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On a Method of Balasubramanian and Ramachandra

(on the Abelian Group Problem).

A. SANKARANARAYANAN - K. SRINIVAS (*)

ABSTRACT - Let an denote the number of non-isomorphic abelian groups of order
n. We consider

where E(x) is the error term. We study E(x) through the general method of
Balasubramanian and Ramachandra.

1. - Introduction.

In [3] R. Balasubramanian and K. Ramachandra developed a gener-
al method of proving S~ results and also Q +, Q - results. They applied it
to some arithmetical questions and in particular to the question of num-
ber of abelian groups of order 5 x. However, their method is not widely
known and certainly it deserves to be known widely. Since their proofs
are somewhat sketchy, we wish to explain their method with special
reference to the abelian group problem.

Let an denote the number of non-isomorphic abelian groups of order
n. By standard arguments, we get the Dirichlet series identity

(*) Indirizzo degli AA.: School of Mathematics, Tata Institute of Fundamen-
tal Research, Homi Bhabha Road, Bombay 400 005, India.
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valid for o~ &#x3E; 1. For x ~ 100 put

An approximation to A(x) is

where is the residue at s = 1 /j of

It is the aim of this paper to study the function

It is known that (see [7])

From the corollary of the following Theorem 1.1 and the mean-square
upper bound for E(x) due to D. R. Heath-Brown (see § 6), one can even
conjecture that

which is still far away. In (1.2) any constant greater than or equal to 6
will work in place of 10.

Let

where X = and T ; To (To is a large positive constant).
Throughout this paper, Ai , A2 , A3 , ... denote positive constants. t7

is a small positive constant and l is a large positive constant chosen such
that ql 5 1 /100. E is a small positive constant. Let so = 1/6 + it and
Sl = 1/10 + it! where t1 is a fixed number such that T ~ tl ~ 2T. We
fix X = T 200. We prove
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THEOREM 1.1. We have

where the implied constant is effective.

COROLLARY. We have

PROOF OF THE COROLLARY. From the Theorem 1.1, we have

and this implies that

which proves the corollary.

THEOREM 1.2. There exist effective positive constants A¡ and A2
such that for all X &#x3E; 10

and

REMARK. In Theorem 1.1 Cj may be taken to be any fixed positive
constants whereas in Theorem 1.2, we have to take Cj to be the con-
stants coming from the residues at s = 
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2. - Main tools.

We make use of the following two theorems in proving Theorems 1.1
and 1.2.

THEOREM 2.i. Let G(s) = 1 + ~ bn/ns be anaLytic in (a % 1/2,
n=2

r ~ t ~ 2 T) and there max G( s ) ~ I  The series G(s) is as-
sumed to converge for at least one complex number s and we have also
assumed that bn s are complex numbers with (nT )A4 . Then, we
have

where the implied constant is effective and depends on A3 and A4.

REMARK. This theorem is due to K. Ramachandra (see [10]).In fact
he has improved this theorem (see [11]). For our purpose this one is
more than sufficient.

00 
THEOREM 2.2. If f cn } is a sequence of complex numbers such that

2: Z is convergent, then
n=l

where the implied constants is effective.

REMARK. This theorem is due to H. L. Montgomery and R. C.
Vaughan [8]. For a simpler proof see [9].

3. - Some lemmas.

LEMMA 3.1. We have

PROOF. The proof is well-known to experts. For the sake of com-
pleteness we indicate the proof. Since F( s ) is an infinite product of zeta-
functions and each of them has an Euler product, we first note that a,, s
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are multiplicative. Now,

where lj &#x3E; 0 for j = 1, 2, 3, ... in the above sum. Writing a(m) for apm,
we get the generating function of a( m ) from (3.1.1) to be

for 0  x  1. Hence

Since,

we have

From (3.1.3) and (3.1.4), we get

From (3.1.5), by choosing x = 1 - N = we get
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then

since the other factor with p &#x3E; 21/e in (3.1.7) is bounded. Here A6 de-
pends on E. This proves the lemma.

LEMMA 3.2. For x &#x3E; 0, we have

PROOF. The proof is well known (see pp. 33 of [14]).

LEMMA 3.3. For Re s ~ 1/11 and T/2 ~ t ~ 5T/2, we have

PROOF. First we note that
Q ~ 1 / 11. Therefore,

which proves the lemma.
m

LEMMA 3.4. Let G(s) = 1 + I be absolutely convergent in
n=2

Re s &#x3E; A7 and there max I G(s)I T A8. G(s) may have poles only on the
real line. We assume that are complex numbers with 
5 (nTf9. Then, for T ~ t ~ 2 T, we have

where Y = 

PROOF. First of all, we note that for a 5 a 2 , ~ It I ~ 1, we
have
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where A10 depends on a 1 and a 2 . With w = u + iv, from Lemma 3.2, we
have

In (r.h.s) of (3.4.2),we break off the portion (log T)’ which con-
tributes an error ). In the remaining portion,we
move the line of integration to Re ( so + w ) = 1/7. We notice that there
is only one pole inside the rectangle (-1/42~~~A7+1, ~ ~
~ (log T )2 ) at w = 0 which comes from the T function. The residue at
w = 0 is G(so ). The horizontal portions contribute an error

The vertical portion is

Since Y = the lemma follows from (3.4.2) to (3.4.4).

COROLLARY. We have, with X = 
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PROOF In the Lemma 3.4, we can take As = 4 by the proof of Lemma
3.3. By Lemma 3.1, we have an «e n e . Hence, by fixing X = &#x3E; Y =
= the corollary follows.

LEMMA 3.5. If T ~ y ~ 2 T and 5/6  p  1, then

PROOF. From Theorem 2.2, we get,

since an «~ n~ and 8 -2n/X « 1. By choosing ~8 ~ 5/6 + E/2 (for E a small
positive constant  1/3), the lemma follows.

LEMMA 3.6. We have

where the implied constant is effective.

PROOF. First of all, we note that

We notice that,we can define kn2~ , ... , in the following way with
Re w sufficiently large,
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Hence, we find that = 1 for j = 1, 2, 3, 4, 5, 6; kn ~ ~ 0 for every n
and for every j = 1, 2, 3, 4, 5, 6; and

for every n . ~

For Re w large, let hn be defined by

From (3.6.2), we find that ~s ~ 20132013 and hence by Theorem 2.1, we
have Vn-

which proves the lemma.

LEMMA 3.7. Let 1/2  1. We have

PROOF. We have

m

where H(so ) = Tj C(ks0). We notice that H(so ) » 1. Also from the func-
k=7

tional equation of zeta-function, we have
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with

and hence, we get

Therefore, we obtain from Lemma 3.6

Now, from (3.7.5), we have

Since, U ~ TO and there are at least » (log T) intervals of the type
( U, 2 U) in (TO, T), the lemma now follows from (3.7.6).

LEMMA 3.8. For T 5 y 5 2 T, we have

for all {3 with 5/6  {3  1.

PROOF. First, we note that, we can write

where Cj may be taken to be any fixed positive constants. Therefore, we
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get

By considering the real part and the imaginary part separately, from
the second Mean-Value Theorem of calculus, it follows that

and hence we have J1 = O( T -1 ~s ). Therefore we have

We choose our y from [T, 2T] in such a way that
minimum.Therefore we obtain
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and hence we have

Now,

In the second step we have used du, the third step

by Theorem 2.2 and the fourth step by the inequality
Now,

(Here also, we have used as before, Theorem 2.2, u ; y ; T and e - a ~
~ a -2 for a &#x3E; 0.)
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Since,

the lemma follows from (3.8.4), (3.8.6), (3.8.7) and (3.8.8).

LEMMA 3.9. We have

REMARK. This follows from a theorem of R. Balasubramanian and
K. Ramachandra (see[2]). The constant 3/4 appearing in the r.h.s of the
inequality is due to R. Balasubramanian (see [1]).

PROOF. Let s = 1/10 + it. Then

where for Re w large, we define

and

First of all, we note that Hl ( s ) » 1. Let en , ej (n) be defined by

and
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As in Lemma 3.6, clearly we 0,

and hence

Therefore, we have

From (3.9.8) we get

for 1 ~ j ~ A16 log T. Also we have,for 1 ~ j ~ A16 log T,

Therefore from (3.9.7), (3.9.9) and (3.9.10), conditions for Theorem 2.1
are satisfied and hence we can apply this theorem to Also, we
note that e~ (n5 ) ~ 

Now, from (3.9.1),
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From (3.9.11), it follows that

From [1], since the maximum over 1 ~ j ~ Al6log T of the second factor
of (r.h.s) of (3.9.12) occurs only when j &#x3E; (log T)e where - is a small posi-

tive constant and the maximum is
lemma follows.

the

LEMMA 3.10. For T 5 yi 5 2T, we have

PROOF. Follows from the fact that Un «e n e and e -niX « 1 for n ~ y,
and X = 

L E MMA 3.11. We have

REMARK. This is the key theorem to deduce the S~ + re-

sults, namely Theorem 1.2

PROOF. First of all, we note that as before the corollary to the Lem-
ma 3.4, we can have

Therefore from Lemmas 3.9 and 3.10, we have
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Now as before, we have

Using the second Mean-value theorem of calculus, as before we get

We choose our yi such that I is minimum. Hence we

obtain

Now, since T ~ t1 ~ 2 T, we have
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Also, we have

From (3.11.2) to (3.11.7), we obtain

and hence the lemma.

LEMMA 3.12. For T ~ U 5 X 1 °°, we have

where A18 is a certain fixed positive constant  3/(4~).

PROOF. First of all, we note that

since, E(u) = 0(u) and e -a « ac -2 for a &#x3E; 0. Since, there can be « log T
intervals of the type ( U, 2 U) in the interval [ T , we have

from Lemma 3.11. Since T 2°°°° ~ U ~ T , e - ~‘~2X « 1, the lemma now fol-
lows from (3.12.2).
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4. - Proof of the Theorem 1.1.

From Lemmas 3.7 and 3.4, for T 5 y 5 2 T, we get

Note that, we have used b ~ 2 + ~ From

Lemma 3.5 the above inequality implies that

(the last step follows by Lemma 3.8) and hence the Theorem 1.1.

5. - Proof of the Theorem 1.2.

Let 0 ; T ~ U 5 We fix t7 = 1/3000 and 1 = 20.We de-
fine a set R to be

where A1g is the same as in Lemma 3.12. Let
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From Perron’s formula,we have

according as u is not an integer or u is an integer.
Of course, we have

where is the residue at s = of
and (5.3), we have

Hence from (5.2)

or

according as u is not an integer or u is an integer.
Let RC denote the complement set of R. From Lemma 3.12, we

have

From (5.5),it follows that there exists a positive constant A19 ( = A 18 -
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- E) such that

If there is a sign change in the integrand of the r.h.s of (5.6), we are
through. On the contrary, if we assume that there is no sign change in
the integrand of r.h.s of (5.6), then definitely we can add our set R to the
integral of r.h.s of (5.6) and hence we will be having the following in-
equality,

From (5.4), we have

since the term O( u e - 1/10) is zero unless u is a positive integer.
Now,
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Now,

We note that,

In the first integral appearing in the r.h.s of (5.11), we move the line of
integration to a~ = 21/220. By Cauchy’s theorem, since we have the
poles of F( s ) at s = 1 /j for j = 1, 2 , 3 ...10, we get
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We note that as before, we can have

for 21/220.
From (5.14), we see that
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and similarly to (5.16),we obtain,

We note that T ~ U ~ X1OO; X = T2OO; r¡ = 1 /3000; l = 20. Hence, from
(5.7) to (5.13) and (5.15) to (5.17), we obtain that

which is a contradiction. This proves the theorem.

6. - Concluding remarks.

In [12] E. Richert has proved the following two theorems.

THEOREM 6.1. For any sequence o, f complex numbers gn , suppose
there holds

and suppose there exists a constant A21 such that

then, a ~ 1 /4.

THEOREM 6.2. Let 1 be a natural number ~ 3. Let gn be a sequence
of complex numbers for which there holds

for every E &#x3E; 0. Suppose that

is true, where P, - 1 is a polinomial of degree 1 - 1, then there holds
a ~ 1 /2 - 1/21.

In fact, the method of Balasubramanian and Ramachandra can be
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applied to much more general situations. As a trivial extension of the
method described in the present paper, we have the following applica-
tion. If we define, for l &#x3E; 2

where M, (u) is the main term arising from the poles of F l ( s ) and 
is the error term. As in the previous method we write

We fix Q = 1 /D1. Here jl and Dl are positive integers to be chosen such
that

and for each fixed 1, there exist positive integers ji and D1 satisfying
the following inequality

Similarly, there exist positive integers j2 and D2 satisfying

and for each fixed 1,

Note that here jl , D1, j2 and D2 depend on 1. Now, we can obtain,
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THEOREM 6.3. There exist effective positive constants A22 , A~ and
A24 such that

Here A22 and A24 depend on 1.

The method of Balasubramanian and Ramachandra for the solution
of ,S~ problems and Q ± problems can be applied in fairly general situa-
tions and gives explicit effective theorems like Theorem 1.1 and Lem-
ma 3.11. These give respectively the explicit effective theorems like
the corollary to Theorem 1.1 and explicit Q ± theorems like Theorem 1.2
respectively. However the results are at present weaker than what
are generally expected.

In conclusion we would like to mention an important result of D. R.
Heath-Brown [5] namely

for X ; 2. This result is however not connected with the general
method of Balasubramanian and Ramachandra. It must be mentioned
that the result

for X ~ 2, (which is clearly equivalent to the above mentioned result of
D.R. Heath-Brown, in fact with 89 replaced by 2) was announced (with-
out proof) earlier by R. Balasubramanian and K. Ramachandra at the
end of their paper [3] but could not be substantiated. However Heath-
Brown’s proof is given in detail in his paper and is perfectly reli-
able.

In conclusion we would also like to add another remark about a pa-
per of Aleksandar Ivic [6] written a few years after the paper [3] of Bal-
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asubramanian and Ramachandra. In his paper A.Ivic proves the
result

by a different method. However the method of Balasubramanian and
Ramachandra is more powerful and yields much more as was evident in
their paper [3] and as is explained out in the present paper. Regarding
the method of [3] A. Ivic comments as follows: «A good technique of
this type has been recently introduced by Balasubramanian and Ra-
machandra in a very general context.......
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