RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

Alberto Scalari

A remark on semiglobal existence for $\bar{\partial}$

Rendiconti del Seminario Matematico della Università di Padova, tome 97 (1997), p. 29-33

http://www.numdam.org/item?id=RSMUP_1997__97_29_0
© Rendiconti del Seminario Matematico della Università di Padova, 1997, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

A Remark on Semiglobal Existence for $\bar{\partial}$.

Alberto Scalari (*)

AbStract - It is proved in [6] that a domain Ω of $X=\mathrm{C}^{n}$ is pseudoconvex if and only if $\bar{\partial}$-closed forms (of positive degree) are $\bar{\partial}$-exact in Ω. We prove here by elementary techniques that pseudoconvexity of Ω is still characterized by solvability of $\bar{\partial}$-forms over relatively compact subsets of Ω.

1. - Semiglobal solvability in C^{2}.

Let $X=\mathbb{C}^{n}$ and let \mathcal{O}_{X} be the sheaf of holomorphic functions on X. Let Ω be a domain of X with C^{2}-boundary $M=\partial \Omega$, and denote by $\delta(z)$, $z \in \Omega$ the Euclidian distance to M. Let z be a point of M; one defines the Levi form of M at z (from the exterior side of Ω) by

$$
L_{M}(z)=-\left.\partial \bar{\partial}(\delta)(z)\right|_{T_{z}^{\mathrm{c}} M},
$$

where $T_{z}^{\mathrm{C}} M=T_{z} M \cap \sqrt{-1} T_{z} M$. One denotes by $s_{M}^{+}(z), s_{M}^{-}(z)$, and $s_{M}^{0}(z)$ the numbers of respectively positive, negative, and null eigenvalues of $L_{M}(z)$.

One denotes by $H^{j}\left(\Omega, \mathcal{O}_{X}\right), 0 \leqslant j \leqslant n$, the space of $\bar{\partial}$-closed $(0, j)$ forms on Ω (with C^{∞}-coefficients) modulo $\bar{\partial}$-exact forms.

We begin our discussion in $X=\mathbb{C}^{2}$. The proof of the following statement was suggested word by word by professor Alexander Tumanov.
${ }^{(*)}$ Indirizzo dell'A.: Dipartimento di Matematica, Università di Padova, Via Belzoni 7, 35131 Padova, Italy.

Proposition 1.1. Let Ω^{\prime} be a domain of $\mathbb{C}^{2} \backslash\left\{z_{0}\right\}$ such that z_{0} belongs to a compact component of $\mathbb{C}^{2} \backslash \Omega^{\prime}$. Then

$$
\begin{equation*}
\left.H^{1}\left(\mathbb{C}^{2} \backslash\left\{z_{0}\right\}, \mathcal{O}_{X}\right)\right|_{\Omega^{\prime}} \neq 0 \tag{1.1}
\end{equation*}
$$

Proof. Assume $z_{0}=0$. Define:

$$
f= \begin{cases}\bar{\partial}\left(\frac{\bar{z}_{2}}{z_{1}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)}\right), & z_{1} \neq 0 \\ -\bar{\partial}\left(\frac{\bar{z}_{1}}{z_{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)}\right), & z_{2} \neq 0\end{cases}
$$

It is easy to prove that f is a (closed) 1-form in $\mathbb{C}^{2} \backslash\left\{z_{0}\right\}$. Assume by absurd that $\left.H^{1}\left(\mathbb{C}^{2} \backslash\left\{z_{0}\right\}, \mathcal{O}_{X}\right)\right|_{\Omega^{\prime}}=0$. Then there exists g in $\Omega^{\prime}: \bar{\partial} g=f$ in Ω^{\prime} whence

$$
h:=z_{1} g-\frac{\bar{z}_{2}}{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}
$$

is holomorphic in Ω^{\prime} since it is holomorphic in $\Omega^{\prime} \backslash\left\{z_{1}=0\right\}$ and bounded in Ω^{\prime} far from 0 . By Hartogs' theorem h extends to the compact components of $\mathrm{C}^{2} \backslash \Omega^{\prime}$ and in particular to 0 . But $\left.h\right|_{z_{1}=0}=-1 / z_{2}$ does not. Q.E.D.

PROPOSITION 1.2. Let Ω be a domain of \mathbb{C}^{2} with C^{2} boundary $M=\partial \Omega$. For $z_{0} \in \partial \Omega$, assume $L_{M}\left(z_{0}\right)<0$. Then

$$
\begin{equation*}
\left.H^{1}\left(\mathrm{C}^{2} \backslash\left\{z_{0}\right\}, \mathcal{O}_{X}\right)\right|_{\Omega^{\prime}} \neq 0 \tag{1.2}
\end{equation*}
$$

for suitable $\Omega^{\prime} \subset \subset$.

Proof. Let $z_{0}=0$. (a) We prove that for convenient $\Omega^{\prime} \subset \subset \Omega$, we can find $\widetilde{\Omega}^{\prime} \supset \Omega^{\prime}, z_{0} \in \widetilde{\Omega}^{\prime}$, connected along a complex curve L through z_{0} such that any $h \in \mathcal{O}_{X}\left(\Omega^{\prime}\right)$ extends to $\widetilde{\Omega}^{\prime}$. In fact in complex coordinates $z=\left(z_{1}, z_{2}\right), z=x+i y$, we can assume:

$$
\begin{equation*}
\Omega=\left\{z ; x_{2}>-x_{1}^{2}+o\left(x_{1}, y_{1}, y_{2}\right)^{2}\right\} \tag{1.3}
\end{equation*}
$$

Define

$$
\begin{gathered}
I_{t}=\left\{\left(x_{1}, x_{2}\right) ; x_{2}=\frac{t^{2}}{4},-t \leqslant x_{1} \leqslant t\right\} \cup\left\{\left(x_{1}, x_{2}\right) ; x_{1}=t, \frac{-t^{2}}{2} \leqslant x_{2} \leqslant \frac{t^{2}}{4}\right\}, \\
J_{t}=\left\{\left(x_{1}, x_{2}\right) ;-t<x_{1}<t, \frac{t^{2}}{4}-\frac{t}{3}\left(x_{1}+t\right)<x_{2}<\frac{t^{2}}{4}\right\} .
\end{gathered}
$$

Let $K_{c t}=\left\{\left(y_{1}, y_{2}\right) ;\left|y_{1}, y_{2}\right|<c t\right\}$. We have $\Omega \supset K_{c t} \times I_{t}, \forall c \gg 1$ and for suitable t. Let B be a fixed neighborhood of z_{0} and $\Omega^{\prime}=\Omega^{\prime}{ }_{t} \subset \subset \Omega$ s.t. $\Omega^{\prime} \cap B \supset K_{c t} \times I_{t}$. By [8,Theorem 5] any holomorphic function on $K_{c t} \times I_{t}$ extends to $K_{c t / 2} \times J_{t}$. In particular (a) follows with L being the z_{2} axis.
(b) Choose complex coordinates in \mathbb{C}^{2} s.t. the curve L of (a) coincides with the z_{2} axis. Define f as in the preceding Proposition, solve $\bar{\partial} g=f$ in Ω^{\prime} and set $h=z_{1} g-\bar{z}_{2} /\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$ (holomorphic in Ω^{\prime}). Take $\Omega^{\prime} \subset \subset \Omega$ such that (a) holds. Then h (and therefore also $\left.h\right|_{L}=$ $=-1 / z_{2}$) extends at $z_{0}=0$ which is a contradiction.

2. - Semiglobal solvability in \mathbb{C}^{n}.

Let $X=\mathbb{C}^{n}, M=\partial \Omega$ a C^{2} real submanifold of $\mathbb{C}^{n}, \Omega=\{z \in X$: $\delta(z)>0\}$.

DEFINITION 2.1. Ω is pseudoconvex if and only if $s_{M}^{-}(z) \equiv 0$, $\forall z \in M$.

It is classical that Ω is pseudoconvex if and only if $H^{j}\left(\Omega, \mathcal{O}_{X}\right)=0$, $\forall j>0$. With the notation $\Omega_{\varepsilon}=\{z \in \Omega ; \delta>\varepsilon\}$ we can generalize the above characterization as follows:

THEOREM 2.2. Ω is pseudoconvex if and only if

$$
\begin{equation*}
\left.H^{j}\left(\Omega_{\varepsilon}, \mathcal{O}_{X}\right)\right|_{\Omega_{\varepsilon^{\prime}}}=0, \quad \forall \varepsilon, \forall \varepsilon^{\prime}, \text { with } \varepsilon^{\prime}>\varepsilon \geqslant 0, \forall j>0 \tag{2.1}
\end{equation*}
$$

Proof. The «Only if» follows from the fact that Ω_{ε} is pseudoconvex [6, Theorem 2.6.12].
«If»: (a) Let L be a complex submanifold of X, and set $\omega=L \cap \Omega$, $\omega_{\varepsilon}=\left\{z \in \omega ; \delta_{L}(z)>\varepsilon\right\}$ where δ_{L} is the distance along L. Then (2.1) implies that $\forall \varepsilon \exists \varepsilon^{\prime}$ such that

$$
\begin{equation*}
\left.H^{j}\left(\omega_{\varepsilon}, \mathcal{O}_{L}\right)\right|_{\omega_{\varepsilon^{\prime}}}=0 \quad \text { with } \varepsilon^{\prime}>\varepsilon \geqslant 0 \tag{2.2}
\end{equation*}
$$

with $\varepsilon^{\prime} \rightarrow 0$ as $\varepsilon \rightarrow 0$. This follows from adapting the proof of [6, Theorem 4.2.9] as we show here. Let f be a $\bar{\partial}$-closed form in $\left\{z \in \omega ; \delta_{L}>\varepsilon\right\}$. Let $\phi \in C^{\infty}, \phi=1$ in a neighborhood of ω and $\phi=0$ in a neighborhood of $\{z \in \Omega ; \pi z \notin \omega\}$ ($\pi: X \mapsto L$ the orthogonal projection). By a recoursive argument it is not restrictive to assume $\operatorname{cod}_{X} L=1$. Choose coordinates so that $L=\left\{z: z_{n}=0\right\}$. Solve

$$
\bar{\partial} v=z_{n}^{-1} \bar{\partial} \phi \wedge \pi^{*} f \quad \text { in } \Omega_{\varepsilon^{\prime}}
$$

thus

$$
F:=\phi \pi^{*} f-z_{n} v
$$

is $\bar{\partial}$-closed in $\Omega_{\varepsilon^{\prime}}$. Solve $\bar{\partial} G=F$ in $\Omega_{\varepsilon^{\prime \prime}}, \varepsilon^{\prime \prime}>\varepsilon^{\prime}$. Then $g:=j^{*} G$ $(j: L \hookrightarrow X)$ solves $\bar{\partial} g=f$ in $\omega_{\varepsilon^{\prime \prime \prime}}, \varepsilon^{\prime \prime \prime}>\varepsilon^{\prime \prime}$ with $\varepsilon^{\prime \prime \prime} \rightarrow 0$ as $\varepsilon \rightarrow 0$. This proves (2.2).
(b) If $n=1$ there is nothing to prove, and if $n=2$ the theorem follows from § 1. Set $n \geqslant 3$, take $z_{0} \in \partial \Omega, v \in T_{z_{0}}^{\mathrm{C}} M$ and consider $L=\mathrm{C} v \oplus$ $\oplus \mathbb{C} u$ (u transversal to M). Then (2.2) holds and this implies in particular $\left.H^{1}\left(\mathbb{C}^{2} \backslash\left\{z_{0}\right\}, \mathcal{O}_{L}\right)\right|_{\omega^{\prime}}=0, \forall \omega^{\prime} \subset \subset \omega$. Thus with $N=\partial \omega$,

$$
L_{M}\left(z_{0}\right) v^{t} \bar{v}=L_{N}\left(z_{0}\right) v^{t} \bar{v} \geqslant 0 . \quad \text { Q.E.D. }
$$

We can localize our statement:
Definition 2.3. Ω is pseudoconvex at z_{0} if and only if $s_{M}(z)=0$, $\forall z \in M$ close to z_{0}.

Let B (or B^{\prime}) range through the family of neighborhoods of the points z close to z_{0} on M.

Theorem 2.4. For any B there exists $B^{\prime} \subset B$ such that:

$$
\begin{equation*}
\left.H^{1}\left(\Omega \cap B, \mathcal{O}_{X}\right)\right|_{\Omega^{\prime} \cap B^{\prime}}=0, \quad \forall \Omega^{\prime} \subset \subset \tag{2.3}
\end{equation*}
$$

if and only if Ω is pseudoconvex at z_{0}.
Proof. «If»: by [1] we may find $\widetilde{\Omega}: \widetilde{\Omega}$ is pseudoconvex, $\widetilde{\Omega} \subset \Omega \cap B$, $\widetilde{\Omega} \cap B^{\prime}=\Omega \cap B^{\prime}$. Then (2.3) follows.
«Only if»: (a) $X=\mathbb{C}^{2}$. If Ω is not pseudoconvex at z_{0} one may find $z_{\nu} \rightarrow z_{0}$ with $s_{M}^{-}\left(z_{v}\right)=1$. Then the proof of Proposition (1.2) shows that

$$
\left.H^{1}\left(\mathbb{C}^{2} \backslash\left\{z_{\nu}\right\}, \mathcal{O}_{X}\right)\right|_{\Omega^{\prime} \cap B^{\prime}} \neq 0
$$

for any B^{\prime} neighborhood of z_{v} and for suitable $\Omega^{\prime}=\Omega_{B^{\prime}}^{\prime} \subset \subset$. In particular (2.3) is violated.
(b) Let $X=\mathrm{C}^{n}, n \geqslant 3$, take L with $\operatorname{cod}_{X} L \geqslant 1$, define $b=B \cap L$, $\omega=\Omega \cap L$ and consider $f \bar{\partial}$-closed in $\omega \cap b$. By the same argument as in Theorem $2.2 f$ can be «lifted» to $F \bar{\partial}$-closed in $\Omega^{\prime} \cap B^{\prime}$ for any Ω^{\prime} relatively compact in Ω and for suitable B^{\prime}. For any ε we take Ω^{\prime} (dependent on ε) and $B^{\prime \prime}$ (independent of ε) s.t.

$$
-n \varepsilon+\left(\Omega \cap B^{\prime \prime}\right) \subset \Omega^{\prime} \cap B^{\prime}
$$

(where n is the outward normal) and define

$$
F_{1}(x)=F(x-n \varepsilon) \quad \text { in } \Omega \cap B^{\prime \prime}
$$

Solve $\bar{\partial} G_{1}=F_{1}$ in $\Omega^{\prime \prime} \cap B^{\prime \prime \prime}$ (independent of ε) then g_{1} solves $\bar{\partial} g_{1}=f_{1}$ in $\omega^{\prime \prime} \cap b^{\prime \prime \prime}$ (independent of ε) and thus $\bar{\partial} g=f$ in $-n \varepsilon+\left(\omega^{\prime \prime} \cap b^{\prime \prime \prime}\right) \supset \omega^{\prime \prime \prime} \cap$ $\cap b^{\prime \prime \prime \prime}$ where $\omega^{\prime \prime \prime}$ is any relatively compact open subset of ω and $b^{\prime \prime \prime \prime}$ a suitable neighborhood.
(c) The end of the proof follows from combining (a) and (b).

REFERENCES

[1] A. Andreotti - H. Grauert, Théorèmes de finitude pour la cohomologie des éspaces complexes, Bull. Soc. Math. France, 90 (1962), pp. 193-259.
[2] A. Andreotti - C. D. Hill, E. E. Levi convexity and the Hans Lewy problem, Part II: Vanishing theorems, Ann. Sc. Norm. Sup. Pisa (1972), pp. 747-806.
[3] H. Grauert, Kantenkohomologie, Compositio Math., 44 (1981), pp. 79101.
[4] G. M. Henkin, H. Lewy's equation and analysis on pseudoconvex manifolds (Russian), I. Uspehi Mat. Nauk., 32 (3) (1977), pp. 57-118.
[5] G. M. Henkin - J. Leiterer, Andreotti-Grauert theory by integral formulas, Birkhauser Progress in Math., 74 (1988).
[6] L. Hörmander, An Introduction to Complex Analysis in Several Complex Variables, Van Nostrand, Princeton N.J. (1966).
[7] L. HÖRmANDER, L^{2} estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math., 113 (1965), pp. 89-152.
[8] H. Komatsu, A local version of Bochner's tube theorem, J. Fac. Sci. Univ. Tokyo, Sect. 1A, 19 (1972).
[9] G. Zampieri, The Andreotti-Grauert vanishing theorem for dihedrons of C^{n}, J. Fac. Sci. Univ. Tokyo, to appear.

Manoscritto pervenuto in redazione il 17 maggio 1995.

