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Groups which are Isomorphic
to their Nonabelian Subgroups.

HOWARD SMITH (*) - JAMES WIEGOLD (**)

ABSTRACT - Let X denote the class of groups G which are isomorphic to all of
their nonabelian subgroups and which are such that not all proper subgroups
are abelian. It is shown that every insoluble X-group is centre-by-simple. A
complete characterisation is given of the soluble groups in ~C.

1. - Introduction.

Let h denote the class of nonabelian groups G in which all proper
subgroups are abelian. Finite y-groups were classified by Miller and
Moreno in [4]. Infinite y-groups do exist, and we refer the reader to [6]
for results on such groups. However, an infinite locally graded ~-group
is abelian [1; Corollary 2] recall that a group G is locally graded if
every nontrivial finitely generated subgroup of G has a nontrivial finite
image. In this paper, we consider the related class X of groups G which
contain proper nonabelian subgroups, all of which are isomorphic to G.
Clearly, every X-group is infinite and 2-generator. There is a satisfacto-
ry classification of soluble groups in the class and, although we do not
know whether there exist insoluble X-groups, nevertheless we are able
to show that such groups would have to be very restricted in structure.
Our main results are as follows.
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THEOREM 1. Let G be an insoluble X-group, and let Z denote the
centre of G. Then G is 2-generator and G/Z is infinite simple. More-
over, Z is contained in every nonabelian subgroup of G.

THEOREM 2. Let G be a soluble group.

(a) If G E X then G contains an abelian normal subgroup of
prime index.

(b) If G is nilpotent then G E X if and only if G is isomorphic to a
group having one of the following presentations (where «nil-2» denotes
the pair of relations [ a, b, b] = 1, [ a, b, a] = 1, p is an arbitrary prime
and k is an arbitrary positive integer).

(c) If G is not nilpotent then G E ~C if and only if either
(v) G = (A, x), where A is a finite elementary abelian p-sub-

groups of order p n which is minimal normal in G, x is of infinite order
and has order q mod Z( G ), where p, q are distint primes, and for each k
in the interval 1 ~ 1~ ~ q - 1, x is conjugate to xk or x -k in GL(n, p),
where now x denotes the image of x under the natural map from (x) to
GL(n, p); or

(vi) G has a .normal abelian subgroup B = A x (b), where
A = ~ a1 ) x ... X ~ ap _ 1 ~ is free abelian of rank p - 1 and normal in G, b
is of infinite order or of order p k ~ f’or some nonnegative integer k) and is
central in G, and G = for some x, = b, ai = ai + 1 for
i= 1, ...,P-2 and where p is a prime at
most 19.

As may be seen from Theorem 1, the class of soluble X-groups is
precisely that of locally graded X-groups-the factor group of a finitely
generated locally graded group by its centre cannot be infinite simple
(see [8]). Note that, in the case where 1~ = 0, the group G described in
part (vi) of Theorem 2 is precisely the central factor group of the
wreath product Z wr Cp. The proof of Theorem 2 requires the following
result on wreath products, which is of independent interest. Its proof,
in turn, depends on a substantial result from Number Theory, and we
are grateful to L. G. Kovdcs for pointing out the connection. We are
grateful also to M. W.Liebeck for the observation that there do indeed
exist pairs of primes p, q for which the conditions in (v) hold, provided
that either n + 1 is an odd prime or n is odd and 2n + 1 is prime: if q is
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the prime n + 1 (respectively 2n + 1 ) then there exists a prime p of or-
der n modulo q, and the pair (p, q) can be shown to satisfy the extra hy-
pothesis on conjugates.

THEOREM 3. Let p be a prime and let G be the central factor group
of the wreath product of an infinite cyclic group by a groups of order p.
Then every normaL subgroups of G contained in the image of the base
groups is the normal closure of a single elements if and only if p is at
most 19.

2. - Proof.

We begin with a very easy result.

LEMMA 1. Suppose that G E ~C and G is abelian-by-finite. Then G
is metabelian.

PROOF. If G is centre-by-finite then G’ is finite and therefore
abelian. Otherwise, there exists a noncentral normal abelian subgroup
A and then, for some g e G, we have (A, g) nonabelian and therefore
isomorphic to G. The result follows.

PROOF OF THEOREM 1. Let G and Z be as stated, and let A denote
the Hirsch-Plotkin radical of G. Certainly G is not locally nilpotent, and
so A is abelian. In fact A = Z, otherwise G = (A, g) for some g e G, giv-
ing the contradiction that G is soluble. By Lemma 1, G/Z is infinite.
Suppose, for a contradiction, that there exists a normal subgroup N of
G such that Z  N  G. For some g e GBN we have (N, g) nonabelian
and hence isomorphic to G, and so G has a nontrivial finite image. It fol-
lows that G is locally graded and hence, by Lemma 1 of [8], that G/Z is
locally graded. Now Z is also the Hirsch-Plotkin radical of N and, since
N = G, we deduce that N/Z = G/Z, that is, G/Z is isomorphic to all of
its nontrivial normal subgroups. Since G/Z has a nontrivial finite im-
age, we may apply the main result of [3] to obtain the contradiction that
G/Z is cyclic. Thus G/Z is simple and G’ Z = G, and so G’ = G". But
G = G’ and so G is perfect. Thus if H is any nonabelian subgroup of G
then we have HZ = (HZ)’ = H’ = H, and the proof of Theorem 1 is

complete.

We now consider the nilpotent case. It is convenient to state our
conclusion here in the form of a lemma.
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LEMMA 2. Let G be a nilpotent group. Then G E X if and onLy
if G has one of the presentations (i)-(iv) of Theorem 2.

PROOF. First assume that G is a nilpotent X-group. Certainly G has
class exactly 2 and is generated by two elements a and b, say. Suppose
that [ a, b] has infinite order; then G is free nil-2 and G’ = Z(G). For
each n &#x3E; 1, set Hn = (an, b, [a, b]). Then Hn’ = ([a, b]n) and Z(Hn) _
= ([a, b]), so Z(Hn)/Hn’ is cyclic of order n, and we even have that G con-
tains infinitely many pairwise nonisomorphic nonabelian subgroups.
By this contradiction, [ a, b] has finite order m, say. If m = rs for some
r, s &#x3E; 1, then the subgroup H = ( a r , b) has its commutator subgroup of
order s;z!: another contradiction. So I = p, a prime, and there
are just the following cases to consider.

Case 1. G/G’ is free abelian-so G has the presentation (i).

Case 2. X ~ bG’ ~, where aG’ I is infinite I is fi-
nite. Suppose here that bG’ has where ( ~, 1) = 1, and set
K = ( a, b 1). Then K’ = G’ and b has order p  mod G’ , and K = G implies
1 = 1. Thus b has order pk mod G’ , for some positive integer k, and ei-
ther b p k - 1, in which case we have the presentation (ii), or b p k -
= [ a, b ]s , for some integer s prime to p, and we now assume that this rela-
tion holds. Let H be a nonabelian subgroup of G. Then H’ = G’ and
H/H’ - (bH’) x (a a H’) for some (arbitrary) integer a prime to p. Thus
H = ~ a °‘ , b). Suppose that 0: G ~ H is an isomorphism. Then a9 =
= = ± 1 and r, t are integers, with (t, p) = 1. Now
we have [a, = bpkt = (bpk) 0 bt]S = [a, and so p di-
vides st( ae - 1).

Thus aE = 1 mod, that is, a = ± 1 mod p. But this must hold for all
a prime to p, and so p = 2 or 3, and we have the presentations (iii),
(iv)-note that replacing a by a -1 allows us to assume that s = 1 in the
case where p = 3.

It remains only to show that a group G having one of the presenta-
tions (i)-(iv) is an X-group. We shall retain the appropriate notation at
each stage.

In case (i), an arbitrary nonabelian subgroup H of G satisfies H’ -
- G’ and H/H’ free abelian, and so H = G. In case (ii), every nonabelian
subgroup H is of the form (a a , b&#x3E;, where (p, a) = 1, and the map a
- a a , b - b extends to an isomorphism from G to H. Each nonabelian
subgroup H is also of this type in the remaining two cases. The map
a-&#x3E;aad, b-&#x3E;b, with d=1 if a=1 mod p and d=-1 if a=-1 mod p
(where p = 2 or 3) again extends to an isomorphism 0 from G to H, as
the following calculations show: [aO, iff = iff
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[a, b]S = [ a, b]aes, which is true and so all relations are satisfied, and 0
extends to a homomorphism onto H. Also, ( a m b n ) 8 = 1 implies
a aem b n = 1, which implies that p divides n and m = 0 and so 0 is injec-
tive. The lemma is thus proved.

Next, we deal with the centre-by-finite X-groups. Again it is conve-
nient to isolate this part of the argument.

LEMMA 3. Let G be a nonnilpotent, centre-by-finite X-group. Then
G has the structure described in part (v) of Theorem 2.

PROOF. As in the proof of Lemma 1, G’ is finite and therefore
abelian. Since G’ is not central it has a noncentral Sylow p-subgroup,
and we may write G = where A is a finite normal abelian p-sub-
group of G and x has infinite order. Now G’ = [A, (x)] and so [a, x, 
1 for some element a of A, and we have ([a, x], x ) = G. But [a, x]P =

x] = 1, since (AP, x ) is certainly not isomorphic to G. It follows
that A has exponent p. Suppose that x has order n mod Z(G). If n = rs,
where r, s &#x3E; 1, then (A, is not abelian and is therefore isomorphic to
G. But this easily gives a contradiction, and so n = q, a prime. Certainly
q # p, since G is not nilpotent. Further, if A contains a proper nontrivial
G-invariant subgroup B then, by Maschke’s Theorem, we have A = B x C,
where C is also nontrivial and G-invariant. Now either (B, x) or (C, x)
is isomorphic to G, another contradiction. Finally, if q does not divide k
then (A, is isomorphic to G and so Xk acts like on A and the con-

jugacy condition follows.
Now suppose that G is a group having the structure indicated, and

let H be a nonabelian subgroup of G. Then H contains a nontrivial ele-
ment b of A and an element of the form g = uxl, where u e A and A =1=
=1= 0 mod q. Since A is minimal normal we have (b)(9) = A, and so H is nor-
mal in G and H = (A, xu), for someu which is not a multiple of q. Clear-
ly then H = G, and the result follows.

We now proceed to the proof of part (a) of Theorem 2.

LEMMA 4. Let G be a soluble X-group. Then G has a normal
abelian subgroups of prime index.

PROOF. By Lemma 2, a nilpotent x-group G has a normal abelian
subgroup, namely b ~ G ’ in the notation there employed, of prime
index p. Assuming G is not nilpotent, we see that the Hirsch-Plotkin
radical A of G is abelian and self-centralizing, and it is clear that
if G/A is finite then it is of prime order. Thus we may assume
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that G is not abelian-by-finite, and hence that G = for some
element x of infinite order.

Suppose that A contains a noncentral element a of finite order. Then
H = (a, x) is isomorphic to G. Now H n A = (a)(x) is the Hirsch-Plotkin
radical of H, else (a, ~) is locally nilpotent and hence abelian for some
n &#x3E; 0, giving the contradiction that H is abelian-by-finite. Thus A =
= H n A and A has finite exponent. We may now argue as in the proof of
Lemma 3 to deduce that A has prime exponent n, say. If A is finite then
G is centre-by-finite, a contradiction. It follows that G is (isomorphic to)
the wreath product (a) wr (x). But the nonabelian subgroup is not
even 2-generator. By this contradiction, the torsion subgroup T of A is
central in G. If G/T is abelian-by-finite then G is nilpotent-by-finite, an-
other contradiction. Let H/T be a nonabelian subgroup of G/T . Then of
course H is nonabelian and T is the maximal torsion subgroup of H, and
so H/T = GIT and GIT belongs to ~C.

Factoring by T if necessary, we may assume that G is torsionfree.
Let Z denote the centre and C the second centre of G. If C &#x3E; Z then

(C, x~ is nonabelian and therefore isomorphic to G, giving the contra-
diction that G is nilpotent. So Z is the hypercentre of G; also A/Z is tor-
sionfree. Let D = CA (xn), where n is some positive integer. Then D is
normal in G and (D, x) is abelian-by-finite and hence abelian, giving
D = Z. Suppose that H/Z is a nonabelian subgroup of G/Z. Certainly H
is nonabelian, and so it contains an element of the form ax n , for some
positive integer n and element a of A. Also, of course, HnA ;e- 1, and it
follows that and hence that Z(H) = Z. Thus 
= G/Z, and we have G/Z Factoring as before, we may assume that
Z = 1 and hence that = 1 for all positive integers n. We claim
that G has finite rank; assuming this to be false, we have from [2] that G
contains a section L/K which is isomorphic to Cp wr Coo for some prime
~. Since L is isomorphic to G, we may as well write G = L. Let B/K de-
note the base group of G/K. Then B is not isomorphic to G, since it is
not finitely generated. Hence B is abelian and, since G/B is infinite
cyclic, we see that B = A. But then (A, is not 2-generator (mod I~
and we have the contradiction that (A, is abelian. This establishes
the claim.

Next, suppose that A is finitely generated, of rank r, say, and let
a,, ... , be a Z-basis for A. Relative to this basis, the action of x on
A may be represented by an invertible r x r matrix X with integer en-
tries. Set H = (A, X2), and let 0 be an isomorphism from G to H. Since A
is the Hirsch-Plotkin radical of both G and H, it is fixed by 8, which is
therefore determined by some assignment ai ~ bi ( i = 1, ... , r), x ~
- ax :t2 , where {b1, ... , is also a basis for A and a is some element of
A. By taking the composite with the isomorphism bi -~ bi (Vi), ax:t2 -
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~ x ±2 , we may assume that ai -~ bi , x --~ x -t2. Suppose M represents the
change of ... , ar ~ --~ ~ bl , ... , then 0 restricted to A is

represented by M and, since 0 is an isomorphism, we have =

= XM, or Consider the subgroup K = (X, M) of

GL(r, Z); this is a homomorphic image of either U = (a, = a 2) or
V= (a, = a -2) via the assignment a ~ X, b - M. Now each of U
and V is an extension of the dyadic rationals by the infinite cyclic group
(b) and so K is soluble and hence polycyclic (see Chapter 2 of [7], for
example). But, in every polycyclic image of U or of V, the image of the
subgroup ~a)~b&#x3E; is finite, and so X has finite order n, say. This gives the
contradiction that [A, = 1. Thus A is not finitely generated and,
since CA (x) = 1, we see that A contains no nontrivial finitely generated
G-invariant subgroups. Since A has rank r, there exists an r-generator
subgroup Ao of A such that A/Ao is periodic. Further, since (Ao , x) is
not abelian, we may assume A~x&#x3E; = A. Write Then

Ao ~ - m, where m is an integer greater than 1, since Ao is not nor-
mal in G. Setting _A2 we note that each of the indices

Af : All I and I is also m and hence that I A2 : Ao I divides
m3. We deduce that A/Ao is a a-group for some finite set jr of primes,
namely those dividing m. Since A has finite rank but is not finitely gen-
erated, it has a subgroup A* such that A/A * = Cp ~ for some prime q.
Let 2 be the set of all subgroups L of A such that A/L = Cq - . It is easy
to see that no member L of L can be isomorphic to A, and it follows from
the X-property that, for each L in L, L (x) = A. Choose B e 2 such that
the index B = q/3, say, is minimal. Since B is not normal in
G, we have # &#x3E; 0 and thus, for all L e ~, ~ L ~ I &#x3E; q~ (here we
are using the fact that A/L is locally cyclic). Now let J = (A, X2).

There exists an isomorphism q5 from G onto J and, as for our previ-
ous isomorphism 8, we may assume that x~ = x ±2 . Also, _A~ = A
and so the sent 2 is invariant under 0. Thus 
= I &#x3E; qB, a contradiction which concludes the
proof of Lemma 4.

PROOF OF THEOREM 2. All that remains here is to show that
a nonnilpotent group G which has an abelian normal subgroup of

prime index, but which is not centre-by-finite, is an x-group if
and only if it is of one of the types described in part (vi) of the
theorem. We shall use the result of Theorem 3. Firstly, we make
an elementary observation: let W = (u) wr (v), where u has infinite
order and v has prime order p. Viewing the base group D of W
in the natural way as the additive group of the group ring Z(v),
we may regard the centre C of W as the ideal of D generated
by the element f(v) = 1 + v + ... + v ~ -1. Since f is irreducible over
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Z, and hence over Q, we have that every W-invariant subgroup
of D which properly contains C is of finite index in D.

Now let G = AI(x) be as in (vi), and let H be an arbitrary nonabelian
subgroup of G. Then H = (H f1 A, axT), where a e A and ( p, r) = 1. We
have = (H n A)(axT), so that H n A is normal in
G. Applying Theorem 3 to the group G/~ b ~, we deduce that H n A is the
normal closure in G (and hence in H) of a single element b, say. Now
H n A has finite index in A and therefore has while
bb(axT) ... = 1, (axr)p = xrp , and H n B = (H fl A) x It fol-
lows easily that the assignment a, - b, x ~ axT determines an isomor-
phism from G onto H.

Now assume that G is an abelian-by-finite X-group which is neither
nilpotent nor centre-by-finite. We may write G = B(x) for some x,
where B is abelian and normal of prime index p in G. Then xP e Z =
= Z(G). Consider first the case where x~ = 1. There is a positive integer k
such that B k is torsionfree and normal in G. We have G = ~B k , x) and so
we may write G = where A is torsionfree. We claim that Z = 1.

Clearly Z ~ A, and if [A, (z)] 5 Z then we have the contradiction that G
is nilpotent. Thus ([A, (x)], x) is isomorphic to G, and it follows that the
rank of [A, ~x~] is the same as that of A. If Z # 1 there must be a non-
trivial element z in [A, f1 Z. It is easy to see that z must be of the
form [a, x], for some a in A; but then G = ( a, x), which is nilpotent, and
we have a contradiction which establishes the claim. 

_Now, for arbitrary nontrivial a in A, we have aa x ... a x’~ central in
G and hence trivial, and (a, x) is isomorphic to G. We may assume that
G = (a, x), for some a in A. It follows that G is a homomorphic image of
the central factor group of Z wr Cp and is therefore isomorphic to this
central factor group (since G is infinite and nonabelian). Let N be an ar-
bitrary nontrivial G-invariant subgroup of A, and let H = (N, x). Then
H = G and it follows that N = Fitt H is isomorphic to A = Fitt G and
thus that N is the normal closure in H of a single element b of A. But H
contains some element cx, where c E A, so that N = ~ b ~G . Since N was
arbitrary, Theorem 3 tells us that p is at most 19.

Next, consider the more general case where x has finite order prl,
say, where (p, 1) = 1. As before, we may write G = AI(x), where A is
torsionfree abelian. Since xP e Z, (A, Xl) is nonabelian and therefore

isomorphic to G. It follows that 1 = 1 and x has order p  . Now (xP) is the
torsion subgroup of Z and of the centre of every nonabelian subgroup H
containing xp . It follows easily that e ~C. If is nilpotent
then so is G, a contradiction. Also, if G/(xP) is centre-by-finite then G’
is finite and G is centre-by-finite, another contradiction. As for the first
case, has trivial centre and so G has the structure indicated in
the theorem.
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Suppose then that x has infinite order. Again we write G = A(x),
where this time A is torsionfree abelian and x has order p’modA.
As above, [A, (x)] f1 Z = 1 and G = ([A, (x)], x), and so we may write
G = D ] (x), where D is torsionfree abelian and D fl Z = 1.

Thus (xp) = Z, and we deduce that E ~C. If d is any nontrivial
element of D then [d, x] ft Z, else (d, x) is nilpotent and not abelian, and
hence isomorphic to G. It follows once more that GI(XP) has trivial
centre, and the previous argument now shows that G is of the form
specified.

PROOF OF THEOREM 3. Let W be the wreath product Zwr(x),
where x has prime order p, and let Z and B respectively denote the
centre and base group of W.

If p = 2 then W/Z is the infinite dihedral group, which clearly be-
longs to ~. Assume, then, that p is odd, and let o be a primitive p-th
root of unity. The ring R of integers of is just Z[o] (see Theorem
3.5 of [9]), and there is a natural correspondence between B/Z and R.
(Recall that Z may be viewed as the ideal of generated by a cyclo-
tomic polynomial f(x).) Under this correspondence, W-invariant sub-
groups of B/Z are associated with ideals of R. It is routine to show that
W/Z belongs to X if and only if every W-invariant subgroup of B/Z is
the normal closure of a single element-the details here are similar to
those which appear in the related part of the proof of Theorem 2. Now
R is a principal ideal domain if and only if Q(a)) has class number 1 (see
Chapter 9 (in particular Proposition 9.8) of [9]). But, by a result of Uchi-
da and Montgomery, this is true if and only if p 5 19-for further de-
tails and appropriate references the reader may consult the survey ar-
ticle by Masley in [5]. Theorem 3 is thus proved.
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