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On Periodic Solutions of a Class

of Second Order Nonautonomous Systems
with Nonhomogeneous Potentials Indefinite in Sign.

M. MATZEU (*) - M. GIRARDI (**)

ABSTRACT - In this paper some nonautonomous second order systems of the type

as well as of the type

where b is a real T-periodic continuous function, V1, ... , V m are homogeneous
with respective degrees and A is a continuous T-periodic
N x N matrix valued function, are considered. For system (1), an existence
result is stated under the assumptions that b has a negative mean in [0, T]
and has a not identically zero positive part b + satisfying some further condi-
tions, the homogeneous degrees flj i verify the 

8 and Vm has a positive definite Hessian outside of the origin. For sys-
tem (2), the same existence result is stated in case that A is symmetric and
positive definite in [0, T], under the weaker condition that the mean of b in
[ o, T] is different from zero. The techniques of the proofs are based on a fi-
nite dimensional approximation of the problem, a suitable truncation argu-
ment of the potential VI + V2 + ... + V m and the use of some Morse index es-
timates for critical points of Mountain Pass type.

Introduction.

The problem of existence of periodic solutions to nonautonomous
second order systems where the potential V changes sign was dealt in
case that V is homogeneous in the space-variable in [13], [14], [4]. In the
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following, some results were obtained without the homogeneity as-

sumption in [10], [11], [2], [3], [6], [7]. This paper deals with the case
that V has a superquadratic growth in the space-variable as well as the
case that V contains a further quadratic term.

As for the superquadratic case, in [10], [11] the authors of the
present paper considered a system of the type

where b is a T-periodic continuous real function with a non-zero mean
and V has a superquadratic behaviour either near zero and near to in-
finity. The existence of a non trivial T-periodic solution to (V) was
proved in case that a suitable assumption connecting the maximum of
the negative part of b and the «homogeneity gap» for V at infinity is
satisfied.

In the present paper no condition on the negative part b - of b is as-
sumed, only one requires that the mean of b in [0, T] is negative and its
positive part b + = b + b - is not identically zero. In this case, under
some further assumptions on b + , an existence result for T-periodic sol-
utions to (V) is stated if V = VI + V2 + ... + Vm , where Vi ( i = 1, ... , m)
is homogeneous with degree  p  ...   6, =

= max fl j a 8) and Vm has a positive Hessian outside of the origin. For
i=il ... Im

example V can be choosen in a wide class of polynomia in -vari-
able (see Remark 5).

As for the case that a further quadratic positive term is added to the
superquadratic part, the same kind of existence result is stated here,
under the weaker assumption that b has a non-zero mean in [0, T].

The proofs of these two results are both based on two basic tools: a
finite dimensional approximation of the problem and a suitable trunca-
tion argument in such a way that the «truncation potential» is homoge-
neous at infinity (thus the Palais-Smale condition is satisfied by the
corresponding functional). The reduction to the original problem is
then guaranteed by the Montain Pass nature of the approximated sol-
utions (in particular the use of the well known estimates for the Morse
index of a critical point of Montain Pass type, (see [8], [9], [12]) and an
appropriate use of the Gagliardo-Nirenberg inequality.

1. - The results.

Let us consider the following two Hamiltonian systems
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where b is a continuous T-periodic real function ( T &#x3E; 0), Vl , V2 , ... , Vm
belong to C2 (RN)(N ~ 2) and A is a continuous T-periodic N x N ma-
trix valued function.

We are interested in the study of T-periodic solutions of (Hl) and
(H2 ), in case that VI, V2 , ... , Vm are homogeneous with different de-
grees and b changes its sign.

The following two results can be stated.

THEOREM 1. Let Vl , V2 , ... , Vm be positively homogeneous with re-
spective degrees  P 2  ...  ~ m , &#x3E; 2, Pm -1  6, 8, and
Vi (x) &#x3E; 0 for i = 1, ... , m, 0, and let Vm satisfy the assumption

vm) V; (x) is positive definite for 0 .

Let b satisfy the following conditions:

the set

is not empty and finite.

Then there exists at least one non-zero T-periodic solution of (H1 ) .

THEOREM 2. Let Vl , V2 , ... , Vm satisfy the same assumptions of
Theorem 1, let b satisfy ( b2 ), and

and let A verify the condition

(A) A(t) is a positive definite symmetric N x N matrix for any
t e R.

Then there exists at least one non-zero T-periodic solution of (H2).

REMARK 1. Note that the statement of Theorem 1 still holds in
case that m = 1. In this case, which can be obtained as an easy conse-
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quence of Proposition 1 below (see also [10]), it is enough to take fl =
= fl 1 = ... _ !3m &#x3E; 2, (Vm ) and ( b2 ) can be omitted and ( b ) can be replaced
by the weaker condition (13).

The case m = 1 for problem (H2) was dealt in [7], where the condi-
tions on V = VI = ... = V~ and on b are weakened exactly as in the pre-
vious case. See also [2] for other results in this framework.

REMARK 2. We note that the class of functions b such that (bi),
( b2 ), hold is indeed not empty. Actually it is easy to check that any
regular function b satisfying ( bl ), (b) and such that, for any 

with a e (1/2, 2/3), verifies condition ( b2 ) too.

REMARK 3. Let us note that no upper bound is imposed on the
negative part b - of b, i.e. b - (t) = b + (t) - b(t).

REMARK 4. Assumption (b) does not esclude that b has an infinite
numbers of zeroes t such that b is negative in the neighbourhood of t.

REMARK 5. Let us point out that a large class of polynomia in the
I x ~ -variable satisfies the assumption of the potential V = V, + V2 +
+ ... + Vm in Theorems 1, 2. More precisely V can be chosen as V(x) =

where

with an arbitrary integer number m ~ 8 and arbitrary numbers 0,
a4 ~ 0, a5 a 0, am &#x3E; 0, 4 + a4 + &#x3E; 0. Obviously, taking into account
Remark 1, one can also choose

2. - The proofs of the theorems.

PROOF OF THEOREM 1. First of all we need some lemmas in order
to modify the potential suitable potential which
is homogeneous at infinity: this can be done by using a suitable trunca-
tion argument.

LEMMA 1. For any R &#x3E; 0 there exists some XR e C2(R+) such that



197

PROOF. Let P be an arbitrarily fixed polynomium (e.g. of degree 5)
on R~, such that

and let QR (t) = P((t - R)/R) for t e (R, 2R). Then it is easy to check
that the function

belongs to C2 (R+) and satisfies (1), (2), (3).

Now let us put

and define, for any R ; 1, the following «truncated» potential VR

LEMMA 2. The function VR defined by (4) belongs to and

verifies the following properties:
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PROOF. Conditions (5), (6), (7) are easy consequences of (1), the pos-
itivity and the Bi-homogeneity of Vi ( i = 1, ... , m) and the facts that
fli = minpi, 13m = maxpi. Conditions (8), (9) simply derive from the
facts that VR (x ) = for 2R and the Bm-homogeneity of Vm .
Let us prove (11) now. Actually, taking into account (1), (2), (3) and the
p m-homogeneity of Vz , a direct calculation yields

where cp e

does not depend on R and verifies

so (11), (12), (Vm ) and still the Bm-homogeneity of Vm imply (10).

Another basic element for the proof of Theorem 1 is the use of a pre-
vious result obtained by the authors in [10].

PROPOSITION 1 (see Theorem 2.1 of [10]). Let b be a T-periodic con-
tinuous real function satisfying ( b1 ) and

Let such that

Further, putting

let there exists two numbers c ~ 0, d &#x3E; 0 such that
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Then there exists at least one non-zero T-periodic solution of the
system

Actually in case that (Vt) holds in the whole space, we can prove two
important estimates for the solution x given by Proposition 1. This can
be achieved by looking at the very way of constructing this solution,
namely by extending to the whole real line a critical point u of Moun-
tain Pass type (in the sense of Ekeland and Hofer, see [8], [9], [13]) for
the functional

Indeed the «Mountain Pass nature» of u was not completely clarified in
[10], so we give some details about this point.

PROPOSITION 2. Let b, V satisfy the same assumptions of Proposi-
tion 1 with r = + 00 in VI). Then there exists a solutions x of (H ) gener-
ated by a non-zero critical point ii of f such that

where k is a positive number only depending on b but not on the
particular choice of V. Moreover one can choose f in such a way
that

where i(u) is the Morse index of u with respect to f.

PROOF. If one looks at Proposition 2.2 of [10], one checks that the
functional f has the following properties:

(19) satitsfies the Palais-Smale condition

(22) 3u - r= H’ only depending on but not on the particular
choice of V such that supp u - c suppb+, f(u - )  0.
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Now let us show that property (21) can be reinforced by the following
one:

Indeed, we claim that, if one chooses g ’ = g appearing in (21), then one
gets (21’ ). In fact, if it was false, then there would exist some sequence

such that

By passing to a subsequence, converge to some u weakly in
so uniformly on the interval [0, T], in such a way that

On the other hand,

so (24), (25), (26) yield

Moreover

which, together with (21), (27), yields

then, by (24), (25),

Therefore strongly converges to u = 0 in HT which contradicts
(23). 

_

Since 1 verifies (19), (20), (21’), (23), then, by the Mountain Pass the-
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orem by Ambrosetti and Rabinowitz [1], there exists a point e
e H] E( 0 ) such that

where

Moreover, by some well known results by Ekeland and Hofer (see [8],
[9], [12]) one can choose W in such a way that (18) holds.

Let us prove (17) now. Indeed (28), (29) imply

so, using (Vl ) with r = + ~ and taking into account that

supp u - c supp b + , (30) yields
+

where 1~ is finite, as fl 1 &#x3E; 2, and only depends on a-,, as u - only de-
pends on al , b.

REMARK 6. By looking at the arguments given in the proofs of
Proposition 2.2 of [10] and Proposition 2 of the present paper, one can
note that condition (21’) is satisfied under conditions (bi), (13), 
(V2 ) only. This remark will be very important for the proof of the final
step of the proof of Theorem 1.

Now let us define a suitable sequence of finite-dimensional approxi-
mations of problem ( H 1 ).

First of all, let us observe that it is not restrictive to suppose b ( 0 ) =
= b(T) = 0. Indeed, if it was not case, one could consider the function
b ( t ) = b(t + t ) where t is a zero of b in [0, T], then consider the
problem

Thus, if x- is a non-zero T-periodic solution to (H1), then x(t) = x(t - t) is
a non-zero T-periodic solution to (HI).

Then let us suppose b ( o ) = b(T) = 0. Let us consider now the open
disjoint intervals of [0, T], say Ik , for k = 1, ... , s, where b is strictly po-
sitive (recall that s is finite as (b) holds).
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Observe that condition ( b2 ) implies, for any k = 1, ... , s, the proper-
ty

At this point let us fix a sequence {En } of finite-dimensional subspaces
of HT such that

and such that, defining the RN-valued functions b + , as

one has

belong to En Vn.

The idea is to obtain a non-zero critical point u of the functional

as a non-zero H1-limit of a sequence un of critical points for the restric-
tion fn of f to each subspace En .

The critical point un is found through a truncation argument con-
nected with the choice of the potential VR . The estimates on Un (which
yield the convergence to a critical point u of fi are obtained by
an appropriate use of the mentioned estimates for the index of Moun-
tain Pass type critical points.

Finally the non-triviality of u is got as a consequence of the Moun-
tain-Pass nature of un and the behaviour itself of VI + V2 + ... + V~ at
the origin. Then the usual argument will give a non-zero T-periodic sol-
ution x by T-periodically extending u on the whole real line.

Now let us proceed by steps.

STEP 1. For any R &#x3E; 1 and for any n e N, there exists a critical
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point un for the functional

such that

where

PROOF. First of all, observing that Proposition 1 holds as well re-
placing the whole space HT by an arbitrary closed subspace E contain-
ing u _ , b + , b / , in particular E = En , one applies Proposition 1 with
the choices b = b, V = VR . Indeed (13) is satisfied thanks to ( b3 ), while
(Vi), V2), V) are obvious consequences of (5), (6), (7), (8). Finally (8),
(9), (10) easily yield (14), (15), (16) with E = 0, d = 

STEP 2. There exists a constant number 1~1 &#x3E; 0 such that

Moreover one can choose un in such a way that

PROOF. One can apply Proposition 2, with b = b, V = VR and HT re-
placed by En . Finally one can note that the number k appearing in (31)
can be choosen independent not only of R, but of n too, due to the fact
that ~c _ belongs to En for any n.

STEP 3. There exists a constant number 1~2 &#x3E; 0 such that

PROOF. Let and the related interval I k where b
is positive. By (39) we know, in particular, that the form
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cannot be negative definite on the whole N-dimensional (recall that
N ~ 2) subspace En of En defined as

(note that E£ * ( 0) as (34) holds, so b t belongs to En ). _

Therefore there exists some with 

(II. liEn being the H-1-norm endowed in En) such that

Actually (41) implies, thanks to (10), that

then, as b t belongs to HT and (33) holds, one gets

Finally a simple use of the Holder inequality and ( b2 ), which takes into
account that 8, yields, from (42), the relation

so (40) follows by (43), as supp b +

STEP 4. For any n e N, there exists a constant number Cn &#x3E; 0 such
that

PROOF. By (38) one deduces

so, by (6)
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On the other side, putting

one easily checks

Actually an easy argument shows that (42) implies

so (45), (46), (47) yield

Let us consider now the space

Obviously the dimension of E’ is finite, then the L°m-norm is equiva-
lent to the L~-norm in En . Therefore for some k n &#x3E; 0

so (44) follows from (48), (49), (40).

STEP 5. For sufficiently large R a 1 un = uR is a non-zero critical
point of the functional

PROOF. Property (44) implies that, for some In &#x3E; 0, independent of
R ; 1, one has

Then for any fixed n E N, it is sufficient to choose R &#x3E; Rn = max ( 1, cn )
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in order to get, by definition of VR ,

then un = U: , which is a non-zero critical point off: , is a non-zero criti-
cal point of fn too.

STEP 6. There exists a constant number c &#x3E; 0 such that

PROOF. Putting one has, by (46),

On the other side, by criticality of un for fn and the B-homogeneity of
Vi , one has

while, by (38),

Then (53), (54) yield

thus, by the Bi-homogeneity of
duces

one de-
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At this point (52), (55) yield

Now let us apply the Gagliardo-Niremberg inequality (see e.g. [5] pag.
147)

Then from (56) one gets

which yields (51), as ~3 m _ 1  6.

STEP 7 (Conclusion). There exists a non-zero critical point u of f,
so a non-zero T-periodic solution x of (Hi).

PROOF. The point u is obtained by passing to the weak-limit in the
H1-norm on the The density property given by
(33) and the fact that, in particular, {un} uniformly converges to u easi-
ly yield the criticality of u for the functional f.

Finally let us show now that u is different from zero. Indeed one has
to note that satisfies assumptions (V1 ), of

Proposition 2 (take ~31 = /31, r ~ 1) and b = b satisfies ( b1 ) and (13) by
( b3 ). Therefore, recalling Remark 6, one can state that, for some positi-
ve numbers e, c, one has

On the other side the construction of Un = u R , given by (36), (37) (recall
that u _ does not depend on n, R but only on b and and 
 0, so yields

By (58) it follows that cannot uniformly converge to u = 0, as it
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would imply

which contradicts (58). Therefore u 0 0 and Theorem 1 is completely
proved.

REMARK 7. Note that the argument used for the proof of Theorem
1 enables to state an H’-estimate of the solution u deduced by taking
the limit in (57). Indeed the same kind of H’-estimate can be
obtained by the same argument also if V is given by a single ¡3-homoge-
neous term with P ; 8, satisfying (Vm). In this case, of course, one does
not need the truncation and finite dimensional approximation argu-
ments, since one can directly prove the L-esthnate given by Step 3
(due to the Mountain Pass nature of the critical point): however this es-
timate is based on the properties and (vm), which can on the other
side omitted for the only existence result.

REMARK 8. If one looks at the proof of Theorem 3 (in particular
the passage ( 42) =&#x3E; ( 43» one needs indeed, for ( b + ) -1, just the

property

which is compatible with the property b + E=- H’ 1 exactly in the case

Actually, we have decided to present the statement of Theorem 3 under
the stronger assumptions

(instead of (59), (60)) in order to simplify the exposition and having in
mind the polynomial example (see Remark 5).

PROOF OF THEOREM 2. It is easy to observe that the same kind of

arguments carried on for the proof of Theorem 1 can be used, replacing
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the functional f by the functional fA defined as

Indeed one has to observe that the position

defines a norm on HT which is equivalent to the standard due
to assumption (A).

Then one can argue as in the proof of Theorem 1, by replacing the
T T T

term f|u|2 with the term f without any problem. More-
o 0 0

over condition ( b1 ) can be weakened: the presence of the integral term
containing A ( t ) enables to state the same kind of results expressed by
Proposition 1, Proposition 2, under the weaker assumption ( b4 ) in place
of (b1) (indeed ( b4 ) is necessary in order to be sure that the Palais-Smale
condition is satisfied by the «truncated» functional f R , see Lemma 2.1
of [10]). Actually ( b1 ) was only used in the proof of Proposition 2.2 of
[10] which does not need any assumption on the sign of the mean of b if
the potential has a positive quadratic term (indeed condition (Ii ) of
Proposition 2.2 in [10] is quite easy to check in this case).
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