
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

NIKOLAS S. PAPAGEORGIOU

FRANCESCA PAPALINI
On the structure of the solution set of evolution
inclusions with time-dependent subdifferentials
Rendiconti del Seminario Matematico della Università di Padova,
tome 97 (1997), p. 163-186
<http://www.numdam.org/item?id=RSMUP_1997__97__163_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1997, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1997__97__163_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On the Structure of the Solution Set

of Evolution Inclusions

with Time-Dependent Subdifferentials.

NIKOLAS S. PAPAGEORGIOU (*) - FRANCESCA PAPALINI (**)

ABSTRACT - In this paper we consider evolution inclusions driven by a time de-
pendent subdifferential operator and a set-valued perturbation term. First
we show that the problem with a convex-valued, h*-u.s.c. orientor field (i.e.
perturbation term) has a nonempty solution set which is an R,3-set in C(T, H),
in particular then compact and acyclic. For the nonconvex problem (i.e. the
orientor field is nonconvex-valued), without assuming that the functional
cp(t, x) of the subdifferential is of compact type, we show that for every initial
datum ~ E dom ~( 0, ~ ) the solution set S( ~ ) is nonempty and we also produce
a continuous selector for the Some examples of dis-
tributed parameter systems are also included.

1. - Introduction.

In a recent paper (cf. [21]) we established the nonemptiness and
path-connectedness of the solution set of an evolution inclusion driven
by a time-dependent subdifferential 8q(t, x) and a nonconvex-valud, h-
Lipschitz in x multivalued perturbation term F(t, x).

In this paper first we consider time-dependent subdifferential evo-
lution inclusions with a convex valued perturbation term F(t, x) satis-
fying a more general continuity hypothesis in the x-variable. For such
evolution inclusions we show that the solution set is Ri in C(T, H), in
particular then nonempty, compact and connected. Then we return to

(*) Indirizzo dell’A.: National Technical University, Department of Mathe-
matics, Zografou Campus, Athens 15780, Greece.

(**) Indirizzo dell’A.: Department of Mathematics of Perugia University, Via
Vanvitelli 1, Perugia 06123, Italy.

1991 AMS Subject Classification: Primary 34G20, Secondary 35K55.



164

the nonconvex problem with an h-Lipschitz in x perturbation term
F(t, x). Without assuming that cp(t, .) is of compact type (which in the
time invariant case means that 3q?(-) generates a compact semigroup of
contractions), we establish the nonemptiness of the solution set S(~)
and in addition we generate a continuous selector for the multifunction

Finally we present some examples of parabolic distributed
parameter systems illustrating the applicability of our results.

The problem of connectedness of the solution set of differential in-
clusions in R N was investigated by many authors. The first to establish
that this set is R5 in C(7B R N) were Hirnmelberg-Van Vleck (cf. [12])
for autonomous systems and De Blasi-Myjak (cf. [7]) for nonau-

tonomous systems. The result of De Blasi-Myjak was extended to sys-
tems with state constraints by Hu-Papageorgiou (cf. [14]). We should
also mention the remarkable recent work of De Blasi-Pianigiani
(cf. [8], [9]) who developed the so-called «Baire category method» to

study the structure of the extremal solutions of differential inclusions
in RN and in Banach spaces. However their compactness and continuity
hypotheses preclude the applicability of their results to systems in-

volving unbounded operators (i.e. distributed parameter systems with
multivalued terms). There is also the very recent work of De Blasi-Pi-
anigiani-Staicu (cf. [10]) which deals with semilinear evolution inclu-
sion monitored by a time invariant unbounded linear operator generat-
ing a Co-semigroup. Extension of the results of De Blasi-Pianigiani-
Staicu can be found in Hu-Lakshmikantham-Papageorgiou (cf. [13]).
We should also mention the work of Ballotti (cf. [1]) which deals with
semilinear evolution equation driven by a time invariant linear opera-
tor which is the generator of a Co-semigroup and by a single-valued
perturbation term f ( t, x ) which is jointly continuous. Our work here ex-
tends that of Ballotti. Finally on the question of existence of continuous
selectors for the solution multifunction E-&#x3E;S(E) there are the works of
Cellina (cf. [5]) for differential inclusions in RN and of Staicu (cf. [23])
for evolution inclusions driven by a time invariant maximal monotone
operator on a Hilbert space.

2. - Mathematical preliminaries.

Let X be a separable Banach space. We will be using the following
notations:

P f~~~ (X ) _ {A c X : A nonempty, closed and ( convex) ~ ,

{A c X: A nonempty, (weakly-) compact (convex)l.
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If (S~, ~, ,u) is a finite measure space, a multifunction F: 
is said to be measurable, if for all x e X, the function

is measurable. If F( ~ ) is. measurable, then

with B(X) being the Borel a-field of X (graph measurability), while the
converse is true if X is y-complete. By SFP ( 1 ~ we will denote
the set of all measurable selectors of F( . ) that belong in the Lebesgue-
Bochner space i.e.

In general this set may be empty. It is easy to check using Aumann’s
selection Theorem (cf. [24], Theorem 5.10), that for a graph measurable
multifunction F: S~ -~ 2X B ~ ~ ~, SF is nonempty if and only if the func-
tion : z e belongs to LP(Q, R + ). Recall that a subset
K of LP (Q, X) is decomposable if for every triple ( f, g, A) E K x K x Z,
we have fxA + 9XA" E K, where XA denotes the characteristic function of
the set A. Clearly Sf. is decomposable.

A subset A of X is said to be a absolute retract if, given any metric
space Y and a closed B c Y and a continuous function f: B -~ A, there
exists a continuous extension f: Y ~ A of f. Then A is said to be a R,5-set
if A = fl An for a decreasing sequence of compact absolute retracts An

n * 1

of X (cf. [15]). Every R,6-set is acyclic.
Recall that on we can define a generalized metric, known in

the literature as the «Hausdorff metric», by setting, for A, B E
e Pf(X),

(where d(a, B) = inf f I I a - b 11: b E B } ; similarly for d(b, A ) ) . A multi-
function F: T ~ P f (X ) is said to be Hausdorff continuous (H-continu-
ous) if it is continuous from T into the metric space (Pf(X), h). More-
over, F is said to be Hausdorff upper semicontinuous (h*-u.s.c.) if, for
every t E T and for all E &#x3E; 0 there exists 6 &#x3E; 0 such that I t - t’ I  6 -

+ eB1, where B1 is the unit ball in X.
Let cp: X-R = R U { + oo }. We will say that T(-) is proper, if

it is not identically + 00. Assume that T(-) is proper, convex and l.s.c.
(usually this family of R-valued functions is denoted by ro(X)). By
dom cp we will denote the effective domain of cp( ~ ); i.e. dom cp = Ix eX:
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gg(x)  oo}. The subdifferential of ~(’) at x, is the set

(in this definitions, by ( ~ , ~ ) we denote the duality brackets for the
pairs (X, X * )) . It is well-known that if cp( ~ ) is Gateaux differentiable at
x, then _ ~ g~’ ( x ) ~ . We say that w e T o (X ) is of compact type, if for
all A e R + , the level set e Z:  is compact.

Let T = [ o, b ] and H a separable Hilbert space. We consider the fol-
lowing multivalued Cauchy problem:

By a soslution of (1) we mean a function x e C(T, H) such that a?(’) is
absolutely continuous on any closed subinterval of (0, b) and with the
property

Recall that an absolutely continuous functions x: (0, b) - H is dif
ferentiable almost everywhere (see [2], Theorem 2.1, p. 16) and so in
problem (1) the derivative i(-) is a strong derivative.

Following S. Yotsutani (cf. [26]) we make the following hypothesis
on the function 99(t, x), which will be in effect throughout this

paper:

99: is a function such that

i) Vt e T, x) is proper, convex, l.s.c.;

ii) for every integer r &#x3E; 0, there exist Kr &#x3E; 0, an absolutely
continuous function gr : T ~ R with and a func-
tion of bounded variation hr ; T -~ R such that if t e T,
X e dom 99(t, s E [ t, b ], then there exists
x e dom 99(s, satisfying
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REMARK. Hypothesis H( cp ) (ii) allows the effective domain
dom 99(t, -) of ~(~ ’) to vary in a regular way with respect to t e T with-
out excluding the possibility that dom cp(t, .) n if t ~ s.
This hypothesis, which is suitable for the analysis of obstacle problems,
has its origin (in more restrictive form) in the works of Kemnochi

(cf. [16]) and Yamada (cf. [25]).

3. - Topological structure of the solution set.

Our first result establishes the nonemptiness and the topological
structure of the solution set S(~) c C( T , H) of (1). We will need the fol-
lowing hypothesis on the orientor field F:

H(F): F: T x is a multifunction such that

In the proof of the structural theorem concerning S(~) we will need
some auxiliary results which we state next.

The first is an approximation lemma which can be proved as Propo-
sition 4.1 of De Blasi (cf. [6]), with some appropriate modifications to ac-
comodate for the presence of t e T.

LEMMA 1. Let F: T x be a multifunction such that

then there exists a sequence of multifunctions Fn : T x H - 
n ~ 1, with the properties.:

I) 1 and Vx E H there exist kn (x) &#x3E; 0 and E n &#x3E; 0 such that
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and finally there exists maps un : T X H -~ H, n ~ 1, measurable in T,
locally-Lipschitz in x (as Fn (t, ~ )) and un (t, x) e Fn (t, x) for every
(t,x)ET xH.

Moreover if F(t, .) is h-continuous, then for every n ~ 1,
t - Fn (t, x ) is measurable.

PROOF. For each (flxed) n ~ 1 Sn = IB(x, is an open cov-
er of H. 

,

Let 0,, be a locally-Lipschitz partition of unity subordi-
nate to sn .

Let xo E H. Then there exist kn ( xo ) and e n &#x3E; 0 such that

is finite and for every x2 E (xo) we have

Define

where Evidently since the function
vanish outside the set we have Fn(t, xo) =

= 2: with = co F(t, B(x, 2/3n)).
x E H

Now define

with fr ( .) being a measurable selector of Gr ( .). It exists since by hy-
pothesis is measurable. Clearly for every we

have 
’~

and
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So for every x2 E B£n (xo) and almost all t e T we have

and

which establishes the local h-Lipshitzness of the approximating multi-
functions Fn ( t, -), n a 1, and the local Lipshitzness of the selector

), n ~ 1.
Next we will show that ~ Fn ( t, a?)}~~i 1 is a increasing sequence. Fix

y e H and let M(n, y) (resp. M(n + 1, y)) be the nonempty finite set of
all functions (resp. y x + 1 E ~n + 1 ) whose support contains y. Let
1 ~j ~ y) [ and 1 ~ 1~ ; ~ + 1, We will show that

To this end observe that since y e supp and y e supp y :n++ B , we have
y e B(xr + 1, 1 /3n + 1 ) and y e B(xjn, 1 /3n). 

J k

So if z e B( xk + 1, 2 /3n + 1 ) we have

and so B( x~ + 1, 2/3"-~)c .8(~,2/3") which in turn implies that
e T . From this fact and the the definition of Fn ( t, y )

we immediately deduce that Fn (t, y ) y ). In a similar fashion
we can also get that for every and every
(t, y) e T xH. 

Now we will show that as n ~ ~ for every
(t, x) e T x H. Since by hypothesis F(t, .) is h*-u.s.c. given e &#x3E; 0 we can

r, E) &#x3E; 0 such that F(t, y) x) + (~/3) B1 for every y e H
with Ilx - 6 .

Let No (t, 1 be such that No we have 1 /3n ~ 6 /3. Let
ve H be such that y§§ e M(n, x) and let y e B(v, 2/3n). For n ~ No we
have

Thus No , for v e H for which y~ e M( n, x ) and for y e B( v, 2/3")
we have F(t, y) c F(t, x) + (c/3)Bi. So
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for No and all v e H such that y§§ e M(n, x). Thus we get
that

for n a No and so we conclude that Fn ( t, x ) as n ~ ~ .
Finally if F(t, .) is h-continuous then a dense subset of

B(xr, 2 /3n ) we have that = co U F( t, y,,,) Invoking Proposi-k k 
m&#x3E; 1

tion 2.3 and Theorem 9.1 of [ 11 ], we deduce that is measurable
and so x ) is measurable.

Now let p: L2 (T, H) - C(T, H) be the map which to each

g e L2 (T, H) assigns the unique solution of

The existence (and of course uniqueness) of the solution of the above
Cauchy problem follows from the result of [26].
We have the following result concerning the solution of map

p( . ).

LEMMA 2. If hypothesis H(cp) holds, if for every t E T, cp(t, .) is of
compact-type ), then ~( ~ ) is completely continuous
(hence compact).

PROOF. Let gn - g weakly in L2 (T, H). For economy in the nota-
tion set xn = 1, and x = p( g ). Exploiting the monotonicity of
the subdifferential we get

Using Lemma A.5, p.157, of [4], we get that
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Since gn - g weakly in L 2 ( T , H) we can find Mi &#x3E; 0 such 

Ml , n % 1. So for all n a 1 and all t e T we have

Moreover from inequality (7.9), p. 645 of [26], we see that there
exists M3 &#x3E; 0 such that for all t e T and all n ~ 1 we have

(in fact M3 depends only on the total variation of hM2 ( . ), on ~,
on ~(0, ~) and on Ml ; see [26]). So for every T we have

(recall that cp(t, .) is of compact-type) .

Also if s, t e T, s ~ t we have

But from inequality (7.5), p. 645 of [26], we know that sup Ilxn 112 =
= M5  + 00 with M5 &#x3E; 0 depending only on M1, Ilçll I and ~(0, ~). Thus
we deduce 1 is equicontinuous. Invoking the Ascola-Arzela
theorem we get 1 is relatively compact in C( T, H). By pass-
ing to a subsequence if necessary, we may assume that in

C( T, H) and xn --~ y weakly in L 2 ( T, H).
Let 0: L 2 (T, H) -~ I~ = R U ~ + ~ ~ be defined by

(note that by Lemma 3.4, p. 629 of [26], for every 
x(t)) is measurable, moreover Corollary 4.1, p. 633 tells us

that dom ~ ~ 0). It is well-known (see for example [26], Lemma 4.4,
p. 634) that

For every n a 1, [xn , - xn - Gr 8W since 3T(-) is a maximal
monotone operator, Gr 8Ø is demiclosed. Therefore [ y, - y - g] E
e Gr 8W and so - (t) y(t)) + g(t) a.e. on T, y(O) = ~, i.e. y =
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= p(g) = x. So we conclude that xn ~ x in C(T, H), proving that indeed
p( .) is completely continuous.

Now observe that if x2 E C(T, H) are solutions of

respectively, then Ilx1(t) - ~2~)!! ~ !!~i " ~2!!.~ ~ T . This is an imme-
diate consequence of the monotonicity of the subdifferential operator.
If j1i: dom w( 0, . ) x L2 ( T , H) -~ C( T , H) is the map which to each

(~, g) e dom cp( o, ~ ) x L 2 (T, H) assigns the unique solution of

(cf. [26]), then we have an alternative version of Lemma 2.

LEMMA 2’. If hypothesis H(cp) holds, if for every t e T, cp(t, ~ ) is of
compact-type and if for every ~ E dom cp(O, .) there exist M, r &#x3E; 0 such
that cp( o, x) ~ M, with I  r, then the solution

is sequentially continuous by considering on L 2 ( T , H) the weak
topology.

The proof of this lemma is the same as that of the previous, hence is
omitted.

Now we are ready for the result on the nonempiness and topological
structure of the solution set S( ~ ).

THEOREM 3. If hypothesis H(cp), H(F) hold, if for every t E T,
~(t, ~ ) is of compact-type and ~ E dom ), then S(~) is a 
in C(T, H).

PROOF. First let us derive an a priori bound for the elements in
S(~). So let x E S(~) and let y E C(T, H) be the unique solution of
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Letfe x~. ~~ be such that x = p(f). As before from the monotonicity
of the subdifferential operator we have

Once again Lemma A.5, p. 157, of [4], tells us that

Using Gronwall’s lemma, we deduce that there exists M &#x3E; 0 such that
M for every t e T and every solution x e S(~). Thus without

any loss of generality put 1jJ(t) = a( t ) + c(t) M, 1jJ e L 2 ( T , R + ), we may
assume that I F(t, x)1 ~ a.e. on T, dx e C(T, H) (otherwise replace
F(t, x ) by F(t, rM(x» with cm ( . ) being the M-radial retraction on H;
note that t-F(t, rM(x) is measurable, rm(x)) is h*-u.s.c. and
in addition I F(t, a.e. on T, with y E L2(T, R + )).

Now let Fn : T x H - Pic (H), n ~ 1, be a sequence of multifunction
as postulated by Lemma 1. For flxed n a 1 we consider the following
multivalued Cauchy problem

We already know that problem (2) above has a nonempty set Sn (g)
of solutions (cf. [21]). 2 

1

Note that with V = H): ~~h(t) ~~ ~ 1jJ(t) a.e.

on T ~ and from Lemma 2 we known that p(V) is compact in C(T, H).
Also if xm E Sn ( ~ ), m ~ 1, and in C( T , H) as we have
that with We may assume that fm --~ f
weakly in L 2 ( T, H) and f E ~SFn ( ., x~ . ~~ . . Moreover Lemma 2 tells us
that in C(T, H). Thus is closed hence com-

pact in C( T , H).
We also claim that, for every n a 1, is contractible. Let

un (t, x) be the Caratheodory (in fact locally Lipschitz in x) selector of
Fn (t, x) (cf. Lemma 1). Given r e [0, b) and x e let z(r, x)( ~ ) e
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E C( T , H) be the unique solution of

Evidently x) = zo and h(b, x) = x with zo E C(T, H) being the
unique solution of

If we can show that h( ~ , ~ ) is continuous we will have established the
contractibility of in C(T, H). To this end T x
x ,Sn ( ~ ), with ( rm , x ) in T x ,Sn ( ~ ). We consider two distinct
cases:

Case I: rm ~ r for every m ; 1.

Let = h(rm , xm)(t), t e T. Evidently vm e ,Sn (~ ), 7% a 1, and so
by passing to a subsequence if necessary, we may assume that in

C( T, H). From the definition of h( ~ , ~ ) we see that for t e [0, r] we have
v(t) = x( t ). Let y e C(T, H) be the unique solution of

Let N ; 1. Then for all 7% a N large enough we have that

As before via the monotonicity of the subdifferential operator we have
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An application of Lemma A.5 of [4], gives us

Passing to the limit as m -~ ~ , we get that

Note that as we have y(rN) -~ x(r) and v(rN) ~ v(r) = x(r).
Since N ~ 1 was arbitrary we conclude that y(t) = v(t) for t e [ r, b].
Hence v = h(r, x) and so h(rm, xm) -~ h(r, x) in C(T, H) as m -~ ~ .

Case II: rm :::; r for every 7% a 1.

Keeping the notation introduced in the analysis of Case I, we see
that v(t) = x(t) for t e [0, r].

Moreover the same arguments as in Case I, given us that

and by passing to the limit as m --~ 00

But y(r) = x(r) = v(r). So y(t) = v(t) for t e [r, b]. Hence v = h(r, x)
and so again we have h(rm, x) in C(T, H) as m --~ 00.

In general we can always find a satis-

fying Case I or Case II. Thus we have proved the continuity of the
map ~(’, ). So, for every n a 1, Sn ( ~ ) is compact and contractible in
C(T, H). We claim that S(E) = fl Sn(E). Clearly S(E) c fl Sn(E). Let

1

x e n f 11 Then by definition = p( fn ) with fn e SFn ( ., x (-)), 9 n &#x3E; 1.
n &#x3E; 1 n

Evidently {fn}n&#x3E;1 is bounded in £2 (T, H). So by passing to a subse-
quence, if necessary, we may assume that fn - f weakly in £2 (T, H).
We known that f e x~. ~~ , (cf. [18]). So x e S(~) and therefore we have
S(i ) = fl ,Sn ( ~ ). Using result of [15], we conclude that S( ~ ) is a R6-set
in C(T, H).

An immediate consequence of Theorem 3 above is the following
Kneser-type theorem for (1).
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COROLLARY 4. If hypotheses H(cp), H(F) hold and for every t e T,
~(~ ’) is of compact type, then, for every t E T, the set R(t) = S(~)(t) =
- ~ x( t ): x E ,S( ~ ) ~ (the reachable set at time t E T ) is compact and con-
nected in H.

Also a consequence of Lemma 2’ is the following continuity result
about multifunction ~~S(~). For this result the following weaker ver-
sion of hypothesis H(F) will suffice.

H(F)i : F: is a multifunction such that

i) t H F( t, x ) is measurable;

ii) dt e T, Gr F(t, ~ ) is sequentially closed in H x Hw ; (here Hw
sands for the Hilbert space H equipped with the weaker
topology);

iii) 

PROPOSITION 5. If hypotheses h( cp ), H(F), hold, if for every
t E T, cp(t, .) is of compact type and if for every; E dom there

exist M, r &#x3E; 0 such that cp( 0, z) 5 M, ’fix e  r,
then ,S: dom H)) is u,s,c.

PROOF. The set ,S( ~ ) is nonempty for ~ E dom ~(0, ’) (see [20] with
the obvious modifications), while the compactness of ,S( ~ ) follows from
Lemma 2’ as in the proof of the Theorem 3. Now we need to show that
given C c C(T, H) nonempty closed, the set ):
~) fl is closed in dom ~(0, -) c H. To this end let ~ n E ,S - (C),
n ~ 1 and assume that in H, with; E dom ). Let Xn E
e fl C, n ~ 1. For each n a 1 let rn = e Sic, Xn(.». Since
~ fn ~n is bounded in L 2 (T, H) (cf. hypothesis by passing to a
subsequence if necessary we may assume that fn-f weakly in

L 2 ( T , H). From Lemma 2’ we have that xn -~ x in C( T , H) and from hy-
pothesis H(F)l-ii) and Theorem 3.1 of Papageorgiou (cf. [18]), we have

So i.e. ~~~’(C). Therefore S( ~ ) is
U.S.C.

Next we will generate a continuous selector of the multifunction
E -+ S(E). For this we will need the following hypothesis on the orienta-
tor field F(t, x).
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H(F)2 : F: T x H ~ Pf(H) is a multifunction such that

i) t - F(t, x ) is measurable;

THEOREM 6. If hypotheses H(cp), H(F)2 hold, then there exists
- C(T, H) ac continuous map such that u(~ ) E ,S(~ )

for every ~ E dom ).

PROOF. Let xo (~ )( ~ ) E C(T, H) be the unique solution of the evolu-
tion equation (cf. [26])

Let be defined Ro ( i ) =
= SF( ., xo ~~ )~ . ~) . Then Ro ( . ) is h-continuous and so we can apply Theorem 3
of [3] and get ro : dom (~(0, ’)-~L~(r, H) a continuous map such that

for ). Let ~i(~)(’)EC(7B~) be the
unique solution of

We claim that by induction we can generate two sequences

with E E dom y (0, ), satisfying:

a) xn ( ~ )( ~ ) e C( T, H) is the unique solution of

6) ~~-r~(~) is continuous from dom w( 0, . ) into L (T, H), Vn a 0;

c) rn (ç )(t) E F(t, a.e. on T, for every ~ E dom ),
Vn&#x3E;0 ;
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a.e. on 1, with

Since for every t e T, I, 
E dom w(0, .) we see that and are continuous
from dom into L1 (T, H).

Suppose we were able to satis-

fying (~)2013&#x3E;(d) above.
Let xn + 1 ( ~ )( ~ ) E C( T, H) be the unique solution of

As before because of the monotonicity of the subdifferential opera-
tor and using Lemma A.4 of [4], we get
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Using hypothesis H(F)2-ii) we have

Let Rn + 1 = dom cp(o, ~ ) -~ P(L 1 (T, H)) be the multifunction de-
fined by

From (4) above we know that the multifunction

defined by

is such that r~+i(~)(~) ~ 0 a.e. on T.
By modifying the above multifunction on a Lebesgue-null subset of

T, we may assume without any loss of generality that 7~+i(~)(~) ~ 0
for every Also from Theorem 3.3 of [ 19] we know that

is measurable (hence graph measurable), while

(t, rn (~ )(t) ~~ -1~(t) /3n + 1 (~ )(t) = Y n + ~ (~ )(t, v) is clearly joint-
ly measurable. So

with 2(T) being the Lebesgue o-field of T. Apply Aumann’ selection
theorem (cf. [24]), to get z : T ~ H measurable such that 

E Tn + 1 (~ )(t), t E T, so z( ~ ) E Rn + 1 (~ ). is l.s.c.
with decomposable values. Apply Theorem 3 of [3] to get

a continuous map such that 

). Hencern + 1 (~ )(t) E F(t, Xn + 1 (~ )(t))
a.e. and ~) rn + 1 (~ )(t) - rn (i )(t) )) 5 k(t),8n + 1 (~ )(t), a.e. on T. Thus by in-
duction we have produced the two sequences

satisfying (a) - (d) above.
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Then using (3) we have

is continuous from H into L 2 ( T, H), is locally bound-
ed. So from the above inequality we deduce is a

L 1 (T, H)-Cauchy sequence, locally uniformly in ~ E dom ). Also
from (a) we have

is Cauchy in C(T, H), locally uniformly in ~ e dom ).
Let n ~ ~ . We have xn + 1 ( ~ ) -~ x( ~ ) in C( T , H), rn ( ~ ) -~ r( ~ ) in

L 1 ( T , H) and both limits are continuous in ~ e dom ). Let y( ~ ) E
e C(T, H) be the unique solution of

Because of hypothesis H(F)2-ii) we have a.e.

As before we have

Therefore is the desired selector 

REMARK. Note that Theorem 4 gives as an existence result for (1)
without assuming that ~(~ ’) is of compact type. However on the other
hand ~(~ ’) is h-Lipschitz. So there is a trade off of hypotheses be-
tween cp(t, x) and F(t, x),

An immediate consequence of this theorem is the following corol-
lary

COROLLARY 7. If hypotheses H(cp), H(F)2 hold, if there is K E
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E (H) bounded such that ,S(K)( b ) g K, if dom cp(b, .) c dom cp( o, ~ ) and

if dom ~( o, ~ ) n K is compact in H, then there exists a solution X(-) E
E C( T , H) for the problem

PROOF. Let u : dom w( 0, . ) ~ C(T, H) be the continuous selector of
the multifunction E-+S(E) guaranteed by Theorem 4. Let

eb : C( T, H) ~ H be the evaluation map, i.e. eb ( x ) = x( b ). Let û =
dom ~(0, ’) n K - dom w( 0, . ) n K. This is a continuous and

compact map. So Schauder’s fixed point theorem gives us le
e dom ~(0, ’) such that ~ i(~). Then ~c( ~) ( ~ ) e C( T , H) is the de-
sired periodic trajectory.

4. - Examples.

Now let as work out some examples of parabolic distributed par-
ameter systems to illustrate general abstract results.

Let T = [0, b ] and Z a bounded domain with smooth boundary
r. Let be a given and define

We consider the following controlled obstacle problem:

We need the following hypothesis on the function r:

H(r): r: T x L 2 (Z, R) -~ R + is a function such that

i) Vt e L (Z, R), t H r( t, x ) is measurable;



182

Let H = L 2 (Z, R ) and let cp : T x H --~ R U ( + m ) be defined by

We claim that cp(t, x) defined above satisfies hypothesis H(cp). In-
deed let t 5 s and let y e K( t ). Define x = y - g(t, -) + g(s, ). Evident-
ly x E K( s ). Also we have

In addition through some elementary calculation we have that

and so hypothesis H( cp ) has been satisfied.
Let F: be defined by 

5 rut, Then it is easy to see that F(t, x ) defined above satisfies hy-
pothesis H(F). Directly from the definition of subdifferential we have
that (3) is equivalent to (1) with cp(t, x) and F(t, x) as above. Note that

compactly and so ~(~ ’) is of compact type.
Therefore we can apply Theorem 3 and get:

THEOREM 8. If hypothesis H(r) holds and xo E W6’P(Z), xo (z) ~
z) a. e. on Z, then the solution set of (3) is a Ra-set in

C(T, L2(Z, R)).

Next consider the following problem with a discontinuous nonlin-
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earity u : Z x 

We need the following hypotheses:

H( a ): for every 1 ; I, j 5 N, aij e L 
00 

( T x Z, R ), aij = aji , there exists
N

c &#x3E; 0 such that C)) I )) jir 5 I, j I = for i and
i,j=1 1

there exists a function h: T -+ R of bounded variation such that

H(fl): ~3: R - 2R is a maximal monotone multivalued operator.

Then from Brezis (cf. [4]) we know that there exists j E To (R) such that
fl = aj . Assume j ; 0.

Following Rauch (cf. [22]), we set

We will make the following hypothesis concerning u and u.

H(u): 1) the function u, u, and u are superpositionally measurable, i.e.
for every x: Z ~ R measurable, z ~--~u(z, x(z)), x(z)),
u(z, x(z)) are all measurable,

2) there exist a E L2 (Z, R) and c &#x3E; 0: x)1 ~ ac(z) + clxl [
a.e. on Z, Vx e R.

Evidently for every x: Z ~ R measurable, we have that (t, z) -
~ Fo (t, z, x(z)) is measurable. Moreover since for every z e Z, u(z, . ) is
l.s.c. and ~(2:,’) is u.s.c., we see that for every 

is u.s.c. Hence if we define 
R )) by F( t, x ) = SFo ~t, . , x~ . ~~ , we have that F( ~ , ~ ) satisfies

hypothesis H(F).
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Also let be defined by

otherwise.

Let 0 ~ t ; s 5 b. For every x e = dom ~(s, ’) we

have

(check hypotheses H( a) and H( cp )) . So we see that holds. In addi-
tion note bounded in

R) and R) embeds compactly in L 2 (Z, R). So we deduce
that for every t e T, ~(~ ’) is of compact type.

Rewriting (4) in the equivalent abstract from (1) and using Theorem
3, we get:

THEOREM 9. If hypotheses H(a), H(f3), H(u) hold and xo e
e H 1 (Z, R) R), then the set solution of (4) is com-
pact and acyclic (thus connected) in C(T, L 2 (Z, R)).

Similarly we can treat the problem:

In this case cp : T X L 2 (Z, R) - R U { + m ) is defined by

otherwise.

As before we can establish the following theorem
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THEOREM 10. If hypotheses H(a), H(f3), H(u) hold and xo ( . ) E
e Ho (Z, R) with j(xo ( ~ )) (Z, R), then the set of sotution of(5) is com-
pact and acyclic (thus connected) in C(T, L2 (Z, R)).

REMARK. The problem ax/at - L1x = y%, ax/an = 0, and ax/at -
- L1x = VX, are particular cases of (4) and (5) respectively.
Therefore our work extends that of Kikuchi (cf. [17]) and the example
in Ballotti (cf. [1]).
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