RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

N. KALAMIDAS

A pseudocompact space with Kelley's property has a strictly positive measure

Rendiconti del Seminario Matematico della Università di Padova, tome 97 (1997), p. 17-21

http://www.numdam.org/item?id=RSMUP_1997__97__17_0

© Rendiconti del Seminario Matematico della Università di Padova, 1997, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Pseudocompact Space with Kelley's Property has a Strictly Positive Measure.

N. KALAMIDAS (*)

ABSTRACT - A pseudocompact space with Kelley's property (**) (resp. c.c.c.) has a Baire strictly positive measure (resp. (ω_1, ω) -caliber). These results were known for the class of compact spaces.

In this paper by a space we mean a completely regular Hausdorff space. Our notation and terminology follow [3].

A family \mathcal{B} of nonempty open subsets of a space X is a *pseudobase* for X if every nonempty open subset of X contains an element of \mathcal{B} .

DEFINITIONS. Let X be a space.

- (a) X has a strictly positive measure if there are a pseudobase \mathcal{B} for X and a probability measure μ defined on the σ -algebra generated by \mathcal{B} , such that $\mu(B) > 0$, for all $B \in \mathcal{B}$.
- (b) X has (Kelley's) property (**) if its Stone-Čech compactification has a Borel, regular strictly positive measure.
- (c) If $\tau \ge \lambda$ are cardinals, then X has (τ, λ) -caliber if for every family γ of nonempty open subsets of X with $|\gamma| = \tau$ there is a subfamily $\gamma_1 \subset \gamma$ such that $|\gamma_1| = \lambda$ and $\cap \gamma_1 \ne \emptyset$. If X has (τ, τ) -caliber we say that X has τ -caliber.
- In [3], property (**) is defined in terms of intersection numbers of the set of nonempty open subsets. It is easy to see that property (**) is
- (*) Indirizzo dell'A.: Department of Mathematics, Section of Mathematical Analysis, Panepistemiopolis, 15784 Athens, Greece.

AMS Subject Classification (1980): 54C35, 54A25.

preserved in dense subspaces. A space with a strictly positive measure has property (**) ([3], p. 127) and also has (ω_1, ω) -caliber. If $\{U_{\xi} : \xi < < \omega_1\}$ is a family of nonempty open subsets in a space with a strictly positive measure, we may suppose that $\mu(U_{\xi}) \geq \delta$, $\xi < \omega_1$ for a $\delta > 0$. Then $\cap \{U_{\xi} : \xi \in A\} = \emptyset$ for every infinite $A \subset \omega_1$, implies that $\chi_{U_{\xi_n}} \to 0$ (χ_U denotes the characteristic function on U) for every sequence ξ_n . The result follows from Lebesgue's dominated convergence theorem.

The space $\Sigma_{\omega}\{0,1\}^{\omega_1} = \{x \in \{0,1\}^{\omega_1}: |\{i < \omega_1: x(i) = 1\}| < \omega\}$ has property (**), since it is dense in $\{0,1\}^{\omega_1}$, but fails to have a strictly positive measure, since it has not (ω_1, ω) -caliber.

It is also known that a compact space with c.c.c. (countable chain condition) has (ω_1, ω) -caliber ([3]). The space $\Sigma_{\omega}\{0, 1\}^{\omega_1}$ is again a counterexample for the non-compact case.

We prove that a space X has property (**) (resp. (ω_1, ω) -caliber) iff vX (the real compactification of X) does so. It follows that a pseudocompact space with property (**) (resp. c.c.c.) has a Baire strictly positive measure (resp. (ω_1, ω) -caliber).

If X is a space, then $C_p(X)$ is the space of all real-valued continuous functions on X with the topology of pointwise convergence.

It is known that if X is compact with c.c.c. then every pseudocompact subspace K of $C_p(X)$ is metrizable ([2]). This is no true if compactness of X is relaxed to pseudocompactness. This follows by a construction of Shakhmatov ([7]). Also A. Tulcea proved that if X has a strictly positive measure and K is either sequentially compact or convex and compact, then K is metrizable ([9]). It is an open problem whether the same result is valid for a simply compact K ([5]). Anyway this happens if X contains a continuous image of a product of separable spaces as a dense subspace ([8]) (such a space is called to be an almost-separable space). Every almost-separable space has a strictly positive measure and ω_1 -caliber. This is a consequence of the following properties: 1) a product of separable spaces has a strictly positive measure and also has ω_1 -caliber, and 2) an almost-separable space is a continuous image of a product of separable spaces.

We prove that not always a space with a strictly positive measure is almost-separable.

LEMMA 1. A space X has a Baire strictly positive measure (resp. (ω_1, ω) -caliber) if vX does so.

PROOF. For a continuous function f on X, put \hat{f} for its continuous extension on vX.

CLAIM. A sequence f_n , $n=1,2,\ldots$ of continuous functions on X converges pointwise to the constant function 0 iff the sequence $\widehat{f_n}$, $n=1,2,\ldots$ converges pointwise to 0 in vX. [Assume that for $p\in vX\setminus X$ the sequence $f_n(p)$ does not converge to 0; there is $\varepsilon>0$ such that $S=\{n\in\mathbb{N}\colon |f_n(p)|\geqslant \varepsilon\}$ is infinite. The set $Z=\{y\in vX\colon |\widehat{f_n}(y)|\geqslant \varepsilon\}$ is a zero-set in vX, and it is nonempty, since it contains p. The result follows from the fact that X meets every nonempty zero-set in vX ([4], p. 118).]

If μ is a Baire strictly positive measure on vX, define a Baire strictly positive measure on X by the type

$$v(f) = \int \hat{f} d\mu ([3], p. 275).$$

Now let $\{U_{\xi}\colon \xi<\omega_1\}$ be a family of nonempty open subsets of X. For $\xi<\omega_1$ choose a continuous function $f_{\xi}\colon X\to [0,\,1]$ such that $\|f_{\xi}\|=1$ and support $(f_{\xi})\in U_{\xi}$. If vX has $(\omega_1,\,\omega)$ -caliber, then there exists a sequence $W_{\xi_n}=\{x\in vX\colon \widehat{f}_{\xi_n}(x)>1/2\},\,n=1,\,2,\,\dots$ such that $\cap W_{\xi_n}$ is nonempty. If the family $\{U_{\xi_n}\colon n=1,\,2,\,\dots\}$ contains no infinite subfamily with nonempty intersection then $f_{\xi_n}\to 0$. By the claim it follows that $\widehat{f}_{\xi_n}\to 0$, contradiction.

PROPOSITION 2. A pseudocompact space with property (**) (resp. c.c.c.) has a Baire strictly positive measure (resp. (ω_1, ω) -caliber).

PROOF. If X is pseudocompact then $vX = \beta X$.

As a consequence of Lemma 1 we have that the sigma-product spaces $\Sigma_{\omega}\{0,1\}^{\omega_1}$ and $\Sigma_{\omega_1}(\mathbb{R}^{\omega_1}) = \{x \in \mathbb{R}^{\omega_1} : |\{i < \omega_1 : x(i) \neq \neq 0\}| \leq \omega\}$ have a Baire strictly positive measure. Indeed, they are both C-embedded ([3], p. 224) and dense in the respective product spaces $\{0,1\}^{\omega_1}$ and \mathbb{R}^{ω_1} , which are their respective real compactifications; being separable, these spaces have a Baire strictly positive measure.

The next lemma appears in [8]. We give a different proof.

Lemma 3. If X is almost-separable then every pseudocompact subspace K of $C_p(X)$ is metrizable.

PROOF. On X, define an equivalence relation \sim by saying $x \sim y$ iff f(x) = f(y) for every $f \in K$. Let \widetilde{X} be the quotient space X/\sim ; then \widetilde{X} is also almost-separable. For $f \in K$ we have a function $\widetilde{f} \colon \widetilde{X} \to \mathbb{R}$ given by writting $\widetilde{f}([x]) = f(x)$; set $\widetilde{K} = \{\widetilde{f} \colon f \in K\}$. Then $\widetilde{K} \subseteq C_p(\widetilde{X})$ is homeomorphic to K.

We may suppose that \widetilde{X} contains a continuous image of \mathbb{N}^{τ} , for a cardinal τ , as a dense subspace. For $n=1,2,\ldots$ put $E_n=\{1,2,\ldots,n\}^{\tau}$. Then E_n is compact with c.c.c. and $\cup E_n$ is dense in \mathbb{N}^{τ} . It follows that \widetilde{X} contains a sequence of compact subspaces \widetilde{E}_n , $n=1,2,\ldots$ with c.c.c. and such that $\cup \widetilde{E}_n$ is dense in \widetilde{X} . Since \widetilde{K} separates points in \widetilde{X} , it follows that \widetilde{E}_n embeds in $C_p(\widetilde{K})$. By well known facts (see [2], p. 30) it follows that \widetilde{E}_n is metrizable. Consequently \widetilde{X} is separable and the result follows.

PROPOSITION 4. If X is pseudocompact then $C_p(X)$ is almost-separable iff it is separable.

PROOF. The result follows for the embedding $X \subseteq C_p(C_p(X))$ and Lemma 3.

The space $\Sigma_{\omega}\{0,1\}^{\omega_1} = \{x \in \{0,1\}^{\omega_1} : |\{i < \omega_1 : x(i) = 1\}| < \omega\}$ has a Baire strictly positive measure, but it is not almost separable, since it has not ω_1 -caliber.

Shakhmatov in [7] constructed a non-metrizable pseudocompact space X_s with c.c.c. and $C_p(X_s, I)$ pseudocompact (I is the unit interval). The space $C_p(X_s, I)$ has property (**), since it is dense in $I^{|X_s|}$, so it has a Baire strictly positive measure, but by Lemma 3 it follows that it is not almost separable.

So, we have the following

PROPOSITION 5. There exists a non-almost separable space with a Baire strictly positive measure.

REMARKS. (i) Shakhmatov's example shows that almost-separability in Lemma 3 cannot be replaced by the existense of a strictly positive measure.

- (ii) If X is discrete with $|X|>2^\omega$ then $C_p(X)$ is almost-separable but not separable.
- (iii) Since X embeds into $C_p(C_p(X))$, Shakhmatov's example shows that Tulcea's result for the metrizability of convex compact subspaces K of $C_p(X)$, with X having a strictly positive measure, is not valid for simply convex pseudocompact subspaces. We have the same assertion for the Lindelöf subspaces. This follows from the fact that $\Sigma_{\omega_1}(\mathbb{R}^{\omega_1})$ is homeomorphic to $C_p(L_{\omega_1})$, where L_{ω_1} is the one point Lindelöfication of ω_1 ([1]).

Acknowledgement. I express my gratitude to the Referee for his valuable suggestions which were decisive for the final form of this paper.

REFERENCES

- [1] K. ALSTER R. Pol., On function spaces of compact subspaces of Σ -products of the real line, Fund. Math., 107 (1980), pp. 135-143.
- [2] A. V. Arkhangelskii, Function spaces in the topology of pointwise convergence and compact sets, Uspekhi Math. Nauk, 39:5 (1984), pp. 11-50.
- [3] W. W. COMFORT S. NEGREPONTIS, *Chain Conditions in Topology*, Cambridge Tracts in Math., Vol. **79**, Cambridge University Press (1982).
- [4] L. GILLMAN M. JERISON, Rings of Continuous Functions, Springer-Verlag, New York, Heidelberg, Berlin (1976).
- [5] D. H. Fremlin, An alternative form of a problem of A. Bellow, Note of October, 10 (1989).
- [6] H. P. ROSENTHAL, On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ , Acta Math., 124 (1970), pp. 205-248.
- [7] D. B. SHAKHMATOV, A pseudocompact Tychonoff space, all countable subsets of which are closed and C*-embedded, Topology and its Appl., 22 (1986), pp. 139-144.
- [8] V. V. TKAČUK, Calibers of spaces of functions and the metrization problem for compact subsets of $C_p(X)$, Vestnik Univ. Matematika, 43, No. 3 (1988), pp. 21-24.
- [9] A. IONESKU TULCEA, On pointwise convergence, Compactness and Equicontinuity II, Advances in Math., 12 (1974), pp. 171-177.

Manoscritto pervenuto in redazione il 20 ottobre 1994 e, in forma revisionata, il 3 agosto 1995.