
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

K. PILECKAS
Strong solutions of the steady nonlinear Navier-Stokes
system in domains with exits to infinity
Rendiconti del Seminario Matematico della Università di Padova,
tome 97 (1997), p. 235-267
<http://www.numdam.org/item?id=RSMUP_1997__97__235_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1997, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1997__97__235_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Strong Solutions of the Steady Nonlinear
Navier-Stokes System in Domains

with Exits to Infinity.

K. PILECKAS (*)

ABSTRACT - The stationary Navier-Stokes equations of a viscous incompressible
fluid are considered in domains Q with m &#x3E; 1 exits to infinity, which have in
some coordinate system the following form ,

where gi are functions satisfying the global Lipschitz condition and gi (xn ) -
~ 0 as xn ~ 00. In the paper we prove the solvability of the Navier-Stokes sys-
tem with prescribed fluxes in weighted Sobolev and H61der spaces and we
show the pointwise decay of the solutions. For three-dimensional domains Q
the obtained results are true for arbitrary large data, while in the case of
two-dimensions the results are proved only for small data.

Introduction.

The solvability of the boundary value problems for stationary
Stokes and Navier-Stokes equations has been studied in many papers
and monographs (e.g. [10], [35], [8]). The existence theory which is de-
veloped there concerns mainly the domains with compact boundaries
(bounded or exterior). Although some of these results do not depend on
the shape of the boundary, many problems of scientific interest, con-
serning the flow of a viscous incompressible fluid in domains with non-
compact boundaries, were unsolved and, therefore, it is not suprising
that during the last 17 years the special attention was given to prob-
lems in such domains.

(*) Indirizzo dell’A.: Universitat GH Paderborn, Fachbereich Mathematik-
Informatik, Warburger Str. 100, 33098 Paderborn, Germany.



236

In this paper we consider the class of domains S~ eRn, n = 2, 3,
having m &#x3E; 1 exits to infinity S~ i of the form

and we study in such domains the nonlinear stationary Navier-Stokes
system

supplimented by the additional flux conditions

where x e Qi, Xn = t, t = const}.
The weak solvability of problem (0.2), (0.3) was studied in [11], [12],

[29], [30], [32], [9]). In [29] was found that for solutions with the finite
Dirichlet integral the nonzero fluxes can be prescribed only in exits to
infinity ~ blowing up not to slowly. This means that the corresponding
functions gi satisfy the following condition

Prescribing arbitrary fluxes Fi in exits to infinity, satisfying (0.4), and
zero fluxes if

the weak solvability of (0.2), (0.3) was proved in [29] (for arbitrary large
data) in a class of functions having the finite Dirichlet integral

The physically natural problem with prescribed fluxes also in «nar-
row» (subjected to (0.5)) exits to infinity (for example, in pipes) can not
be solved in a class of divergence-free vectors with a finite Dirichlet in-
tegral. This is related to the fact that in such exits to infinity each di-
vergence free vector field u , having zero trace on 8Q and the finite



237

Dirichlet norm, admits only zero fluxes. In the basic paper of 0. A. La-
dyzhenskaya and V. A. Solonnikov (1980) [13] the weak solvability of
the Navier-Stokes equations with prescribed fluxes through all exits to
infinity is proved for arbitrary data in a class of functions with an infi-
nite Dirichlet integral. The estimates of the growth of the Dirichlet in-
tegral are given there in terms of the functions gi . These estimates are
proved by mean of differential inequalities techniques (so called «tech-
niques of the Saint-Venant’s principle»).

The similar results for domains with layer-like exits to infinity are
obtained by K. Pileckas (1981) [20].

In [31], [32], [33] V. A. Solonnikov developed the existence theory of
weak solutions for stationary and nonstationary Navier-Stokes equa-
tions in a very general class of domains with exits to infinity. He avoid-
ed to make the assumptions on the shape of exits to infinity and only
impose certain general restrictions. Roughly speaking, in [31], [32], [33]
the axiomatic approach is developed. The methods used in [31], [32],
[33] are closed to that of [13].

In this work we develop the existence theory of strong solutions of
the stationary nonlinear Navier-Stokes problem (0.2), (0.3) in domains
with m &#x3E; 1 exits to infinity of form (0.1). As we have mentioned above,
remaining in a class of solutions with the bounded Dirichlet integral,
we can prescribe the fluxes only in «wide» exits to infinity, satisfying
(0.4). On the other hand, in K. Pileckas (1980, 1983) [18], [22] (see also V.
N. Maslennikova, M. E. Bogovskii ( 1981 ) [ 15] ) it is shown that
solenoidal vector fields, possesing the finite «Lq-Dirichlet norm»

can have nonzero fluxes, even if condition (0.4) is violated. In this case
(0.4) is changed to

Therefore, it is natural to suppose that, if the functions gi (t) grow as
t and if we can find the numbers qi &#x3E; 1 such that (0.6) is valid, the
Navier-Stokes system has solutions u with prescribed fluxes and

Vu E Lq(Qi).
In [27], [28] the analogous questions were studied for the linear
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Stokes problem

In the case of zero fluxes Fi , i = 1, ... , m, the unique solvability of
problem (0.7), (0.8) was proved in [27], [28] in weighted Sobolev and
Holder spaces and with 8) = ... , 0 and
1e = ... , Notice that elements of and C~~a ~) ( S~ ) ex-
ponentially vanish as ~2013&#x3E;oo~e~,if/~&#x3E;0, and they can exponen-
tially grow if ~3  0. In particular, from [27], [28] it follows that if the
right-hand side f has compact support, then the solution (u, of (0.7),
(0.8) with Fi = 0, i = 1, ... , m, exponentially vanishes as x ~ I ~ 00. In
the case of nonzero fluxes (Fi ~ 0, i = 1, ... , m) the solvability of the
linear Stokes problem (0.7), (0.8) was proved in [27], [28] in the spaces

and 
In this paper we prove the analogous results for the nonlinear

Navier-Stokes problem (0.2), (0.3). The paper is organized as follows. In
Section 1 we present the main notations, definitions of function spaces
and certain weighted imbedding theorems in domains with exits to

infinity.
In Sections 2 and 3 we formulate the results from [27], [28], concern-

ing the solvability of the linear Stokes problem (0.7), (0.8) in weighted
function spaces and the results from [29], [13] about the weak solutions
to the nonlinear Navier-Stokes problem (0.2), (0.3).

In Section 4 we consider the nonlinear Navier-Stokes problem (0.2),
(0.3). First, in Subsection 4.1 the problem (0.2), (0.3) is studied in the
case of zero fluxes (i.e. Fi = 0, i = 1, ... , m). For sufficiently small data
we prove the unique solvabilyty of it in spaces of exponentially vanish-
ing functions qo = q1 = ... = qm , and &#x3E; 0. These
results are true for the space dimensions n = 2, 3 and are based on the
Banach contraction principle.

For arbitrary fluxes Fi problem (0.2), (0.3) is studied in Subsection
4.2. Using the weighted imbedding theorems and results conserning
the linear Stokes problem (0.7), (0.8), we prove by bootstrap arguments
that in three dimensional domains Q the weak solution u with the un-

(1) The definitions of function spaces are given in Section 1.
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bounded Dirichlet integral (such solution exists due to 0. A. Ladyzhen-
skaya, V. A. Solonnikov (1980) [13]) is regular and belongs to i) q (Q)
or i) ð (Q) with appropriate qi &#x3E; 1 and aei. The gradient of the corre-
sponding pressure function p belongs to or C~~a o~ (,S~ ). More-
over, we derive the pointwise estimates of the solution. These results
hold true for arbitrary data Fi. For simplicity, we present the proof
only in the case when the right-hand side f is equal to zero. However,
the results remain valid also for nonzero right-hand sides f which van-
ish at infinity sufficiently rapidly. Notice that the decay estimates for
the solutions of the nonlinear Navier-Stokes problem (0.2), (0.3) have
the same character as those of the linear Stokes problem (0.7), (0.8).

The case of two dimensional domains ,S2 is more complicated than
the three dimensional one. For such domains we can prove the solvabil-

ity of (0.2), (0.3) with nonzero fluxes only for small data (Subsection
4.3), applying the Banach contraction principle, and we do not know, if
the results are true for arbitrary large data.

Finally, in Section 5 we specify the obtained results for domains
with cylindrical exits to infinity and we show that for small data the
solution (u, p) of (0.2), (0.3) approaches exponentially (in the norms of
weighted Sobolev or Holder spaces) the corresponding exact Poiseuille
solution. Notice that the results concerning the existence of the sol-
utions, approaching for small data the Poiseuille flow, are well known
(see e.g. [13], [3], [4] for the Dirichlet boundary conditions and [19],
[21], [23], [24], [25], [26], [17], [1] for the stress free boundary condi-
tions). The analogous results for the aperture domain were obtained
in [6], [7].

1. - Main notations and preliminary results.

1.1. Function spaces.

We indicate by Co ( S~ ) the set of all infinitely differentiable real
vector functions with compact supports in Q and by Jo ( S~ ) the subset
of all solenoidal (i.e., satisfying the condition div u (x ) =

n

E (X)13Xk = 0 ) vector functions from Co (Q); WI, q (Q) is the usual
k=l 1

Sobolev space with the norm

where D) = ...3~B I a I = a1 + ...c~;C~(~U being an in-
teger, 0  3  1, is a Holder space of continuous in Q functions u which
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have continuous derivatives Dau = 1 ... xn n up to the order l
and the finite norm

where the supremum is taken over x e S2 and

and are the spaces of functions which belong 
and C~~~(Q’) for every strictly interior subdomain Q’ of ~2.

Denote by D) (Q) the completions of in the norm

For simplicity in notations we put

Let D -1 ( S~ ) be the dual space to Do (Q) with the norm

Let us consider now a domain Q c = 2, 3, having m exits to in-
finity. We suppose that outside the sphere x ~ = Ro the domain Q splits
into m connected components S2 i (exits to infinity) which in some coor-
dinate systems x (i) are given by the relations

gi (t) are functions satisfying the conditions
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Below we omit the index i in the notations for lokal coordinates. In
what follows we use the notations:

LEMMA 1.1 [27]. There hold the following relations

2uhere ,u * * 
are positive constants independent of k and 1.

Let us introduce the weighted function spaces in the domain Q with
m &#x3E; 1 exits to infinity. = ( qo , ql , ... , qm ) , (p 1, ..., P m),
is the space of functions with the finite norm
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and is the space of functions with the norm

Notice that for qo = q1 = ... = qm = q the spaces Lrae, P) ( S~ ) and L~~, P) (Q)
are equivalent.

Let L ~ 1, be the completion of in, the norm

and (Q) be the space of functions f which can be represented in
the form

Here ae+b=(~1+b, ...,~~+b).
The spaces V~~)(~), ~ -1, are defined by the same formulas

with the only difference that L1 in the definitions of the norms
are replaced by 

’

The weighted Holder space ~0, 1 &#x3E; 5 &#x3E; 0, consists of
functions u, continuously differentiable up to the order l in Q, for which
the norm

is finite.
The weighted function spaces in subdomains S~ ’ of ,S~ are defined by

the same formulas with the only difference that either integrals or
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supremum are taken over ,~’ instead of S~. For example,

1.2. Spaces of divergence-free vector fields.

Let be the space of all solenoidal vector functions, having
zero traces on aS2 and the finite L~~, o~ ( ,S~ ) ~ ~ and ~(~2) is the
closure of in the For simplicity in notations
we put = Ho (,S~) _ Hq (Q) = Hq (Q), 

for qo = ql = ... - q~ = q and H2 (S~) = H(S~), ~(~2)=
= It is obvious that

THEOREM 1.1. Assume that Q c Rn, n = 2, 3, is the domain with
m exits to infinity possessing the properties described above, and
let for all k &#x3E; ko the domain Q (k) has the Lipschitz boundary. If among
the integrals

there are exactly r which converge, then

The space Hq (Q) consists of those and only those u E Hq, (Q) which sat-
isfy the condition

The proof of this theorem is completely analogous to that for the
case szr = 0, qo = q1 = ... = qm = q (see [18], [22]) and is based on the fol-
lowing lemma.

LEMMA 1.2 [29]. Let Q be a domains with m &#x3E; 1 exits to Q i
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of the form (1.1). Then there exists a vector field A satisfying the follow-
ing conditions

where n is a unit vector of the normal to a~i and Fi are given numbers
with

Moreover, there holds the estimates

1.3. Weighted imbedding theorems.

Below we use the following weighted imbedding theorems.

The constants in (1.10), (1.12) are independent of k and u.
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PROOF. After the transform of coordinates

the domain goes over to the standart domain -

where

The classical imbedding theorems in the domain - yield either

in the case (1.9), or

in the case (1.11) (see e.g. R. A. Adams [2]). In (1.13), (1.14) 
= u(x(y)) and the constants are independent of k and u. Returning in
(1.13), (1.14) to coordinates and multiplying the obtained inequali-
ties by g k t~2 - L + n/qi ) , we derive

The theorem is proved.

THEOREM 1.3. Let 1

(i) If si satisfies the conditions (1.9), then ~c e

(ii) If the conditions (1.11) are fullfild, then u e
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PROOF. Multiplying the estimates (1.15) by and tak-

ing the sum over all k &#x3E; ko , we derive

Since si /qi &#x3E; 1, the right-hand side of the last inequality can be esti-
mated by c Ilu; and hence (1.17) is proved. Estimate (1.18)
follows from (1.12) by multiplying it by exp (flj aj~e ) and taking the
supremum over all k &#x3E; k° . The theorem is proved.

2. - Strong solvability of the Stokes problem.

Let us consider in the domain = 2, 3, with m &#x3E; 1 exits to

infinity the Stokes problem (0.7), (0.8). We denote the problem (0.7)-
(0.8) with zero fluxes, i.e. Fi = 0, i = 1, ... , m, by (0.7)-(0.8)° . Below we
present (without proofs) the results from [27], [28].

2.1. Weighted local estimates.

THEOREM 2.1. (i) [27] Let the function f has the representation
(1.7) and (0), 1, ..., n, ~~2, i = 0, 1, ..., m. Then
the weak solution u of the Stokes problem (0. 7) satisfies the local
estimate

(ii) [27] Assume that aS~ e Cl + 2, f E (Q i ), qi &#x3E; 1, l % 0. Then
the solution (u, p) of problem (0.7) satisfies the local estimates
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(iii) [28] Assume that E Cl + 2,,l and let f E (Q i ), 1 ; 0, 0 
 6  1. Then the solution (u, p) of (0.7) satisfies the local estimate

The constants in (2.1)-(2.4) are independent of s and f.

2.2. The Stokes problem with zero fluxes.

THEOREM 2.2. (i) [27] Assume that aS~ E Ci + 2 , 0) ( S~), 1 - 1,
qj &#x3E; 1, ~ I  {3 * , x is arbitrary. Then there exists a unique solution
( u , p ) (2) of problem (0.7)-(0.8)0 with u E V~~, ~~ q ( S~ ) and

Moreover, if 1 ~ 0, then Vp e (Q) and there holds the estimacte

(ii) [28] Assume that 9S2 E Cl + 2, ð and f E (Q), where 1 ; 0,
ð e ( o, 1 ), ~ lf3i i ~ I  f3 * and x is arbitrary. Then problem (0.7)-(0.8)0 has a
unique solution ( u , p ) with u e C~~, ~~ a (Q), Vp E (Q). Moreover,
there holds the estimate 

’ ’

REMAR,K 2.1. In particular, if f E with {3i i &#x3E; 0 (for
example, f has a compact support), then from Theorem 2.2 follows the
exponential decay estimates for the solution (u, p) of problem (0.7)-
(0.8)0 , i. e. there hold the estimates

(~) Speaking about the uniqueness of the solution (u, p), we have in mind
that the pressure p is unique up to an additive constant.
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2.3. The Stokes problem with nonzero fluxes.

Let us consider the Stokes problem with nonzero fluxes Fi ,
i = 1, ... , m, i.e. the problem (0.7)-(0.8). We assume that for each

..., m} there exists a number q,~’ such that

There hold the following results.

THEOREM 2.3. (i) [27] Let condition (2.8) holds. Then for arbitrary
f E ( ,S~ ) and Fi E IE~1, i = 1, ... , m, problem (0.7)-(0.8) has a

unique solution u E Hq* (Q) satis, fying the estimate

&#x3E; 1 and ae* are defined by the formulas

Then there exists a unique solution (u, p) of problems (0.7)-(0.8) with

In particular, if I

defined by the formula

Then there exists a unique solution (u, p) of problem (0.7)-(0.8) such
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that and there holds the estimate

In particular, from (2.13) follows that

Moreover,

3. - Weak solvability of the Navier-Stokes problem.

By a weak solution of the Navier-Stokes problem (0.2)-(0.3) we un-
derstand the vector function u e with

satisfying the flux conditions (0.3) and the integral identity

for every test function q e Jo ( S~ ).

3.1. Solutions with the finite Dirichlet integral.

The theorem below has been proved by V. A. Solonnikov, K.
Pileckas (1977) [29].
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THEOREM 3.1. [29] Let Q c IV, n = 2, 3, be ac domain with m exits
to infinity of the form ( 1.1 ). Assume that the integrals

are finite for i = 1, ... , rl and infinite for i = r1 + 1, ... , m, and
let Fi = 0 for i=r1+1,...,m. Then for arbitrary and

Fi E R 1 , i = 1, ... , r1 problem (0.2)-(0.3) has at least one weak solution
u such that u e and

3.2. Solutions with the infinite DirichLet integral.

If the conditions (3.2) are violated, i.e. the integrals (3.2) are infinite
for all i = 1, ... , m, one can not expect any more the existence of sol-
utions with the finite Dirichlet integral. This is related to the fact that
in such case there are no divergence free vector fields with the finite
Dirichlet norm. However, as it were found by 0. A. Ladyzhenskaya, V.
A. Solonnikov (1980) [13], in this case there exist solutions, having an
infinite dissipation of energy (i.e. infinite Dirichlet integral). In partic-
ular, there holds

THEOREM 3.2. [13]. c be a domain with m exits to infinity,
Q i. Suppose that the functions gi satisfy conditions (1.2), (1.3) in

addition,

Let f = 0. Then for arbitrary fluxes Fi E R 1 , i = 1, ... , m, there exists
at least one weak solution u to (0.2)-(0.3) with an infinite Dirichlet inte-
gral. This solution admits the representation as a sum

where A is a divergence free vector field scctisfying the flux condition
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(0.3) and the estimates (1.8). The following estimates hold true

where

Moreover, if the fluxes Fi, i = 1, ..., m, are sufficiently then

any other (diffferent from u) solulion u’ of problem (0.2)-(0.3) satisfies
the relation

4. - Strong solvability of the Navier-Stokes problem.

In this section we consider the Navier-Stokes problem (0.2)-(0.3) in
weighted Sobolev and H61der spaces. Problem (0.2)-(0.3) with zero flux-
es Fi = 0, i = 1, ... , m, we denote by (0.2)-(0.3)0 .

4.1. Solvability of the problem (0.2)-(0.3)0 .

Let us consider the problem (0.2)-(0.3)o in spaces and

flj &#x3E; 0, i = 1, ... , m, of exponentially vanishing at infinity
functions.

THEOREM 4.1. (i) Let S~ c = 2, 3, be ac domain with m ~ 1 ex-
its to and with

aei are arbitrary .

Then for sufficiently small" f; problem (0.2)-(0.3)o has a
unique solution (u , p) with u e V~~, ~’~ q ( S~ ), Vp e and the fol-
lowing estimate holds true 

’ ’

aei are arbitrary .



252

If the norm ||f; Cl,d (ae, B) (Q)|| is sufficiently then (0.2)-(0.3)o has a

unique solution (M, p) with u e C~~(~), Vp e and

In particular, there hold the estimates from Remark 2.1.

The direct computations, using the weighted imbedding Theorem 1.3

and the condition ~i &#x3E; 0, imply Mu e (or Mu e P) (Q))
and

Moreover,

Let 2 be the operator of the linear Stokes problem (0.7)-(0.8)0 . Ac-
cording to Theorem 2.2 there exist bounded inverse operators and

(We mention that because of the condition qo = ... the spaces

~~(~) and V~~, ~~q ( S~ ) coincide.) Hence, problem (0.2)-(0.3)o is

equivalent to an operator equations either in the space Vl+2,q (ae,B) (Q) or in
the space 2, ð ( Q ) : 

’

the space Cl+2, d (ae,B) (Q):
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Let

and

be the balls in

estimates (4.5)-(4.6) imply

Moreover, from (4.7)-(4.8) follows that any and ac define the contraction
mappings in and provided that

Thus, the existens of a unique fixed point of the above operator equa-
tions follows from the Banach contraction principle. The theorem is

proved.

4.2. Solvability of the problem (0.2)-(0.3) with nonzero fluxes, n = 3.

In this subsection we prove the main result of the paper. Let S~ be a
three-dimensional domain with exits to infinity. We consider the prob-
lem (0.2)-(0.3) with nonzero fluxes. We look for the solutions u of (0.2)-
(0.3) in weighted Sobolev and H61der spaces and Cl+2,d (ae, B) (Q).
Each element u of these spaces satisfies in certain sence the decay
estimate

If u is the weak solution of (0.2)-(0.3), by Theorem 3.2 we have for u the
estimate (3.8). It easy to compute that (4.9) together with (3.8) imply,
minimally, the decay rate
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Thus, the nonlinear term (u . V)u decays at infinity faster than the lin-
ear one 4u and by bootstrap argument we can improve the estimates
for u. Having this simple idea as background, by repeated application
of weighted imbedding Theorem 1.2 and resuls on the linear Stokes

problem (0.7)-(0.8)0 (see Theorem 2.1, 2.2), we prove that the weak sol-
ution u of the problem (0.2)-(0.3) belongs for arbitrary data to certain
weighted Sobolev or H61der space.

THEOREM 4.2. Let Q c be a domain with m &#x3E; 1 exits to infinity,
S~ i of the form (1.1) and let 8Q e C L + 2, a , 0  3  1. Assume that the

functions gi satisfy conditions (1.2), (1.3), (3.4), (3.5) and that for each
... , 7%) there exists a number q * with

Let f = 0.

(i) Then for arbitrary , fluxes Fi e R1 , i = 1, ... , m, the weak sol-
ution u of (0.2)-(0.3) with the inf:nite Dirichlet integral (see Theo-
rem 3.2) belongs to the space with

Moreover, there exists the pressure function o~ (,S~) and the
following estimate holds true 

’

In particular, u E H~* (Q) (u e Hq* ( S~ )).
(ii) The solution (u, p) of problem (0.2)-(0.3) admits the following

pointwise estimates

PROOF. First of all, we mention that the solution (u, p) is locally
smooth up to the boundary aS~ (see V. A. Solonnikov, V. E. Shchadilov
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(1973) [34]). We represent the velocity field u as a sum

where A is the divergence free vector field, satisfying the flux condi-
tions (0.3) and the estimates (1.8) (see Lemma 1.2). Then for (v, p) we
get the following problem

We consider now ( v , p) as a solution of the linear Stokes problem (0.7)-
(0.8)o with the right-hand side

and we prove the statements of the theorem by the bootstrap
argument.

From Theorem 1.2 (i) with 1 = 1, qi = 2, aei = 0, si = 6 it follows that
and

Therefore, the H61der inequality deliveres

Moreover, estimates (1.8) for A and the H61der inequality furnish

Thus, and

In virtue of (3.8) the last inequality yields

Applying to the solution v the local estimate (2.3) with
=1,~=0, following by (3.8), (4.17), we derive
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In virtue of Theorem 1.2 (i) from the condition v e it follows

v E Lt(1-3/s, 0) (wik) with Vt &#x3E; 3/2 and Vv E L3(1,0)(wik). Let 3/2t3.
Then 

’ ’

and

Thus,

Let 3 /2 q *  3. Then we can take in (4.19) t = qj* and we get in view of
Lemma 1.1 (see the inequality (1.4))

Hence, and by Theorem 2.2 (i) the solution v of the(110)(92) 
2 *

Stokes problem (0.7)-(0.8)o belongs to the space Moreover,
* 

c&#x3E; &#x3E;

and

3 q*i(3) From (4.20) it follows that f, E L(1,0) (QBQ(k0)). However, we know that
the solution v and the vector field A are locally smooth up to the boundary. Hen-
ce, f, E Lq(G) for dq ; 3/2 and for arbitrary bounded subdomain G c Q.
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Futher, for 3/2  t  3 the local estimate (2.3) delivers

We fix t = 2. Due to Theorem 1.3 the condition

yields

By inclusion (4.23)

and, therefore, in virtue of (4.22) with t = 2, for arbitrary 2 ~ s 5 6 we
have

Thus,

If 3 ~ 6, we take s = qt and as in (4.20) we derive

Then by Theorem 2.2 (i) and we get the estimate
(4.21).

Let us take now s = 6 and repeat the above bootstrap arguments.
We have v e and, in virtue of local estimate (2.3) followed by
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(3.8), (4.24), we get

By Theorem 1.2 (ii)

and it is easy to verify that and

Moreover,

Hence,

Since the constant in (4.28) is independent of k, we obtain fl E.11 1% -

and by Theorem 2.2 (ii)

By induction we easily get f, e C~4 a i + a, 0) (Q i ) and again by Theorem
2.2 (ii) 

’

Hence, v and Vp satisfy estimates (4.13), (4.14). By using (4.13), (4.14) it
is easy to verify that v e Vp e Vl,qi (ae*i, 0) (Qi) with ae*i defined
by (4.11) and that the estimate (4.12) holds true. Sinse A satisfies the
same estimates, we derive (4.12)-(4.14) for u. Let us prove the last esti-
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mate (4.15) for p(x). Let x be an arbitrary point in Qi and ro be a fixed
point in wiko. Denote by y a smooth counter connecting ro and x and ly-
ing in Qi. Assume that y is given by the equations Xj = =

= 1, ... , n - 1, and that ( 1 + y i ( xn )2 + ... 
represent the function p(x) in the form

Then,

By local regularity results the norm ||p; Cl,d (wik0)|| can be estimated by
xn

Therefore, inequalities (4.29), (4.30) imply
o

(4.15). The theorem is proved.

REMARK 4.1. The results of Theorem 4.2 remain valid also for
nonzero right-hand sides f vanishing at infinity sufficiently rapidly.

REMARK 4.2. If the conditions (3.4), (3.5) are not valid, the results
of Theorem 4.2 can be proved for sufficiently small data by using the
Banach contraction principle and repeating the arguments of Theo-
rem 4.1.

4.2. Solvability of the problem (0.2)-(0.3) with nonzero fluxes, n = 2.

For two dimentional domains S~ with exits to infinity the analogous
result can not be proved by the same method. This is related to the fact
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that in this case the solenoidal vector field A, satisfying the flux condi-
tons (0.3), has decay rate as gi (x2 ) -1 and hence,

If the solution u to (0.2), (0.3) also have such decay properties, then
-L1u and the nonlinear term have the same order 
as x ~ ~ ~ , x E S~ i , and therefore, the bootstraps give no improve-
ment. However, for small data we can reduce the problem (0.2)-(0.3) to
a contraction operator equation and apply the Banach contraction prin-
ciple. For example, we have the following

THEOREM 4.3. Let Q C a domain with m &#x3E; 1 exits to infinity
Q i and let e Cl + 2, a , 0  ~  1. Assume that f = 0. Then for suffi-
cientl’!J F I prob!e:n (0.2)-(0.3) has a unique solution (u, p) with

Moreover, there holds the estimate

In particular, the solution (u, p) of problem (0.2)-(0.3) admits the fol-
lowing pointauise estimates

PROOF. We look for the velocity field u in the form

where the divergence free vector field A satisfies the flux condition
(0.3) and the estimates (1.8). For (v, p) we obtain the problem (4.16).
Let

If v e C~~, o~ a ( S~ ) with ae given by (4.31), we get in virtue of (1.8), that
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and

with

Problem (4.16) is equivalent to an operator equations in the space1.. 

(2C1 is the inverse operators to the linear Stokes problem (0.7)-(0.8)0 ,
~C 1: C~~a o~ ( S~ ) -~ C~~, o~ d (,S~ ).) From (4.34), (4.35) it follows that
for sufficiently small F ~ I the operator ac is a contraction in a

small ball C~~, o~ a ( S2 ) ~ ~ ~ of the space

C~~, o~ a ( S~ ). Thus, the existens of a unique fixed point of (4.36) and the
estimate (4.32) follow from the Banach contraction principle. Finally,
the estimate (4.33)3 can be proved just in the same way as (4.15) (see
(4.30)). The theorem is proved.

5. - The Navier-Stokes problem in domains with cylindrical exits
to infinity.

Let for some exit to infinity ,S~ i we have gi (t) = go , i.e. SZ i coincides
with a semicylinder {x E Rn :|x’|  g0,xn&#x3E;1}. Then the weights
gi (xn )aei do not contribute in the norms of function spaces. More-

over,

and the norms of the spaces V§1f~&#x3E; (Q) and C(~)(~) can be simplified.
For primality we suppose that all exits are cylindrical and, without any
loss of generality, we take go = 1. The function spaces V~~q ~~ ( S~ ) and

in this case we mention by and ~d~(.0). The corre-
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sponding norms are given by

and

Analogously, from V~~)(S) we get the spase W ~ q ( S~ ).
The Theorem 2.2 for domains with cylindrical exits to infinity speci-

fies

THEOREM 5.1. Let Q C be a domain with m &#x3E; 1 cylindrical ex-
its to infinity.

(i) Assume that e Cl + 2 , fe ~0~o= ... &#x3E; 1.
0, and the norm ||f; Wl,q B (Q)|| is sufficiently small. Then

there exists a unique solution (u , p) to problem (0.2)-(0.3)o with u e
e WJ+2,q(Q), and

Then for sufficiently small 11 f ; ll~ a (SZ) (~ problem (0.2)-(0.3)0 has a

unique solution ( u , p ) with u E ~l ~+ 2, a ( S~ ), acnd

Let us consider problem (0.2)-(0.3) with nonzero fluxes. First, let Q
coincides with an infinite cylinder x’ ~  1 ~. It is well
known that (0.2)-(0.3) has in Z an exact solution (uo, pO) with non-zero
flux. This solution has been constructed by Poiseuille (e.g. [14]) and it
has the form

where
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Moreover,

For the domain Q with m &#x3E; 1 cylindrical exits to infinity S~ i we take in
each exit S~ i a corresponding exact solution (u9, pp), i = 1, ... , m, and
we define

where ~ i are smooth cut-off functions with ~ i = 1 in S~ i ~ Q + 1, ~ i = 0
in S~ iko and w E Wl+2, qo (Q (ko + 2» (or w E Cl + 2, a ( Q (ko + 2») is the sol-
ution of the problem

(see [9]). Then

and

For small data we prove the existence of a unique solution (M, ~ ) of
(0.2)-(0.3) which tends exponentially in each exit to infinity to the cor-
responding Poiseuille solution.

THEOREM 5.2. Assume that satisfies the condition of Theo-
rem 5.1.

(i) Let O{3i{3* and
W~~(~2)~ IFI be sufficiently small. Then there exists a unique

solution (u, p) to problem (0.2)-(0.3) having the representation

where L7’, P ° are functions (5.4). Moreover,



264

a ( SZ ) ~ ~, , , i = 1, ... , m, are sufficiently small, there exists
a unique solution (u, p) t o (0.2)-(0.3) having representation (5.6)
with v E ~1 ~+ 2, a ( ~ )~ ..

PROOF. For (v, q ) we get the following problem

with the right-hand side

Since U° is equal to zero for large ~ I x I and (up, pp) are the exact
solutions to the Navier-Stokes system, f1 has a compact support. There-
fore, for small I Fi I and!!f; the last problem
is equivalent to an operator equation in the space W~ + 2~ q ( S~ ) (or
~ ~+ 2, a (~)):

with the contraction operator c~, and the statement of the theorem fol-
lows from Banach contraction principle.

REMARK 5.1. For domains with cylindrical exits to infinity the
Navier-,Stokes problem with prescribed fluxes was considered by C. J.
Amick (1977, 1978) [3], [4], 0. A. Ladyzhenskaya, V. A. Solonnikov
(1980) [13], where a solution, approaching exponentially the Poiseuille
flow, was constructed. We also mention the paper of S. A. Nazarov, K.
Pileckas (1983) [16], where certain existence theorems for regular sol-
utions are proved in domains with periodical exits to infinity.
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