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Homolinic-Type Solutions for an Almost Periodic
Semilinear Elliptic Equation on Rn.

FRANCESCA ALESSIO - MARTA CALANCHI (*)

1. - Introduction and basic properties.

In a recent paper, [17], the authors studied the existence of a homo-
clinic solution for a second order system where the potential is an al-
most periodic function of time.

The existence of homoclinic orbits has been deeply investigated by
people working with variational methods. We refer, for example, to
works concerning first order systems, as [5], [15] and [16], and second
order systems, as [1], [2], [10], [11] and the above mentioned [17]; see
also [6], [9], [14] for semilinear elliptic equations.

In this paper we try to extend the idea of [17] to a semilinear elliptic
equation where the potential involves an almost periodic function on Rn
in a suitable sense. In this context, we point out [6] for the periodic case
and [9] for the asymptotically periodic case.

Our aim is to prove the existence of at least one (homoclinic-type)
solution for the problem

where n a 2 and a and g satisfy the following assumptions:

(as) a E ~ °~ y (R n , R) for some y e (0, 1), with

(*) Indirizzo degli AA.: Dipartimento di Matematica del Politecnico di Tori-
no, Corso Duca degli Abruzzi, 24, 1-10129 Torino.
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( a2 ) a ( x ) = a ( x 1, ... , is almost periodic in x 1 uniformly with
respect to the others variables (see Definition 1.1) and Ti-periodic in xi
for i=2,...,n,

(g1) g E C1(R,R),
(g2 ) there is a B &#x3E; 2 such that

for 

(g) there are costants al , a2 &#x3E; 0 such that

for all E E R , where s e (1, ( n + 2 )/( n - 2)) if n &#x3E; 2 and s is not restrict-
ed if n = 2.

More precisely, we will prove the following result.

THEOREM 1.1. If a satisfies ( al ), ( a2 ) and g satisfies (gl ), (g2 )
and (g) then (P) possesses a nontriviaL classical solution

u E H1 (Rn, R).

Standard arguments, as in [14], show that U e C2, Y (Rn, R) and that
u(x) ~ 0 as in 

We seek solutions of (P) as critical points of the functional

in the Hilbert space H : = H 1 (R n , R ), equipped with the usual norm:

It is known, see e.g. [6] and [9], that if (a )-(a 2) and hold
and

so that critical points of f are weak and-by regularity argu-
ments-classical solutions of problem (P).
We briefly discuss the main features of the problem. For our pur-

poses we use a classical minimax procedure. Indeed the functional f sat-
isfies the geometric assumptions of the Mountain Pass Theorem, so that
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we can construct a Palais-Smale sequence (um) at a positive level c. The
form of the functional and the assumptions imply that Palais-Smale se-
quences are bounded and that their weak limits are weak solutions. The
main difficulty is to make sure that these weak limits are not zero. To
overcome this problem we use the Concentration-Compactness Princi-
ple of P. L. Lions that allows us to find a sequence (xm) in Rn such that
no subsequence of the translates Vm = um (~ + xm) can converge weakly
to zero. The trouble is that, in general, (vm) in not a Palais-Smale se-
quence for f. If a is periodic in each component we can overcome this
problem using the invariance of f under the action of Zn : we can consid-
er, without loss of generality, each component of Xm to be a multiple of
the period so that (vm) also results a Palais-Smale sequence. On the
other hand, if a is almost periodic in the first component and periodic in
the others, we show that the translated sequence (vm) still results a
Palais-Smale sequence if we choose the last n - 1 components of Xm as
multiples of the periods, as in the periodic case, and the first component
«near» a 1/m-period. The main part of the paper is devoted to prove
that this choice is possible if the Palais-Smale sequence satisfies the ad-
ditional property um - um - 1 11 -4 0 as m ~ ~ . The existence of this
type of sequences has been proved in [4] and [15].

Finally, we emphasize that although we assume almost periodicity
in only one variable, the proof is not a direct application of that in the
one-dimensional case ([17]). The technique we use to solve the problem
is quite different from that of [17]: it is essentially based on the Maxi-
mum Principle and on an estimate of the exponential decay at infinity
for the solutions of problems of type (P). Actually, we remark that our
method also applies to the one-dimensional case, so that it could be used
to slightly simplify some proofs in [17].

For sake of completeness, we recall some definitions and properties
concerning almost periodic functions depending on a parameter (see [3]
or [18] for further details and proofs).

DEFINITION 1.1. A continuous function a(x, X) is called almost

periodic in x E R, uniformly with respect to X E Rn -1 1 if to any - &#x3E; 0
there corresponds a number L ( c ) such that any interval of the real line
of length L ( E ) contains at least a real a for which

The number a is called an E-period for a. The uniform dependence on
parameters follows from the fact that l(e) and a are independent of X.
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The following two theorems contain classical results on almost peri-
odic functions depending on parameters.

THEOREM 1.2. If Q is a closed and bounded set then an
almost periodic function a (x, X) in x uniformly with respect to X e Q
is uniformly continuous and bounded on R x Q.

In particular, from ( a 2 ) it follows that

THEOREM 1.3. A necessary and sufficient condition for a function
a(x, X) to be almost uniformly with respect to X E Q,
where Q is a closed and bounded set of R n -1, is that the family
of its (uniformly) precompact in
e(R x Q, R).

2. - Preliminary properties.

In this section we state some properties concerning the functional f
that we will use to prove the main result. Some of these properties are
classical results on homoclinic solutions, see e.g. [6] and [9], and there-
fore their proofs will be omitted.

Note first that (gl) and (g2) imply that

These properties will be often used in the sequel. It is well known
that u = 0 is a strict local minimum for f and that f satisfies the geomet-
ric assumption of the Mountain Pass Theorem. Indeed, by (gl)-(g3) and
(a2) it follows that

and that, by (g2 ), if u e H% ( 0 ) then f(£u ) ~ - 00 as I À -&#x3E; 00 .

From (al), (a2) we have that 0  a ~ a(~) ~ a, Va? In the se-

quel we will denote by Aa the set

and for every B E Aa we define a e e1 (H, R ) by setting
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The expression u ) stands for V. u). Note that in particu-
lar we have f(a, u) = f(u).

In the proofs that follow, we will take n &#x3E; 2, the case n = 2 being
not more difficult to prove.

As first results concerning f ( ~3, ~ ) we have

LEMMA 2.1. For p e Aa , let
Then we have:

PROOF. In [6] it is proved that there is &#x3E; 0 such that if u e ~t,~
then A simple uniformity argument, as in [17], shows that 03BC is
independent of P E Aa . To prove (ii), using (g2), for u e xp we have

Then, using (i), the proof is complete.

PROPOSITION 2.1. For every {3 E Aa , is weakly continuous,
in the sense that if u weakly in H then um ) ~ u)
weakly in H.

PROOF. Let

Then, since

and the quadratic part has the desired property, we only have to check
that the same holds for Jp . To this aim, first note that (g1 )-(g2 ) imply
that there exist positive constants a3 and a4 such that
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for all ~ e R, where s e (1, ( n + 2 )/( n - 2)). Pick v E H, fix s &#x3E; 0 and let

R~ &#x3E; 0 be so large that f E 2 . Then, if we have,
Ixi &#x3E; Rg

using H61der inequality,

The second integral is bounded independently of m (using (2.1),
Sobolev inequality and the fact that (um) is bounded in H) while for the
first one, from (2.1) and H61der inequality, we have

with q e (2, 2*) where 2* = 2 n/( n - 2). Since in for all

q E [ 1, 2* ), using Sobolev inequality and the fact that (um) is bounded
in H, we obtain that the first integral tends to zero. This completes the
proof.

We now begin the study of the Palais-Smale sequences for the func-
tionals f(f3, ). To this aim we first prove some technical results.

LEMMA 2.2. Let (vm)m c H be a sequence such that vm - vo weakly
in H. Then
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PROOF. Since

vm - vo) =

for m -~ ~ , and likewise, for all v e H,

it suffices to prove that

and

as 7n - ~.

To this aim, first note that (gl )-(g3 ) imply that there are two positi-
ve constants a5 and a6 such that

for all ~ e R . Fix E &#x3E; 0 and let R &#x3E; 0 be free for the moment. Split the

integral in (i)’ as f + f and note that for any fixed R the first in-

|x|R |x|&#x3E;R

tegral tends to zero as Indeed, by (2.1)-(2.2) and the Mean
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Value Theorem, we have

Using H61der inequality and the fact that in for all

q e [ 1, 2* ), we have that the first integral tends to zero. Therefore, to
prove (i)’, it is now enough to show that, given E &#x3E; 0, we can find
R = Re such that the second integral is less than E for all m. Let R,
be so large that &#x3E; xE~ ~ E. Then, using Sobolev inequality and
(2.2), we obtain

Moreover, using the Mean Value Theorem and (2.1 ), we have

and, using H61der and Sobolev inequalities and the fact that (vm) is

bounded in H, the conclusion follows. The proof of (ii)’ is analog-
ous.

We can now begin to describe the Palais-Smale sequences for the
functional f. The next result is the first step in this direction.
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PROPOSITION 2.2. Let (um)m c H be a Palais-Smale sequence for f
at level c E R, that is,

Then there exists a subsequence (still denoted um ) and uo E H such
that

(i) uo weakly in H,

(ii) Vf(uo) = 0,

(ill) ( um - uo) is a Palais-Smale sequence for f at level c - f ( uo ).

PROOF. To prove (i), note that by (g2 ), for m large we have

and hence (um) is bounded in H. Then there exist a subsequence, still
denoted with ( um ), and such that um - uo weakly in H.

Now, since um - uo weakly in H and Vfis weakly continuous, we ob-
tain (ii).

Finally, to prove (iii) it is enough to use Lemma 2.2, with /3 = a.
Indeed we have

and

as m ~ ~ . This completes the proof.

REMARK 2.1. Since f satisfies the geometric assumptions of the
Mountain Pass Theorem, we can find a Palais-Smale sequence (um) for f
at some level c &#x3E; 0. By Proposition 2.2, there is a subsequence (um) con-
verging weakly to some uo e H, which is a critical point for f. If uo 0 0
we have found a solution of (P). Therefore, in the sequel, we will always
consider Palais-Smale sequences converging weakly to zero.

We now turn to a non vanishing property of Palais-Smale se-

quences.
Using the Concentration-Compacteness Principle (see [8]), we can

prove, exactly as in [6], the following result:
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PROPOSITION 2.3. Let (um) c H be a Palais-Smale sequence for f at
level c e R. Then either

(i) 0 strongly in H, or

(ii) there is a sequence ( ym ) c R’ and R &#x3E; 0 such that

where BR ( ym ) denotes the open ball of radius R centered in ym .

In our case, Proposition 2.3 takes the following form:

PROPOSITION 2.4. Let be a Palais-,Smale sequence
for f at level c &#x3E; 0, then there exist a sequence ( ym ) r= Rnand R &#x3E; 0 such
that

and ~ 00.

PROOF. The first part follows immediately from Proposition 2.3,
since c &#x3E; 0 and then (um) cannot tend to zero in H.

Next we have I ~ 00 since weakly in H.

Now we turn to some continuity properties concerning the function-
al u) with respect to on bounded subsets of H.

LEMMA 2.3. Let L 00 (R n , R) and let 83 be a bounded subset
of H. Then there is a constant C &#x3E; 0, depending only on ~3, such that for
all u e 83 there results

PROOF. Let us start with (i). We have
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and, using (2.2), we obtain

Now, since 83 is bounded, by the Sobolev inequality, this means
that

where C = 

For the second part, with a similar calculation we have

and the conclusion follows as above, by (2.1 ).

REMARK 2.2. Note that if is a sequence in L °° such that
in L °° and (um) is a bounded sequence in H, then

and

For every i E Rn we define an isometry Tt : H - H by setting for
a.e. x E Rn

With some trivial changes of variable, it is immediate to see

that

in particular u), and that

which also yields Tzv = u) - v.

The next lemma is the last step that allows us to completely de-
scribe the Palais-Smale sequences for f.
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LEMMA 2.4. Let (um) c H (um ~ 0) be a Palais-Smale sequence for
f at level c &#x3E; 0. Then there exist a function e Aa , a function VI e H,
VI 0- 0 and a sequence (rm) such that for a subsequence of (T,. um),
still denoted the following properties are satisfied: 

"

(iv) (um - T -T a Palais-Smale sequence for f act level
m ’

PROOF. Let (ym) eRn be the sequence given by Proposition 2.4. For
each m E N, choose km = (1~m , ~ ~ ~ , ~m) e such that

Then, by Proposition 2.4, (iii) is satisfied. Since the sequence
um) is bounded in H it contains a subsequence, still denoted TT:m Um,

such that weakly, for some v, e H. By Proposition 2.4, 0.

Indeed, by definition, we have

and then

This proves that no subsequence of tends weakly to zero
and, in particular, that v, 0 0. Therefore (i) is satisfied.

Consider now the (sub) sequence TT:m a: by ( a 2 ) and the definition of
for all x we have 

"
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Since we can assume, by periodicity, ( x 2 , ... , x n ) e [0, T2 ] x ... x
x [ o, Tn ], by Theorem 1.3 there exist a subsequence of (r~), still denoted

and a function ~31 e R) such that uniformly in R n
(which also implies P 1 E Aa ).

Let us prove that (ii) and (iv) hold. For all v E H, by Proposition 2.1,
we have

Indeed the first term vanishes by Lemma 2.3, while the second is
zero since

(um) is a Palais-Smale sequence for f = f(a, .) and T -7:m V is bounded.
Then (ii) is proved. Let us turn to (iv). We have 

"

as one can immediately see by using Lemmas 2.2 and 2.3. Then
as m -~ ~ . Finally, note that for all

v e H it results, using Lemma 2.2,

We can now prove the main result of this section.

PROPOSITION 2.5 (Representation Lemma). Let (um) c H (um -, 0) be
a Palais-Smale sequence for f at level c &#x3E; 0. Then there exist a number

q E N, depending only on c, q functions ~8 i E Aa , q functions vi e H,
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vi ~ 0, a subsequence of (um), still denoted um , and q sequences
such that

PROOF. The proof uses a standard technique. Being very short, we
give it for completeness.

Applying Lemma 2.4 we find a subsequence of (Um), a function
PI e Au, vi e H with vi * 0 and a sequence such that, setting
01m = -tm, we have

as m -~ ~ . Therefore (um - is a Palais-Smale sequence for f
at level v1 ) ~ 0 (Lemma 2.1), this implies that c.

Now two different cases must be considered. If f(fil, VI) = c,
then f(um - -~ 0, which implies that lium - -~ 0, so

that the proposition is proved with q = 1. If vl ) = CI  c then
um = um - Tol v, is a Palais-Smale sequence for f at level c - cl &#x3E; 0.
In this case we iterate the application of Lemma 2.4, starting with
the Palais-Smale sequence (ul).

To prove that this procedure ends, it is enough to show that for
some q e N we obtain Vq) = Cq = c - c1 - ... - cq _ 1. But this fol-
lows from Lemma 2.1: indeed for all i = 1, 2,... we have

so that after at most q:= [c/b] + 1 we obtain c - cl - ... 

- 

cq = 0. This
completes the proof.
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In order to conclude this section we recall a result, which can be
found essentially in [4] and that will be used in the end of the proof. We
state this result in a particular (and useful for our purposes) form that
the reader can find, with its proof, in [17].

THEOREM 2.1. Let feel (H, R) and let F be a class of subsets of H
for which

Assume that there exists e o &#x3E; 0 such that r is invariant for all
deformations 77 with the property t) is the identity in

lu E H f ( u ) ~ c + £ o or f ( u ) ~ c - (i. e. if A e r then t7(A, t) e r
for all t e [ 0, 1 ] ) . Then, for all E E ( 0, £0), there exists a sequence
(um) in H such that

REMARK 2.3. Since the functional f satisfies the geometric as-

sumptions of the Mountain Pass Theorem, by the previous result we
can find a Palais-Smale sequence (um) for f at some level c &#x3E; 0 with the
further property Ilum - um - 1 )) 2013~ 0. This property will be essential for
our aim.

3. - The main result.

In this section we examine some qualitative properties of the
Palais-Smale sequences for f which are the fundamental arguments to
prove the existence of a solution to problem (P). First, we need to fix
some notation.

Define

where we recall that A,
and for all q e N define
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REMARK 3.1. Note that the Representation Lemma implies that
the Palais-Smale sequences for f are, up to negligible quantities in H,
sums of translates of solutions to problems Vf(fl, .) = 0, where B is a
uniform limit of translates of a in Rn (and then B e Aa ). Therefore, using
the previous notations, we obtain that if (um) is a Palais-Smale se-

quence for f at level c &#x3E; 0 (with 0) then there exist q E N, depend-
ing only on c &#x3E; 0, a subsequence and a sequence (CPk) c Qm such
that II2Gmk - i.e. dist(umk, This shows that there are
no subsequences of which do not converge to and therefore
that

REMARK 3.2. By classical regularity results (see e.g. [7] and [14] or
[6]), it can be proved that if v e Xoo then v (Rn ) and, if v ) = 0,
v solves

Moreover, we can assume, without loss of generality, that every
v e is positive (see e.g. [6]) and a fortiori every cp e Qm .

The next result contains an uniform qualitative property of the ele-
ments in q

PROPOSITION 3.1. There exists 3 &#x3E; 0 such that

PROOF. Choose any cp e that is

for some and Then, since for some

using Remark 3.2 we obtain
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Now let E &#x3E; 0 be so small that 1 - s3 &#x3E; (1/2) arid take 6 &#x3E; 0 such

that |E| I  6 implies |g(E)|e |E| I (this is possible by (gl)-(g2)). Let
x (=- R’ such that  ~ . Then, by Remark 3.2,  3 for each
i = 1, ... , r, so that

Since 3 does not depend on the choice of w e om , the proof is
complete.

The following definition gives the essential ingredient to complete
the proof.

DEFINITION 3.1. For every cp e 

x ’ ) = d for some x ’ 

where d &#x3E; 0 is the real number given by Proposition 3.1.

Note that is well defined (by Lemma 2.1 and the conti-
nuity of every cp e Qm ).

REMARK 3.3. Note that by definition, for every cp e there
exists at least some E Rn -1 such that x’ (cp» = 3. We
then set 

We next prove that the function X 
1 is uniformly continuous on

bounded subsets of Q&#x3E; . To this aim some remarks are in order.

REMARK 3.4. From classical regularity arguments (see e.g. [7] and
[14]), using and ( gl ), we obtain that for all v e and for every
open ball BeRn there results

where C &#x3E; 0 depends on n, a, y e (0, 1) and on diam (B). Then it follows
that for all cp e Qoo we have

where Cq depends on the same quantities as C. Consider now a bounded
subset 8 in Q,oo. From the previous estimates it follows that

for every cp e 1B, where K &#x3E; 0 does not depend on cp e 1B. Therefore, for
every bounded subset 1B c Q,oo there results:
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(i) there exists K = K(83) &#x3E; 0 such that I
for every x, y eRn and q e ~3, and in particular

(ii) for all E &#x3E; 0 there exists r = r( e, 1B) such that x - y I  r im-
plies E, for every cp e 1B.

Using the previous properties we can give an estimate of the
L ’-distance between elements in Q,,,, .

LEMMA 3.1. For every bounded subset 83 in there exists a con-
stant C = &#x3E; 0 such that

PROOF. Let cp, y e 1B and xo E Rn . From Remark 3.4 (i) there exists
K &#x3E; 0 such that

Suppose that and let g = (y(xo) - Then,
by the previous inequalities, for every x e R n such we

have

It follows that

where W n is the volume of unit ball in Rn. Then, if &#x3E; cp(xo) we
find

where C &#x3E; 0 depends only on 1B and n, and likewise, if 
Since xo is arbitrary in Rn , the proof is complete.
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We can now prove, using the previous result, the continuity of
X1 : Qoo -&#x3E; R.

PROPOSITION 3.2. The function X 1 : Q,. c H -~ R is uniformly con-
tinuous on bounded subsets of 

PROOF. First we prove, as in [12], an exponential estimate for the
functions in Qoc. Let cp e Qm and for every X = ( x 1, ... , E R n with

set

where to e (0, 1/B/2] and let

Then we have

Now, note that by definition we have cp ~ 3 on and cp  6 in S~ so
that, by Proposition 3.1, 4q &#x3E; (1/2)cp in Q. Then, setting L = -4 +
+ ( 1 /2) 1, we obtain

Moreover we have

Therefore, by the Maximum Principle applied to the unbounded do-
main Q (see [13]), we obtain v - cp ~ 0 in Q, that is,

Using this estimate, we can now prove the continuity of X1.
Let 1B be a bounded subset of Q,oo. Take with Ilcp-

- y ||Loo(Rn)  03BC, and let x(y), x(y) be defined according to Remark 3.3.
Then, if &#x3E; by (3.1 ) we have

and then

and likewise if &#x3E; X 1 ( ~ ). Using this fact and Lemma 3.1 we con-
clude the proof.
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Using this result we can prove the following proposition which con-
tains the last property we need.

PROPOSITION 3.3. Let (um) be a Palais-Smale sequence for f at lev-
el c &#x3E; 0 such that

Then there exists a sequence (xm) in Rn such that

PROOF. By the Representation Lemma and as we note in Remark
3.1, we know that there is a sequence in Q. such that

This implies, using (3.2), that

Let where is defined as in Remark 3.3.
Then xm and since is bounded, by Proposition 3.2 and
(3.3) we prove (i). Moreover, since by definition = 6 for every
m, using the equicontinuity of (qm) (see Remark 3.4 (ii)), there exists
R &#x3E; 0 such that

Now, since we have

by (3.4) we obtain (ii). Finally, (iii) follows (like in Proposition 2.4) from
(ii) and the fact that 0 as m -~ ~ .

We can now prove the main result.
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PROOF OF THEOREM 1.1. Since f satisfies the geometric assump-
tions of the Mountain Pass Theorem, using Theorem 2.1 we can find a
Palais-Smale sequence (um) for f at some level c &#x3E; 0 such that

Moreover, we know that (um) admits a subsequence converging
weakly in H to a critical point uo for f (Proposition 2.1). If Uo =1= 0 we have
found a solution of our problem (P). Otherwise, (um) satisfies the

assumptions of the Proposition 3.3 and then there exists a sequence
such that

and set

Then, by definition we have

therefore, setting vm = by (3.6) we have

and no subsequences of converges weakly to zero in H.
Note also that by (3.7) we have I ~ 00. Moreover we can sup-

pose that ! -&#x3E; 00. Indeed, if there exists some subsequence m k

which is bounded, then, by the choice of im and the periodicity of
a (x1, - ), the = Um + Tm 2 1 ...I x’ + results a

k k Mk
Palais-Smale sequence for f at level c &#x3E; 0 which has no subsequence
weakly convergent to zero.
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Finally, by the almost periodicity of a in the first variable, there
exists a sequence such that I ~ 00 and

uniformly in Rn . Then, since ~-r~-i~-~0 and 17:~ I ~ 00 as

m --~ ~ , there exists a subsequence (7:~) such that

Moreover, since (vm ) is bounded, it contains a subsequence, still denot-
ed vm , such that

We claim that vo is the desired solution of problem (P).
Indeed, first note that by the periodicity of a we have

and therefore a II 00 ~ 0, since the first term tends to zero by
the uniform continuity of a (Theorem 1.2) while the second by defini-
tion of Qk . This implies that for every we H, by Proposition 2.1 and
Lemma 2.3,

because (um ) is a Palais-Smale sequence for f = f(a, ~). This proves that
is a critical point of f.
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