by aclso requiring that q  c. 4 -I), we can get from (3.26)

for a.e. t E]O, T[, and for every integer k ~ 1,

where the positive quantities c3 and c4 are independent of k and of t.
Hence, thanks to the Gronwall lemma, we obtain from (3.27) that

(3.28) 1} is bounded (independently of k) in L °° ( o, T ; V).

Moreover, from (3.26) and (3.28), we also get that

is bounded

(independently of k) in L °° (0, T; H) .

e) Passage to the lirrLit. We consider, for every integer k &#x3E; 1, the
problem (3.7), and the corresponding result (3.9). We also consider the
estimates (3.22), (3.28) and (3.29), concerning the I
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k &#x3E; 1 ~. Firstly, it is obvious that, as k - + oo,

strongly in

Secondly, from (3.7)(I), (3.22), (3.28), (3.29), it is clear that, as k - +
+ ~,

strongly in

Moreover, thanks to (3.22), and to (3.28), we can extract ( t) 
~ 1 ~ a subsequence, still denoted 1 ~, such that, as k - +
+ 00,

i weakly star in L °° ( 0, T; V),

and also weakly in L~(0, T ; V);

weakly star in L °° ( 0, T; V),

and also weakly in Z~(0, T; V).

So, we have that u(t) E Wi, 00 ( o, T ; ~. We also deduce (still denoting by
((’, )) the scalar product in V) that, 

I uniformly on [ o, T]

(and, in particular, uk ( T ) --~ u( T ) weakly in ~ .

Now, it is clear that (1.3) holds. We have to verify that u( t ) satisfies (1.1),
and (1.2) (or equivalently, (3.1 )).

Firstly, we prove that (1.1) holds. Towards this aim, by using (3.4),
we get that

Next, thanks to (3.31), and to (3.33), we obtain that

We now use a standard argument. We take, in (3.36), v(t) = u ’ ( t ) +
+ Àw(t), where 1 &#x3E; 0 and w( t ) E L 2 ( o, T ; T~. Then, after division by ~,, we
let À - 0 + in the resulting inequality; thanks to the hemicontinuity of {3,
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we get that

(Clearly, (3.37) is, in fact, an equality). So, we can deduce that

and hence (thanks to (3.3)) (1.1) holds.

(We want to point out that the fact that (3.37) ==&#x3E; (3.38) follows from a
general property of complex Hilbert spaces. Let indeed W be a complex
Hilbert space, and let W* be its antidual space. Denote by ( ., .) the an-
tiduality pairing between W* and W. Let Z E W* satisfy either
Re ( z, w) = 0, Vw E W, or Im ( z, w) = 0, dw E W. Then, it results that z =
= 0. This fact can be readily proved, by using e.g. the definition and the
properties of the canonical antiduality operator J from W onto W * )
We now prove that u(t) also satisfies (1.2). Towards this aim, it is

more convenient to show that the (equivalent) property (3.1) holds (re-
call the preliminary step a) in this section). We start by considering the
functions v(t) such that

We «multiply» (in the antiduality pairing between V* and V) both sides
of (3.7) (1) by v(t) - uk (t). By taking the imaginary parts, and using (3.4),
we get

Vv(t) as in (3.39), and for a.e. t e]0, T[.

We now fix any real number p, such that p  - M2 ~ c -1 (recall the as-
sumptions (2.3) and (2.5)). Let us define, for every w( t) E L~(0, T ; V),

Thanks to (2.3), (2.4), (2.5), and to the choice of p, we can readily verify
I is an equivalent Hilbert norm on L 2 ( 0, T; V).

Next, we multiply both sides of (3.40) by exp ( pt ), and we integrate
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the resulting inequality from 0 to T. So, we obtain

Now, thanks to the properties of A( t ) and of uk (t), (3.42) can be rewritten
in the following way:

Next, we consider the above subsequence (satisfying
(3.32), (3.33), (3.34) (and (3.30))), and we take the lim inf, as k - + o0 of
both sides of the inequality (3.43). Let us observe that the lim inf of the
left-hand side is, in fact, a limit. Moreover, by considering the fourth
term at the right-hand side, we recall (see (3.41)) is an equiva-
lent Hilbert norm on L 2 ( 0, T; V). So, by also using some standard argu-
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ments, we get from (3.43), as k - 

We have thus obtained that u(t) satisfies (3.1) ( I ) (Vv(t) as in (3.39)), for
every real number p such that p  - M2 ~ c -1. Hence, u(t) also satisfies
(1.2). So, Theorem 2.1 is completely proved.

REMARK 3.1. If we assume, in addition to (2.3), (2.4), (2.5), that A(t)
also satisfies

(in particular, if A( t ) = A doesn’t depend on t) , then the proof of Theorem
2.1 can be carried out in a much simpler way, as regards specifically the a
priori estimates (I) and (II), and the passage to the limit. (In particular,
in such a case, we need not use the device introduced in the previous step
a)). However, when A(t) actually depends on t, (3.45) would be a quite re-
strictive assumption.
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