RENDICONTI del Seminario Matematico della Università di Padova

ALBERTO SCALARI

A remark on semiglobal existence for $\bar{\partial}$

Rendiconti del Seminario Matematico della Università di Padova, tome 97 (1997), p. 29-33

http://www.numdam.org/item?id=RSMUP_1997_97_29_0

© Rendiconti del Seminario Matematico della Università di Padova, 1997, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 97 (1997)

A Remark on Semiglobal Existence for $\bar{\partial}$.

ALBERTO SCALARI (*)

ABSTRACT - It is proved in [6] that a domain Ω of $X = \mathbb{C}^n$ is pseudoconvex if and only if $\overline{\partial}$ -closed forms (of positive degree) are $\overline{\partial}$ -exact in Ω . We prove here by elementary techniques that pseudoconvexity of Ω is still characterized by solvability of $\overline{\partial}$ -forms over relatively compact subsets of Ω .

1. – Semiglobal solvability in C^2 .

Let $X = \mathbb{C}^n$ and let \mathcal{O}_X be the sheaf of holomorphic functions on X. Let Ω be a domain of X with \mathbb{C}^2 -boundary $M = \partial \Omega$, and denote by $\delta(z)$, $z \in \Omega$ the Euclidian distance to M. Let z be a point of M; one defines the Levi form of M at z (from the exterior side of Ω) by

$$L_M(z) = -\partial \partial(\delta)(z)|_{T_z^{\mathbb{C}}M},$$

where $T_z^{C}M = T_zM \cap \sqrt{-1}T_zM$. One denotes by $s_M^+(z)$, $s_M^-(z)$, and $s_M^0(z)$ the numbers of respectively positive, negative, and null eigenvalues of $L_M(z)$.

One denotes by $H^{j}(\Omega, \mathcal{O}_{X}), 0 \leq j \leq n$, the space of $\overline{\partial}$ -closed (0, j)-forms on Ω (with C^{∞} -coefficients) modulo $\overline{\partial}$ -exact forms.

We begin our discussion in $X = \mathbb{C}^2$. The proof of the following statement was suggested word by word by professor Alexander Tumanov.

(*) Indirizzo dell'A.: Dipartimento di Matematica, Università di Padova, Via Belzoni 7, 35131 Padova, Italy.

PROPOSITION 1.1. Let Ω' be a domain of $\mathbb{C}^2 \setminus \{z_0\}$ such that z_0 belongs to a compact component of $\mathbb{C}^2 \setminus \Omega'$. Then

(1.1)
$$H^1(\mathbb{C}^2 \setminus \{z_0\}, \mathcal{O}_X)|_{\Omega'} \neq 0.$$

PROOF. Assume $z_0 = 0$. Define:

$$f = \begin{cases} \overline{\partial} \left(\frac{\overline{z_2}}{z_1(|z_1|^2 + |z_2|^2)} \right), & z_1 \neq 0, \\\\ -\overline{\partial} \left(\frac{\overline{z_1}}{z_2(|z_1|^2 + |z_2|^2)} \right), & z_2 \neq 0. \end{cases}$$

It is easy to prove that f is a (closed) 1-form in $\mathbb{C}^2 \setminus \{z_0\}$. Assume by absurd that $H^1(\mathbb{C}^2 \setminus \{z_0\}, \mathcal{O}_X)|_{\Omega'} = 0$. Then there exists g in $\Omega': \overline{\partial}g = f$ in Ω' whence

$$h := z_1 g - \frac{\overline{z}_2}{|z_1|^2 + |z_2|^2}$$

is holomorphic in Ω' since it is holomorphic in $\Omega' \setminus \{z_1 = 0\}$ and bounded in Ω' far from 0. By Hartogs' theorem h extends to the compact components of $\mathbb{C}^2 \setminus \Omega'$ and in particular to 0. But $h|_{z_1=0} = -1/z_2$ does not. Q.E.D.

PROPOSITION 1.2. Let Ω be a domain of \mathbb{C}^2 with \mathbb{C}^2 boundary $M = \partial \Omega$. For $z_0 \in \partial \Omega$, assume $L_M(z_0) < 0$. Then

(1.2)
$$H^1(\mathbb{C}^2 \setminus \{z_0\}, \mathcal{O}_X)|_{\Omega'} \neq 0,$$

for suitable $\Omega' \subset \Omega$.

PROOF. Let $z_0 = 0$. (a) We prove that for convenient $\Omega' \subset \Omega$, we can find $\tilde{\Omega}' \supset \Omega'$, $z_0 \in \tilde{\Omega}'$, connected along a complex curve L through z_0 such that any $h \in \mathcal{O}_X(\Omega')$ extends to $\tilde{\Omega}'$. In fact in complex coordinates $z = (z_1, z_2), \ z = x + iy$, we can assume:

(1.3)
$$\Omega = \{z; x_2 > -x_1^2 + o(x_1, y_1, y_2)^2\}.$$

Define

$$\begin{split} I_t &= \left\{ (x_1, \, x_2); \; x_2 = \frac{t^2}{4} \,, \; -t \leqslant x_1 \leqslant t \right\} \cup \left\{ (x_1, \, x_2); \; x_1 = t, \; \frac{-t^2}{2} \leqslant x_2 \leqslant \frac{t^2}{4} \right\}, \\ J_t &= \left\{ (x_1, \, x_2); \; -t < x_1 < t, \; \frac{t^2}{4} \,- \frac{t}{3} (x_1 + t) < x_2 < \frac{t^2}{4} \right\}. \end{split}$$

Let $K_{ct} = \{(y_1, y_2); |y_1, y_2| < ct\}$. We have $\Omega \supset K_{ct} \times I_t$, $\forall c \gg 1$ and for suitable t. Let B be a fixed neighborhood of z_0 and $\Omega' = \Omega'_t \subset \Omega$ s.t. $\Omega' \cap B \supset K_{ct} \times I_t$. By [8, Theorem 5] any holomorphic function on $K_{ct} \times I_t$ extends to $K_{ct/2} \times J_t$. In particular (a) follows with L being the z_2 axis.

(b) Choose complex coordinates in \mathbb{C}^2 s.t. the curve L of (a) coincides with the z_2 axis. Define f as in the preceding Proposition, solve $\bar{\partial}g = f$ in Ω' and set $h = z_1g - \bar{z}_2/(|z_1|^2 + |z_2|^2)$ (holomorphic in Ω'). Take $\Omega' \subset \Omega$ such that (a) holds. Then h (and therefore also $h|_L = -1/z_2$) extends at $z_0 = 0$ which is a contradiction.

2. – Semiglobal solvability in \mathbb{C}^n .

Let $X = \mathbb{C}^n$, $M = \partial \Omega$ a C^2 real submanifold of \mathbb{C}^n , $\Omega = \{z \in X : \delta(z) > 0\}.$

DEFINITION 2.1. Ω is pseudoconvex if and only if $s_{\overline{M}}(z) \equiv 0$, $\forall z \in M$.

It is classical that Ω is pseudoconvex if and only if $H^j(\Omega, \mathcal{O}_X) = 0$, $\forall j > 0$. With the notation $\Omega_{\varepsilon} = \{z \in \Omega; \delta > \varepsilon\}$ we can generalize the above characterization as follows:

THEOREM 2.2. Ω is pseudoconvex if and only if

(2.1) $H^{j}(\Omega_{\varepsilon}, \mathcal{O}_{X})|_{\Omega_{\varepsilon'}} = 0, \quad \forall \varepsilon, \forall \varepsilon', with \varepsilon' > \varepsilon \ge 0, \forall j > 0.$

PROOF. The «Only if» follows from the fact that Ω_{ε} is pseudoconvex [6, Theorem 2.6.12].

«If»: (a) Let *L* be a complex submanifold of *X*, and set $\omega = L \cap \Omega$, $\omega_{\varepsilon} = \{z \in \omega; \delta_L(z) > \varepsilon\}$ where δ_L is the distance along *L*. Then (2.1) implies that $\forall \varepsilon \exists \varepsilon'$ such that

(2.2)
$$H^{j}(\omega_{\varepsilon}, \mathcal{O}_{L})|_{\omega_{\varepsilon'}} = 0 \quad \text{with } \varepsilon' > \varepsilon \ge 0,$$

with $\varepsilon' \to 0$ as $\varepsilon \to 0$. This follows from adapting the proof of [6, Theorem 4.2.9] as we show here. Let f be a $\bar{\partial}$ -closed form in $\{z \in \omega; \delta_L > \varepsilon\}$. Let $\phi \in C^{\infty}$, $\phi = 1$ in a neighborhood of ω and $\phi = 0$ in a neighborhood of $\{z \in \Omega; \pi z \notin \omega\}$ ($\pi: X \mapsto L$ the orthogonal projection). By a recoursive argument it is not restrictive to assume $\operatorname{cod}_X L = 1$. Choose coordinates so that $L = \{z: z_n = 0\}$. Solve

$$\overline{\partial} v = z_n^{-1} \overline{\partial} \phi \wedge \pi^* f$$
 in Ω_{ε}

thus

 $F := \phi \pi^* f - z_n v$

is $\overline{\partial}$ -closed in $\Omega_{\varepsilon'}$. Solve $\overline{\partial}G = F$ in $\Omega_{\varepsilon''}$, $\varepsilon'' > \varepsilon'$. Then $g := j^*G$ $(j: L \hookrightarrow X)$ solves $\overline{\partial}g = f$ in $\omega_{\varepsilon''}$, $\varepsilon''' > \varepsilon''$ with $\varepsilon''' \to 0$ as $\varepsilon \to 0$. This proves (2.2).

(b) If n = 1 there is nothing to prove, and if n = 2 the theorem follows from § 1. Set $n \ge 3$, take $z_0 \in \partial \Omega$, $v \in T_{z_0}^C M$ and consider $L = Cv \oplus \oplus Cu$ (*u* transversal to *M*). Then (2.2) holds and this implies in particular $H^1(\mathbb{C}^2 \setminus \{z_0\}, \mathcal{O}_L)|_{\omega'} = 0$, $\forall \omega' \subset \omega$. Thus with $N = \partial \omega$,

$$L_M(z_0) v^t \overline{v} = L_N(z_0) v^t \overline{v} \ge 0. \qquad \text{Q.E.D.}$$

We can localize our statement:

DEFINITION 2.3. Ω is pseudoconvex at z_0 if and only if $s_M^-(z) = 0$, $\forall z \in M$ close to z_0 .

Let B (or B') range through the family of neighborhoods of the points z close to z_0 on M.

THEOREM 2.4. For any B there exists $B' \subset B$ such that:

(2.3) $H^{1}(\Omega \cap B, \mathcal{O}_{X})|_{\Omega' \cap B'} = 0, \quad \forall \Omega' \subset \Omega$

if and only if Ω is pseudoconvex at z_0 .

PROOF. «If»: by [1] we may find $\tilde{\Omega}$: $\tilde{\Omega}$ is pseudoconvex, $\tilde{\Omega} \subset \Omega \cap B$, $\tilde{\Omega} \cap B' = \Omega \cap B'$. Then (2.3) follows.

«Only if»: (a) $X = \mathbb{C}^2$. If Ω is not pseudoconvex at z_0 one may find $z_{\nu} \to z_0$ with $s_{\overline{M}}(z_{\nu}) = 1$. Then the proof of Proposition (1.2) shows that

$$H^1(\mathbb{C}^2 \setminus \{z_{\nu}\}, \mathcal{O}_X)|_{\Omega' \cap B'} \neq 0$$

for any B' neighborhood of z_{ν} and for suitable $\Omega' = \Omega'_{B'} \subset \Omega$. In particular (2.3) is violated.

(b) Let $X = \mathbb{C}^n$, $n \ge 3$, take L with $\operatorname{cod}_X L \ge 1$, define $b = B \cap L$, $\omega = \Omega \cap L$ and consider $f \overline{\partial}$ -closed in $\omega \cap b$. By the same argument as in Theorem 2.2 f can be «lifted» to $F \overline{\partial}$ -closed in $\Omega' \cap B'$ for any Ω' relatively compact in Ω and for suitable B'. For any ε we take Ω' (dependent on ε) and B'' (independent of ε) s.t.

$$-n\varepsilon + (\Omega \cap B'') \subset \Omega' \cap B'$$

(where n is the outward normal) and define

$$F_1(x) = F(x - n\varepsilon)$$
 in $\Omega \cap B''$.

Solve $\bar{\partial} G_1 = F_1$ in $\Omega'' \cap B'''$ (independent of ε) then g_1 solves $\bar{\partial} g_1 = f_1$ in $\omega'' \cap b'''$ (independent of ε) and thus $\bar{\partial} g = f$ in $-n\varepsilon + (\omega'' \cap b''') \supset \omega''' \cap \cap b''''$ where ω''' is any relatively compact open subset of ω and b'''' a suitable neighborhood.

(c) The end of the proof follows from combining (a) and (b).

REFERENCES

- A. ANDREOTTI H. GRAUERT, Théorèmes de finitude pour la cohomologie des éspaces complexes, Bull. Soc. Math. France, 90 (1962), pp. 193-259.
- [2] A. ANDREOTTI C. D. HILL, E. E. Levi convexity and the Hans Lewy problem, Part II: Vanishing theorems, Ann. Sc. Norm. Sup. Pisa (1972), pp. 747-806.
- [3] H. GRAUERT, Kantenkohomologie, Compositio Math., 44 (1981), pp. 79-101.
- [4] G. M. HENKIN, H. Lewy's equation and analysis on pseudoconvex manifolds (Russian), I. Uspehi Mat. Nauk., 32 (3) (1977), pp. 57-118.
- [5] G. M. HENKIN J. LEITERER, Andreotti-Grauert theory by integral formulas, Birkhauser Progress in Math., 74 (1988).
- [6] L. HÖRMANDER, An Introduction to Complex Analysis in Several Complex Variables, Van Nostrand, Princeton N.J. (1966).
- [7] L. HÖRMANDER, L² estimates and existence theorems for the ∂ operator, Acta Math., 113 (1965), pp. 89-152.
- [8] H. KOMATSU, A local version of Bochner's tube theorem, J. Fac. Sci. Univ. Tokyo, Sect. 1A, 19 (1972).
- [9] G. ZAMPIERI, The Andreotti-Grauert vanishing theorem for dihedrons of Cⁿ,
 J. Fac. Sci. Univ. Tokyo, to appear.

Manoscritto pervenuto in redazione il 17 maggio 1995.