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The Spectrum of the Transport Operator
with a Potential Term

under the Spatial Periodicity Condition.

MINORU TABATA(*) - NOBUOKI ESHIMA(**)

ABSTRACT - Under the spatial periodicity condition we deal with the transport
operator with a potential term in the space of square-integrable complex-
valued functions. The purpose of this paper is to prove that there exists a po-
sitive constant C such that, for each 0 E [0, 1), the intersection of Iu E C;
Re,u &#x3E; - OCI and the spectrum of the transport operator is a finite set of
points which consists only of eigenvalues of the transport operator with finite
(algebraic) multiplicity.

1. - Introduction.

The transport equation describes the evolution of the density of
particles under certain conditions of rarefaction and interaction. In par-
ticular, if an external force acts on the particles

is an external-force potential), then the equation has the
form,

where
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versity, Oita 879-55 Japan.
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f = f (t, x, ~) is the unknown function of (t, x, ~) e [ o, + oo) x X 

which represents the density of the particles at time t, at a point x, and
with a velocity ~. v = v(x, ~) is a multiplication operator. K is an inte-
gral operator of the form,

The operator B is called the transport operator with a potential term.
We consider B in the space of square-integrable complex-valued func-
tions of ( x, ~ ). We are concerned with the structure of the spectrum of
B in the case where 0 = O(x) is not identically equal to a constant (see,
e.g., [16] for the details of (1.1) when Ø(x) = constant).

In [1], existence, uniqueness, dissipativity, and positivity results for
solutions of (1.1) have been proved under very general conditions.

However, there have been few studies on the structure of the spectrum
of B in the case is not identically equal to a constant.
Noting that (1.1) describes the evolution of the density of particles act-
ed upon by F = - ~x ~ (x), we see that the structure of the spectrum of
B is closely connected to the behavior of solutions of the following sys-
tem of ordinary differential equations:

Hence, if we try to investigate the structure of the spectrum of B, we
need not only to study the operator B by methods in the theory of func-
tional analysis but also to investigate the behavior of the solutions of
(SODE) by methods in the theory of dynamical systems. However, in
general, the behavior of the solutions of (SODE) is very complicated.
Hence it is very difficult to investigate these subjects at the same time.
This is the reason for the difficulty encountered in trying to study
the structure of the spectrum of B (this difficulty will be discussed
again in § 5).

Taking the difficulty into account, we reasonably conclude that
it is advisable to simplify the behavior of the solutions of (SODE)
by imposing some restrictive assumptions. For this reason, we will
impose the spatial periodicity condition in this paper, i.e., we assume
that all the functions considered are periodic with respect to the

space variable x and have the same period. The transport equation
with the spatial periodicity condition is essentially the same as that
in a 3-dimensional torus. Hence, by virtue of the periodicity condition,
we can regard that the solution x = x(t) of (SODE) is always contained
in the torus; the behavior of the solutions of (SODE) is simplified
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very much. This fact will play an essential role in the present
paper (see Remark 8.2).
We do not impose any restrictive assumptions We only

assume that q5 = ~ ( x ) is sufficiently smooth.
The main result of this paper is as follows: there exists a positive

constant C such that, for each () e [0, 1), the intersection of lu E C;
Rey &#x3E; - 0C) and the spectrum of B is a finite set of points which con-
sists only of eigenvalues of B with finite (algebraic) multiplicity (see
Main Theorem in §3).

The present paper has 8 sections. § 2 presents preliminaries. In § 3
we will prove Main Theorem. In this proof, by making use of Lemma 3.2
and Theorem 3.3, we overcome the difficulty which is connected mainly
to the theory of functional analysis. Theorem 3.3 and Lemma 3.2 play an
essential role in this proof. In particular, Lemma 3.2 is a key lemma. In
§ 8 we prove Lemma 3.2. In § 4-7 we prepare for the proof. The purpose
of § 4 is to obtain estimates for the operator A m - A - v. In § 5 we dis-
cuss Lemma 3.2 and the difficulty encountered in trying to prove Lem-
ma 3.2. In order to prove Lemma 3.2, we need to investigate the behav-
ior of the solutions to (SODE). The necessity for this investigation is
explained in § 5. In § 6-7 we obtain estimates for the rank of a Jacobian
matrix with respect to the solutions of (SODE). By making use of these
estimates, in §8 we prove Lemma 3.2.

REMARK 1.1. (i) The transport equation with the spatial periodici-
ty condition is essentially the same as that in a 3-dimensional torus, as
already mentioned above. Hereafter we will consider our problem in a
3-dimensional torus for simplicity. We denote the 3-dimensional torus
in which our problem is studied by Q.

(ii) It must be noted that the subject of the present paper is close-
ly related not only to the theory of functional analysis but also to the the-
ory of dynamical systems. See [15, pp. 742-746 and pp. 754-756].

(iii) We can simplify the behavior of the solutions of (SODE) also
by imposing restrictive assumptions on 0 = O(x). In [15] we simplify
the behavior of the solutions of (SODE) by assuming that q§(z) is
spherically symmetric.

(iv) For further details of (1.1), see, e.g., [2], [4], [9-11], and [17] in
addition to those presented in [1]. For the nonlinear Boltzmann equa-
tion with a potential term, see, e.g., [3] and [6-7].

Acknowledgements. We would like to express our deepest grati-
tude to Professor K. Asano, Professor S. Ukai and Professor Y. Shizuta
for reading the manuscript and making a number of helpful sugges-
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tions. They introduced us to the theory of the transport equations, and
gave us encouragement to attack the problem of this paper. If it were
not for their invaluable suggestions and their warmest encouragement,
we could not complete this work. We would like to express our thanks
to Professor L. Arkeryd for sending the article [17] to us. This work
was supported by Grant for Scientific Research in Japan. We would like
to express our gratitude to the referee for his helpful comments.

2. - Preliminaries.

FUNCTION SPACES. By B(X) (C(X) respectively) we denote the set
of all bounded (compact respectively) linear operators in a Banach

space X. We consider the transport operator B in the space of square-
integrable functions of (x, E) E Q x R3, i.e., in L2(Q x R3), as already
mentioned in §1 (see Remark 1.1, (i)). Write 11 - 11 as the norm x

x 11~3). as the norm of operators of B(L2(Q x W)).

ASSUMPTrorrs. We will impose assumptions on v, K and 0 (see
(1.2)-(1.3)).

ASSUMPTION V. v = v(x, ~) is a real-valued continuous function of
(x, ~) e S2 x R3 such that v 0 v(x, ~) for any (x, ~), where vo is a posi-
tive constant.

We define an operator-valued function K = as follows:

where the kernel K(x, ~, 77) is that in (1.3).

ASSUMPTION K. (i) K = continuous operator-valued
function from S2x to 

ASSUMPTION 95. 0 = 0 (x) is a real-valued function defined in Q 
have continuous partial derivatives of order up to and including 2.

REMARK 2.1. If inf v(x, ~) = 0, then we need to take an approach
x, ~

similar to that in [15, pp. 742-746 and pp. 754-756]. However, by virtue
of Assumption v, we do not need to take such an approach in this
paper.
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OPERATORS. We consider the following operators (see (1.1)-(1.3)):

We denote the domain of an operator L by D(L). We define D (A) ==
&#x3E; (v = v(x, ~) e L 2 (,S~ x R3); llv e L 2 ( S~ x We similarly define

Making use of
Assumption K, we deduce that K E x 1f~3 )) . Hence we can de-
fine D(B) = D(A).

SYMBOLS. We denote the Lebesgue measure of a set Y by meas Y.
In § 7-8 the letter c denotes some positive constant. We will use c as a
generic constant replacing any other constants (such as c 3 or C 1/2) by c.

From Assumption 0 we see that the Cauchy problem for (SODE)
with initial data (x, ~)(0) = (X, E) x has a unique solution glob-
ally in time. We denote the solution by (x, ~) = (x(t, X, ~ ), ~(t, X, ~ )).
We denote by mij = the (i, j ) component of the Jacobian
matrix,

i, j = 1, ... , 6, i.e., if 1 ~ i, j ~ 3, then 
If 1 ~ 3 and 4 ~ j ~ 6, then mij (t, X, E) &#x3E; JXi( -t, X, E)jJEj - 3.

If 4 ~ 6 and 1 ~ j ~ 3, then X, E) = a~i _ 3 ( - t, X, E)jJXj.
If 4 ~ i, j ~ 6, then mij (t, X, E) = a~i _ 3 ( - t, X, E)jJEj-3. We easily
obtain the following equality:

where we denote the determinant of a square matrix M by
det (M).

By Q we denote the set of all the one-rank operators of the

form,

where the brackets ( ~ , ~ ) denote the inner product in L 2 ( lE~~ ). f = f ( x, ~ )
and g = g(x, ~) are infinitely differentiable functions on x R( which
satisfy the following conditions (cf. [14, p. 1836]): there exists r &#x3E; 0 such

that, for each x E Q
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Noting that Qx X ~ ~ e R!; ~ ~ ~ ~ r~ is compact, we see that

LEMMA 2.2. The operator K can be approximated in x

x R3» with a finite sum of operators of Q.

PROOF. Noting that ~2 is compact, and applying Assumption
K, (i), we see that K = K(z) is uniformly continuous in ~2. Hence, making
use of Assumption K, (ii), and performing calculations similar to those
in [12, p. 200, Theorem VI.13], we can deduce that K = can be ap-
proximated in I~ (L 2 ( ll~.~)) uniformly for with operators of the

is a complete orthonormal system The brackets (-, .) denote
the inner product in L2 (IE~.~). Applying the Friedrichs’ mollifier to 
= lln ( x ), we obtain the present lemma.

3. - Main Theorem.

Define d(8) _ ~,u e C; Re,u &#x3E; - 8 vo ~, 0 £ 0 £ 1, (see Assumption
v as for vo). The following theorem is the main result of the present
paper:

MAIN THEOREM. The intersection and the spectrum of B is
a discrete set of points which satisfies the following (i)-
(iii):

(i) finite set for each 0 e [ o, 1 ).

(ii) The operator (,u - B) is boundedly invertible for each ,u E
E d(1)B{03BCk}kEN.

(iii) pole of (,u - B ) -1 and an eigenvalue of B with fi-
nite algebraic multiplicity.

PROOF. The following lemma will be proved in § 4.

LEMMA 3.1. an analytic operator-valued function of
,u E ~( 1).

The following lemma is the key lemma, which will be proved in § 5-8:

LEMMA 3.2. L = L (,u ) an analytic operator-
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valued function of ,u e ð( 1 ) which satisfies the following (i)-(ii) for each
0 E [0,1):

The following theorem can be proved in the same way as [13, p. 107,
Theorem XIII.13] and [12, p. 201, Theorem VI.14]:

THEOREM 3.3. Let D be a domain of C (i. e., a connected open sub-
set of C). Let f = f(,u) be an analytic operator-valued function of ,u e D
such that f (,u) E ~C (L 2 (Q X R3» for each ,u E D. Then, either

(i) ( 1 - for no ,u E D,
or

(ii) ( 1 - exists for allu E DB,S, where S is a discrete subset
of D (i. e., a set which has no accumulation point in D). In this case,
(1 - is meromorphic in D and analytic in DB,S. For each p E S,
the coefficients of the negative terms of the Laurent series at u E S are
finite rank operators.

Let fl e 6(0), 0 ~ 0  1, in what follows. Making use of Lemma 3.1,
we can set up

Applying the following equalities:

we see that

Applying Assumption K, Lemmas 3.1-3.2 and Theorem 3.3 with

D) = (Z/(~), 5(~)), 0 ~ e  1, to this equality, and making use of
the results in [8, pp. 180-181], we can obtain the Main Theorem.

REMARK 3.4. In § 5 we will explain the reason for considering the
4-th power L 4 (,u ) in Lemma 3.2 in place of L (,u ). In order to inspect
L 4 (,u ), we need to investigate the behavior of the solutions of (SODE).
The necessity for this investigation will also be discussed in §5.
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4. - The Operator A.

PROOF OF LEMMA 3.1. We easily see that A generates a strongly
continuous semigroup. The semigroup etA has the form,

Making use of Assumption v, we see that

Applying (2.1) and (4.2) to the Laplace transformation of (4.1),

we can obtain the present lemma, where

In view of (4.3), we define the following operator:

where M c [0, + 00) is a Lebesgue measurable set. We can obtain the
following lemma in the same way as [14, Lemma 3.2, (i)]:

REMARK 4.2. Note that R(~[0,+oo))==(~-~)-~ and that

lE~.(,u, ~ ) is an additive set function. Making use of Lemma 4.1, we can
make an approximation of with operators of the form

[0, T]), 1 ~ T  + 00. We will make use of this result in the next
section.
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5. - Discussion on Lemma 3.2.

If Lemma 3.2 is proved, then we can complete the proof of the Main
Theorem. In this section we will discuss Lemma 3.2. The purpose of
§ 6-8 is to prove Lemma 3.2.

Let us explain the reason for considering the 4-th power L 4 (,u ) in
place of L(,u). If we were able to prove the following (5.1)-(5.2), then we
could more easily obtain the Main Theorem (see § 3 for d ( 8)) :

However, inspecting the integrand of (4.3), we see that has the

form,

Inspecting the form of the integrand in (5.3), we can reasonably con-
clude that it is nearly impossible to prove that satisfies estimates
such as (5.1)-(5.2). However, reviewing the calculations performed in [5,
p. 46], we recognize the possibility that a power e N, may sat-

isfy estimates such as (5.1)-(5.2). If a power E N, satisfies such
estimates, then we can prove the Main Theorem, as already performed
in § 3, under the difficult circumstances stated above. This is the reason
for considering the 4-th power L 4 (,u ) in place of L (,u ).

Next we will look for estimates which imply Lemma 3.2. Let us con-
struct operators with which we can make an approximation of L 4 (fl).

m

By II Aj we denote the product AmAm - 1 ... A2A, of the operators Aj,
j = 1

j = 1,..., m. Consider operators of the form,

where p e 6(0), 0 ~ 0  1, 1 ~ T ~ + 00, and kj E Q, j = 1, ... , 4. Let
0,E [0, 1) be fixed. Making use of Lemma 4.1 and Remark 4.2, we see
that G(p, + (0) in B(L2(Q x R3» as T - + 00 uniformly
for p e 6(0). Furthermore, applying Lemma 4.1 and Lemma 2.2, we can
make an approximation of L 4 ( ~c ) with a finite sum of operators of the
form (5.4) with T = + 00 uniformly for p E ~S ( B). Therefore Lemma 3.2
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can be derived from the following conditions:

Consequently we have only to show (5.5)-(5.6), which will be proved in
§8.

Let us inspect the integration kernel of G(fl, T). Write (x4 , ~4) e
E S2 X as the variables of G (y, T )u, i.e., G(p, T ) u = T)
w(~, ’))(X4, ~4)- Iterating calculations in obtaining (5.3), we obtain

where dt = dt4 , di7 = dq 1 ~ ~ ~ dr~ 4 , and

are defined inductively by the following equalities:

denote the integration kernels of kj e Q,
respectively, i.e.,

R &#x3E; 0 is a constant so large that for any x e Q supp 1~~ (x, ~, ~ ),
j = 1, ... , 4, are contained in I ~; I ~ 1 :-5 7!} X ~ ~; ~ 1r¡1 ~ R ~. In (5.7), for
convenience, we extend the interval of integration with respect to t
from [0, T) to [0, T].

From (2.3), we see that max ~j, = 1, ... , 4,
1/ j

where = 1, ... , 4, are some positive constants. Applying these in-
equalities and (4.2), we deduce that 0, j = 1, ... , 4, and p E ~ ( 8),



221

0  0 1, then

Making use of the conservation law of + 1;012/2 =
i [ I +

x

+ R 2)1/2, where R is the constant defined above. Noting that; 0 is a func-
tion of o i * (X4, Y4, t4 , 17 g, 17 2, t2 , 17 1, t1), recalling the definition of
R, and noting that G contains k1 17 1 ), we see that if WI 1 satisfies
the inequality, 1;01&#x3E; I + R2 ) 1/2 , then

x

We will make use of (5.10)-(5.11) in §8.

REMARK 5.1. (i) We have obtained the integration kernel of

G(,u, T ) in (5.7). However the true character of the integration kernel
is still obscure. We need to extract the integration kernel explicitly.
Note that u = u ( ~ , - ) contains as variable in (5.7), and that
(xo, ~o) is a function of = (~4, 7/4, t4 , rJ3, t3 , t2 , t1). By in-
specting (5.7)-(5.9), we recognize the need to study the rank of the Jaco-
bian matrix,

in order to extract the kernel. For this purpose we need to first calcu-
late the rank of the Jacobian matrix J = J( t, X, ~ ), (see § 2 for
J = J(t, X, ~ )). This is the reason why we need to investigate the be-
havior of the solutions of (SODE).

(ii) We can prove Lemma 3.2 also by the method in [14]. However,
the method in [14] is very complicated. The method in the present pa-
per is much simpler than that in [14]. In [14, Lemma 8.2] we consider

= a(xo ~ ~o)/a(~I4 ~ ... , ~ 1). In this paper we consider J = J(W1) in
place This approach represents the difference between the
method in the present paper and that in [14].

6. - Estimates for the rank of a Jacobian matrix.

The main result of this section is Lemma 6.1, which deals with the
rank of J = J( t, X, ~ ). Lemma 6.3 will be employed in § 7 in order to cal-
culate the rank (see Remark 5.1, (i)).
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We denote the i-th row vectors of J = by Ji = Ji (t, X, ~ ),
i.e., we define y,=J,(~~~’)=(~i,...,m,6). i = 1, ... , 6, (see § 2
for mij).

Let = 1, ... , N, be linearly independent vectors in We or-

thogonalize these vectors, i.e., we define bj,1, j = 1, ... , N, as follows
(we do not normalize them):

LEMMA 6.1. Let r, T  + 00. There exists a positive constant
C6.1 such that if and if
t e [ 0, T], then

REMARK 6.2. The constant C6.1 is independent of (t, X, ~ ). We will
make use of this fact in the next section.

PROOF OF LEMMA 6.1. Let (t, X, ,~ ) e [ o, T] x D (r) in what fol-
lows. Differentiating both sides of (SODE) with respect to X and ~, and
applying Assumption q5, we have

where j’j I denotes a norm of matrices defined as follows: I -

- ~ ~ ~ij ~ 2 1/2 ~ C6.I is some positive constant dependent on
zli J 

sup I but independent of ( t, X, ~ ). We easily
x E Q, i,j=1,2,3
obtain the following inequalities and equalities:

Combining these, (2.1) and (6.1), we obtain the lemma.

If = 1, ... , N, are linearly independent vectors of N, M e
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c N, then we define W(a1, ... , aN ) = main If those vectors are
j = I, ... , N

linearly dependent, then we define W ( a1, ... , aN) = 0. Let bj = bj (z),
j = 1, ... , N, be RM-vector-valued functions of z E D, where D is a do-
main of If ess infW(b1 (z), ... , bN (z )) &#x3E; 0, then we say that

zeD

bj = bj ( z ), j = 1, ... , N, are uniformly linearly independent for almost
all zeD.

We will make use of the following lemma in the next section.

LEMMA 6.3. (i) Let 1 ~ r, T  + 00 be constants. The 6-dimension-
al vectors Ji = Ji (t, X, ~ ), i = 1, ... , 6, are uniformly linearly indepen-
dent for almost all (t, X, E) E [ o, T] x D(r) and are uniformly bound-
ed in [ o, T] x D(r). See Lemma 6.1 for D(r).

(ii) Let D be a domain N Let M = M(z) be a 3 x 6-
matrix-valued, Lebesgue measurable function of z E D whose row vec-
tors are uniformly linearly independent for almost all zeD and are
essentially bounded in D. Let n be an integer such that 4 ~ 6. Let

v( j ) = v( j ; z ), j = 1, ... , n, be 6-dimensional-column-vector-valued,
Lebesgue measurable functions of z E D which are uniformly linearly
independent for almost all zeD and are essentially bounded in D.
Then we can choose ( n - 3) vectors from M(z) v ( j ; z ), j = 1, ... , n, for
z E D almost everywhere so that those (n - 3) vectors are uniformly
linearly independent for almost all z E D, i. e., so that there exist

Lebesgue measurable, integer-valued functions Lk = Lk ( z ), k =
= 1, ... , n - 3, such that

(3) M(z) v(Lk (z); z), k = 1, ... , n - 3, are uniformly linearly
independent for almost all z E D .

REMARK 6.4. Let n be an integer such that 
3 x 6 matrix whose row vectors are linearly independent, and if vj,
j = 1, ... , n, are linearly independent 6-dimensional column vectors,
then we can choose ( n - 3) vectors from MVj,j = 1, ... , n, so that those
(n - 3) vectors are linearly independent. Lemma 6.3,(ii) is an extension
of this result.

PROOF OF LEMMA 6.3. (i) follows from Lemma 6.1 immediately.
Let us prove (ii) when n = 6. We can prove (ii) when n = 4, 5 in the
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same way. Define

The number of elements of H is equal to 6C3 = 20. We number the ele-
ments of H from 1 to 20, and denote them by (nj1 , nj3), j = 1, ... , 20,
in numerical order.

Let 6 &#x3E; 0 be a sufficiently small constant, and define Oi = ~~ ( d ),
j = 1, ... , 20, as follows:

We define tpj = tpj (6), j = 1, ... , 20, as follows: Y1 * W 1, tpj = Oj B
U ~ ~ ~ U CP j - 1 ), j = 2, ... , 20. Note that tpi i and tpj are disjoint if

20 20

i # j, and that U 1 tpj = U We define Lk = Lk (z), k = 1, 2, 3, in
20 j=1 j=1

U tpj as follows: if z E Vfj, then Lk (z) k =1, 2, 3, j =1, ... , 20.
i ~ ~ 1 20

If DB . U W j (6 ) is a null set for some 6 &#x3E; 0, then we can complete the
)=1

proof. We will prove this condition by contradiction. Suppose that
20

DB . U ø j (6) is not a null set for any 6 &#x3E; 0. Making use of this assump-
i=l 1

tion and the conditions of the present lemma, we see that there exists a
sequence {zn}nEN C D zN g D which satisfies the following conditions:

where we denote by the k-th row vector of M ( z ), k =
= 1, 2, 3. By (6.2), we can choose a subsequence denoted by
the same symbol (zn)n z N again, so that M(zn) and v(l; zn), l = 1, ... , 6,
converge as n ~ + ~ . Therefore, from (6.3), we deduce that
lim M(zn) is a 3 x 6 matrix whose row vectors are linearly indepen-

n-+-

dent and that lim zn ), l = 1, ... , 6, are linearly independent 6-di-
n -+ +oo

mensional vectors. However, it follows from (6.4) that the rank of



225

lim = 1, ... , 6, is smaller than 3. This is a contradic-
n -+ +oo

tion (see Remark 6.4).

7. - Estimates for some Jacobian.

The purpose of this section is to calculate the rank by
making use of Lemma 6.3. The main result of this section is Lemma 7.4,
which will be employed in §8 in order to prove (5.5)-(5.6).

Let r and T be positive constants. Write Qj = Qj(r, T), j =
- 1, 2, 3, 4, as the sets of all vectors of the following forms respect-
ively :

where X4 e Q, l1]j I ~ r, qj e R , 0 I tj I T, j = 1, ... , 4. We can regard
(rj , ;j), j = 0, ... , 3, in (5.9) as functions of Wj+1 1 E = o, ... , 3,
respectively. By Xi,j’ we denote the j-th component of e R 3
respectively, j = 1, 2, 3, that is,

Let cj e = 1, ... , N, and E &#x3E; 0. By ~7(ci, ..., cN ; ~) we denote
the set of all x e whose distance from the subspace spanned by cj,
j = 1, ... , N, is greater than or equal to E.

In the present section we demonstrate Lemmas 7.1-7.4. By making
use of Lemma 7. j, we prove Lemma 7. j + 1, j = 1, 2, 3.

LEMMA 7.1. (i) ess sup t4)| I  + CQ , where is the
W4 e Q4

norm of matrices defined in Proof of Lemma 6.1.

(ii) Let E &#x3E; 0. There exists a Lebesgue-rrzeasurable, integer-
valued function G = G ( cv 4 ) which satisfies the following conditions for
a.e. Q4(ê) == = (X4, 1J4, t4) E Q4; 3 17741 El:

where c7.1 is a positive constant dependent on E but independent of w 4 .
By a(k, W4) we denote the k-th column vector of the Jacobian matrix
a(x3 )~a(~4, t4 ), k = 1, ... , 4.

REMARK. Lemma 7.1 deals with the rank of the Jacobian matrix
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t4). This lemma shows that we can choose one column vec-
tor from t4 ) for W4 e S~4 ( E ) almost everywhere so that the
essential infimum (in St4 ( ~ )) of the norm of that column vector is

positive.

PROOF OF LEMMA 7.1. We can obtain (i) easily. Let us prove (ii).
We introduce the following column vectors:

where the superscript t denotes the transposition. We have already in-
troduced the following column vectors:

We can easily obtain

where A (X, E) == This equality will play a very
important role. By making use of (7.1), we see that

Applying this and considering the definitions of the above column vec-
tors, we have

where if 1 ~ i, j ~ 3, then the ( i, j ) component of 3(.C3)/3(~4, ~4) is

equal to 8Xg, i /8X4, j. If 3 and 4 ~ j ~ 6, then the (i, j) compo-
nent of a ( x3 ) / a ( x4 , ~ 4 ) is equal to 
We easily deduce that 

’ ’

where dij denotes the Kronecker’s delta. It follows immediately from
117 4 1 9 E that

Hence we see that = 1, ... , 4, are 6-dimensional vectors uniformly
linearly independent for almost all By Assumption 0, we
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easily see that a j , j = 1, ... , 4, are uniformly bounded in ~4~). Apply-
ing these results, Lemma 6.3, (i) with (t, X, E) = (t4 , x4 , ~ 4), and Lem-
ma 6.3, (ii) with (v( j), n, M) = (a, , 4, r~4)) to (7.2), we ob-
tain Lemma 7.1.

(ii) Let e &#x3E; 0. There exist Lebesgue-measurable, integer-valued
functions Hj = = 1, 2, such that for a. e.

(3) &#x26;(H~(~3)~3~ ~=1~2, are uniformly linearly indepen-
dent for a. e. W3 e 03 ( E ),

where at , cv 4 ) and G = G(W4) are those in Lemma 7.1. By b(k, W3) we
denote the k-th column vector of a ( x2 )~ a ( ~ 4 , t4 , r¡3, t3 ), k = 1, 1 ... 8 .

REMARK. Lemma 7.2 deals with the rank of the Jacobian matrix

t4 , r~ 3 , t3 ). This lemma shows that we can choose two col-
umn vectors from the Jacobian matrix t4, r¡3, t3) for W3 e
e SZ3 ( E ) almost everywhere so that those column vectors are uniformly
linearly independent for almost all 03 ( E ).

PROOF OF LEMMA 7.2. We can obtain (i) easily. Let us prove (ii).
We introduce the following column vectors:

where yj is the j-th component of a (G ( cv 4 ), cv 4 ), j = 1, 2, 3 . We note that
for a.e. o4 e Q4 (E) there exists 1~ E ~ 1, ... , 4} such that We
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have already introduced the following column vectors:

By making use of (7.1), we see that

Applying this and considering the definitions of the above column vec-
tors, we have

where if 1 ~ 3, then the (i, j) component of J(X2)jJ(X3, is

equal to If 1 ~ i ~ 3 and 6, then the (z,~’) compo-
nent of is equal to 

We easily deduce that

It follows immediately from n3 E U(a(G(W4)’ cv 4 ); E ) that

Making use of Lemma 7.1, (ii), and (7.6)-(7.7), we see that !3j, j =
- 5, ... , 9, are 6-dimensional vectors uniformly linearly independent for
almost all W3 e ~3~). By Assumption 95 and Lemma 7.1, (i), we easily
see that = 5, ... , 9, are essentially bounded in SZ3 (E). Applying
these results, Lemma 6.3, (i) with (t, X, ~ ) _ (t3, r~3), and Lemma
6.3, (ii) with (v( j), n, M) = (!3j + 4 , 5, 8(X2)j8(Xg, ~3)), we see that we
can choose two vectors from = 5, ... , 9, for SZ3 ( ~ ) al-
most everywhere so that those vectors are uniformly linearly indepen-
dent for almost all W3 e 03 (ë), where b( 9, cv 3) - (8(X2)j8(xg, y/g»!39.
Recalling the definition of we obtain Lemma 7.2.

(ii) Let E &#x3E; 0. There exist Lebesgue-measuracble, integer-valued
functions h = = 1, 2, 3, such that for a,e.
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are uniformly linearly indepen-

where b(., cv 3) and Hj = = 1, 2, are those in Lemma 7.2. By
c(1~, cv 2 ) we denote the k-th column vector of a (xl )~a ( ~ 4 , t4, y/g,

y/ 2, t2)~ ~ = 1,..., 12.

REMARK. Lemma 7.3 deals with the rank of the Jacobian matrix

a ( xl )~ a ( ~ 4 , t4 , ~l 2 , t2 ). This lemma shows that we can choose 3
column vectors from the Jacobian matrix 3(.ri)/3(~4, t4 , ~ 3 , t3 , ~I 2 , t2 )
for W 2 e S~2 ( c ) almost everywhere so that those column vectors are uni-
formly linearly independent for almost all W2 E SZ2 ( E ). By making use of
Lemma 7.2, we can obtain Lemma 7.3 in the same way as that in obtain-
ing Lemma 7.2 from Lemma 7.1. Hence we will omit the proof.

Noting that if then we

decompose into four disjoint subsets as follows:

where

Write ~(i), i=1,...,15, as ~~~’=1,...,4, k=1,2,3, t~,j=2,3,4,
respectively.

LEMMA 7.4. (i) For any E &#x3E; 0,

where c depends on r but is independent of T and E.
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(ii) Let e &#x3E; 0. There exist Lebesgue-measurable, integer-valued
functions Ki = Ki (w 1 ), i = 1, ... , 6 , such that for a. e. cv 1 e N ( E ),

PROOF. Recalling the definitions of = 2, 3, 4, and that of
U(~; E), we easily obtain (i). Making use of Lemma 7.3, (ii), we can
choose three column vectors from 3(~i, ~i)/3(7y4, t4 , ~l 3 , t3 , ~I 2 , t2 ) for

almost everywhere so that the three vectors are uniformly
linearly independent for almost all We easily see that
these three vectors and the three column vectors of 
are uniformly linearly independent for almost all Con-

sequently, we can choose six column vectors from F =

== a(X1, ~I 1)/a(~l4 , t4 , ~I3 , t3 , ~I2 , t2 , almost everywhere
so that those six vectors are uniformly linearly independent for almost
all E N(E). By making use of Assumption 0, we easily see that F is
uniformly bounded in T). Applying these results and Lemma
6.3,(i) with (t, X, ~ ) _ (tl , to the following equality:

and performing calculations similar to those in proving Lemma 6.3,(ii),
we can obtain (ii).

REMARK 7.5. It follows from Lemma 7.4 that we can choose 6 col-
umn vectors for o almost everywhere so that
those column vectors are uniformly linearly independent for almost all

We have achieved the purpose mentioned in Remark 5.1, (i).

8. - Proof of (5.5)-(5.6).

Lemma 3.2 follows immediately from (5.5)-(5.6), as already men-
tioned in §5. Decompose G(p, T ) as follows (recall (5.7)-(5.8)):
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= 1, ... , 4, denote the characteristic functions of N(E),
Sk (e), k = 2, 3, 4, respectively. R is the constant defined in § 5. The
lemma below implies that G(p, T) is decomposed into the principal
part G1, E: (,u, T) and the negligible parts (,u, T), k = 2, 3, 4.

LEMMA 8.1 (i) For k = 2, 3, 4, and for each 0 ~ ()  1,

PROOF. Making use of Lemma 7.4, (i), and (5.10), we obtain (i).
We will make use of Lemma 7.4, (ii) in order to pick out the inte-

gration kernel of T). Decompose Q 1 = T) into
3 603 600 (15P6 = 3 603 600) measurable disjoint subsets as follows: SZ 1 =
1 U 

l z H ’ 
’ ’

those in Lemma 7.4. Next we decompose I --- (G1, E (,u, T) u(., . »(X4, Ç4)
as follows: I = 2: Iz, where 

’

1 c= H

Let 1 E H be fixed. Let us change the variables of I,. Removing
6 components which correspond to ~(K1 (cv 1)), ... , ~(Ks (cv 1)), 1=
= (I~1 ( cv 1 ), ... , Ks ( cv 1 )), from the 16-dimensional vector ( ~ 4 , t4 , i

f/2, t2 , ~I 1, tl ), we obtain a new 10-dimensional vector A, L such that

where ~(-) is that in Lemma 7.4. Changing the variables as follows:
~~~KO~1))~ ..., ~~Ks(W))) ~ (xo, ~o)~ we deduce that

where is that in Lemma 7.4, (ii). Substituting this in we can
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pick out the integration kernel as follows:

Let us obtain estimates for 61. Noting that G contains

~4 (x4 , ~4 , q 4), and making use of (5.11), we see that there exists a com-
pact set M c such that for any p E ~ ( 8 ), 0~9l,1~7’+oo,and
c &#x3E; 0, (cf. [14, (8.4)]),

Making use of Lemma 7.4, (ii), (3) and (5.10), we conclude that for any
E &#x3E; 0 and 0 ~ 0  1, (cf. [14, (8.5)]),

Recalling that G contains exp ( = 1, ... , 4, and applying the Rie-
mann-Lebesgue theorem, we see that for any = 0, 4, 1  T 
 + oo, 0 ~ ()  1, and - &#x3E; 0, (cf. [14, (8.6)]),

Making use of the fact that S~ is compact, we obtain (ii) from
(8.1)-(8.3).

REMARK 8.2. The fact that Q is compact plays an essential role in
obtaining (ii) from (8.1)-(8.3). If S2 is not compact, then we cannot obtain
(ii) from (8.1)-(8.3).

PROOF (5.5)-(5.6). (5.6) follows from Lemma 8.1, (i), (ii), (2) imme-
diately. Making use of Lemma 8.1, (i), (ii), (1), we see that T) can
be approximated with the compact operator G1,eCu, T) in B(L2(Q X
x R3 )) uniformly for fl e d ( e ) and T e [ 1, + - ). Making use of this result
and [12, p. 200, Theorem VI.12, (a)], we obtain (5.5).
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