RENDICONTI del Seminario Matematico della Università di Padova

F. CATINO

M. M. MICCOLI

A note on *IA*-endomorphisms of two-generated metabelian groups

Rendiconti del Seminario Matematico della Università di Padova, tome 96 (1996), p. 99-104

http://www.numdam.org/item?id=RSMUP_1996__96__99_0

© Rendiconti del Seminario Matematico della Università di Padova, 1996, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 96 (1996)

A Note on *IA*-Endomorphisms of Two-Generated Metabelian Groups.

F. CATINO - M. M. MICCOLI(*)

1. – Introduction and preliminaries.

An endomorphism of a group G is called an *IA*-endomorphism if it induces the identity mapping on the factor group G/G' of G over its derived subgroup G'. We write ia(G) for the monoid of the *IA*-endomorphisms of G and IA(G) for the group of invertible elements of ia(G), the *IA*-automorphisms of G. It is easily verified that, $Inn(G) \leq IA(G)$ where Inn(G) denotes the group of inner automorphisms of G.

The monoid ia(G) has been studied in the case that G is a metabelian two-generated group, in [3], [4], [6]. In these papers, the description of the *IA*-endomorphisms is based on the construction of either a certain semigroup or a module.

Our approach in this note is of ring-theoretical nature, using techniques introduced by H. Laue [7]. We feel that certain key results of the paper [1], [2], [3], [4] gain in clarity and elegance by deriving them from those ideas as a starting point. This conviction was the main motivation for this unpretentious note. We first recall some definitions and results of [7].

Let G be a group and A be an abelian normal subgroup of G. A cocycle of G into A is a mapping f of G into A such that $(xy)^f = x^{fy} y^f$ for all $x, y \in G$. Let R denote the set of all cocycles of G into A. With respect to the usual addition of mappings into an abelian group and composition of mappings as multiplication, R is an associative ring.

(*) Indirizzo degli AA.: Dipartimento di Matematica, Via Provinciale Lecce-Arnesano, P.O. Box 193, I-73100 Lecce; e-mail: catino@ingle01.unile.it.

The authors acknowledge support from the Italian MURST (40%).

In [7], H. Laue establishes a close connection between $C_{\text{Aut}G}(G/A)$ and R. More, precisely, for any $h \in C_{\text{End}G}(G/A)$ let

$$f_h: G \to A$$
, $x \mapsto x^{-1}x^h$.

Then $f_h \in R$ and

$$\psi: C_{\operatorname{End} G}(G/A) \to R, \qquad h \mapsto f_h,$$

is an isomorphism of the monoid $C_{\operatorname{End}G}(G/A)$ onto (R, *), where f * g = f + g + fg for all $f, g \in R$. Moreover, if the group of quasi regular elements of the ring R is denoted by Q(R), then $(C_{\operatorname{Aut}G}(G/A))^{\psi} = Q(R)$. If $f \in Q(R)$, then we write f^- for the inverse of f with respect to *.

Let $\operatorname{End}_G A$ be the ring of *G*-endomorphisms of *A*. The restriction of any $f \in R$ to *A* is an element of $\operatorname{End}_G A$, and the mapping

$$\varrho \colon R \to \operatorname{End}_G A , \quad f \mapsto f_{|A} ,$$

is a ring homomorphism such that $\ker \varrho = \operatorname{Ann}_R(A) = \{f | f \in R, \forall x \in A x^f = 1\}.$

We remark that if $f \in R$, $\alpha \in \text{End}_G A$, then $f\alpha \in R$ and $(f\alpha)^{\varrho} = f^{\varrho} \alpha$. Thus R is a $\text{End}_G A$ -module and ϱ is an $\text{End}_G A$ -module homomorphism. Moreover we have

(1.1)
$$Q(R)^{\varrho} = Q(R^{\varrho})$$

PROOF. Obviously $Q(R^{\varrho}) \subseteq Q(R^{\varrho})$. Now, let $f \in R$ such that $f_{|A} \in Q(R^{\varrho})$. Then there exists $g \in R$ such that $g_{|A} * f_{|A} = 0 = f_{|A} * g_{|A}$. Therefore we have f * g, $g * f \in \operatorname{Ann}_R(A) \subseteq Q(R)$. Hence there exist $h, h' \in Q(R)$ such that

$$(f * g) * h = 0 = h' * (g * f).$$

Therefore $f \in Q(R)$, hence $f_{|A} \in Q(R)^{\varrho}$.

We also observe

(1.2)
$$h \in C_{\operatorname{Aut}G}(G/A) \Leftrightarrow h_{|A|} \in \operatorname{Aut} A$$

2. - IA-endomorphisms of two-generated metabelian groups.

Let G be a two-generated metabelian group with generators a and b. Then $\operatorname{End}_G G'$ is a finitely generated commutative ring, generated by automorphisms of G' induced by conjugation by a, a^{-1} , b, b^{-1} , and G'

A note on IA-endomorphisms of two-generated metabelian groups 101

is a cyclic $\operatorname{End}_G G'$ -module generated by c, where c = [a, b] (see, for example [3,2]). These properties will be used freely in the sequel without further reference.

Now an application of our introductory general remarks leads to a short proof of the result that

(2.1)
$$IA(G)$$
 is a metabelian group ([4, 2.3], [2, Cor. 1]).

PROOF. The zero ideal $\operatorname{Ann}_R(G')$ is contained in Q(R) and therefore $\operatorname{Ann}_R(G')$ is an abelian normal subgroup of Q(R). Since $Q(R)/\operatorname{Ann}_R(G') \cong Q(R)^{\varrho} \subseteq \operatorname{End}_G G'$, we have $Q(R)' \subseteq \operatorname{Ann}_R(G')$. It follows that Q(R) is a metabelian group and, hence IA(G) is metabelian group.

If $h \in ia(G)$ then $a^h = au$, $b^h = bv$ for suitable elements $u, v \in G'$. Viceversa, we have the following

(2.2) For all $(u, v) \in G' \times G'$ there exists an endomorphism h of G such that $a^h = au$, $b^h = bv$ ([3, 3.1(i)]).

PROOF. Let $(u, v) \in G' \times G'$ and $\alpha, \beta \in \operatorname{End}_G G'$ such that $u = c^{\alpha}$, $v = c^{\beta}$. Then the application $h: G \to G, x \mapsto x[x, \alpha]^{-\beta}[x, b]^{\alpha}$ is an element of ia(G) and $a^h = au$, $b^h = bv$.

If z is any group element, we write \overline{z} for the inner automorphism induced by z. For later reference we remark as a consequence of the foregoing proof:

(1) For all $g \in R$ there are $\alpha, \gamma \in \operatorname{End}_G G'$ such that $g = f_{\overline{a}}\gamma + f_{\overline{b}}\alpha$.

Moreover, an application of (1.2) yields a criterion for h to be an automorphism ([3, 3.1(ii)]).

For all $f, g \in R$ we set $f \circ g =: fg - gf$. It is well known that $(R, +, \circ)$ is a Lie ring. As $\operatorname{End}_G G'$ is commutative, we have $g * f * (f \circ g) = f * g$ for all $f, g \in R$. In particular, for all $f, g \in Q(R)$

$$f \circ g = [f, g]$$

where $[f, g] = f^- * g^- * f * g$.

It is readily verified that for arbitrary metabelian groups the Witt identity for group commutators reduces to the simple Jacobi-like equation [x, y, z][y, z, x][z, x, y] = 1. In terms of cocycles, this rule

may be expressed as follows:

$$(3) f_{\overline{y}} \circ f_{\overline{z}} = f_{\overline{[y,z]}}$$

for all $y, z \in G$.

From these remarks we may deduce the following description of the descending central series of IA(G):

(2.3)
$$\gamma_k(IA(G)) = \gamma_k(In(G))$$
 ([3, 4.1])

for all $k \ge 2$.

PROOF. We set $D := (\text{In}(G))^{\psi}$ and have to show that $\gamma_k(Q(R)) \subseteq \zeta \gamma_k(D)$ for $k \ge 2$. We proceed by induction on k. If $g_1, g_2 \in Q(R)$ and α, β , $\gamma, \delta \in \text{End}_G G'$ such that $g_1 = f_{\bar{a}} \alpha + f_{\bar{b}} \beta$, $g_2 = f_{\bar{a}} \gamma + f_{\bar{b}} \delta$, then (2) and (3) show that

$$[g_1, g_2] = f_{(\overline{[b, a]})^{\beta_\gamma}} + f_{(\overline{[a, b]})^{a\delta}} = f_{c^{a\delta - \beta_\gamma}} \in ((\operatorname{In}(G))')^{\psi} = \gamma_2(D)$$

which settles the case of k = 2.

Now let k > 2, $g_1 \in \gamma_{k-1}(Q(R))$, $g_2 \in Q(R)$. Inductively we assume that $g_1 = f_{\overline{z}}$ for an element $z \in \gamma_{k-1}(G)$, and we write $g_2 = f_{\overline{a}}\gamma + f_{\overline{b}}\delta$ for some γ , $\delta \in \operatorname{End}_G G'$. Then

$$[g_1, g_2] = f_{(\overline{[z, a]})^a} + f_{(\overline{[z, b]})^\beta} = f_{\overline{[z^a, a]}[z^\beta, b]} \in (\gamma_k(\operatorname{In}(G)))^{\psi} = \gamma_k(D). \quad \blacksquare$$

The nilpotent case allows a neat characterization which has been useful in various places (see, for example, [8])

(2.4) IA(G) nilpotent $\Leftrightarrow G$ nilpotent $\Leftrightarrow ia(G) = IA(G)$ ([3, 3.1]).

PROOF. The first equivalence follows from (2.3). Furthermore, we know that ia(G) = IA(G) if and only if R = Q(R). As ker $\varrho \subseteq Q(R)$, this is equivalent to saying that $R^{\varrho} = Q(R^{\varrho})$ by (1.1), i.e. that R^{ϱ} is a radical ring.

As R^{ϱ} is an ideal of finitely generated commutative ring $\operatorname{End}_G G'$, an application of [9, 4.1(i)] shows that R^{ϱ} is a radical ring if and only if R^{ϱ} is nilpotent. An easy induction shows that $\gamma_k(G) = c^{(R^{\varrho})^{k-2}}$ for $k \ge 2$, where $(R^{\varrho})^0 = \operatorname{End}_G G'$. Hence the nilpotency of R^{ϱ} is equivalent to the nilpotency of G.

Moreover, the nilpotent case allows the following description of the ascending central serie of IA(G) (cf. [3,4])

(2.5) If G is nilpotent then, for all $k \in N_0$

$$\zeta_k(IA(G)) = C_{\operatorname{Aut}G}(G/(G' \cap \zeta_k(G))).$$

102

A note on IA-endomorphisms of two-generated metabelian groups 103

PROOF. We remark that, for all $n \in N_0$, we have

$$(\zeta_k(IA(G)))^{\psi} = \zeta_k(Q(R))$$

and, by (2), $\zeta_k(Q(R)) = \zeta_k(R) = Z_k(R)$, where $Z_k(R)$ is the k-th term of the upper central series of the Lie ring $R(+, \circ)$. Moreover, if we put

$$R_k = (C_{\operatorname{Aut} G}(G/(G' \cap \zeta_k(G)))^{\psi})$$

then it suffices to show that $Z_k(R) = R_k$ for all $k \in N_0$. As G is metabelian, one readily verifies that

$$(4) x^{f \circ f_{\overline{y}}} = [y^f, x]$$

for any $f \in R$ and $x, y \in G$. The inclusion $Z_k(R) \subseteq R_k$ follows from (4) by an easy induction on k.

Now, we prove by induction that $R_k \subseteq Z_k(R)$ for all $k \in N_0$, the case k = 0 being trivial. Let $n \in N_0$ and assume that $R_k \subseteq Z_k(R)$. Let $f \in R_{n+1}$ and $g \in R$. By (1), there are $\alpha, \beta \in \operatorname{End}_G G'$ such that $g = f_{\overline{a}} \alpha + f_{\overline{b}} \beta$. By (4) and by our inductive hypothesis it follows that $f \circ f_{\overline{a}}, f \circ f_{\overline{b}} \in Z_k(R)$. Hence

$$f \circ g = (f \circ f_{\overline{a}}) \alpha + (f \circ f_{\overline{b}}) \beta \in Z_k(R).$$

Therefore $f \in Z_{n+1}(R)$.

The study of IA(G) has been of particular interest in the case that G is *free* metabelian of rank two. Then G' is a free abelian group with the coniugates of as a set of generators, and there is a canonical isomorphism of $\mathbb{Z}[G/G']$ onto $\operatorname{End}_G G'$. We conclude this note by pointing out that the crucial step of the proof of the following well-known result is simplified considerably by a suitable application of (1):

(2.6) If G is a free metabelian group of rank two, then IA(G) = Inn(G) ([1, Theor.2], [4, 2.4], [2, Cor.3]).

PROOF. It suffices to show that every $h \in IA(G)$ is an inner automorphism of G. The main step of the proof is to show this in the case that $h_{|G'} = id_{G'}$. Then, by (1), $f_b^{\varrho} \alpha = f_{\overline{a}}^{\varrho} \beta$ for suitable elements $\alpha, \beta \in \operatorname{End}_G G'$. We know that we may identify $\operatorname{End}_G G'$ with the integral group ring of the free abelian group G/G'. By a well-known line of reasoning we obtain therefore an element $\gamma \in$ $\in \operatorname{End}_G G'$ such that $\alpha = f_{\overline{a}}^{\varrho} \gamma$, $\beta = f_{\overline{b}}^{\varrho} \gamma$. By (1) and (3) we now have

$$f_h = (f_{\overline{b}} \circ f_{\overline{a}}) \gamma = f_{\overline{c^{-1}}} \gamma = f_{\overline{c^{-\gamma}}}$$

hence $h = \overline{c^{-\gamma}} \in \text{In}(G)$.

The reduction of the case an arbitrary $h \in IA(G)$ to the case just settled is standard. The group of units of $\mathbb{Z}[G/G']$ is $\pm G/G'$ (see [5]) whence $h_{|G'}$ is induced by an inner automorphism \overline{g} of G, as h induces the identity automorphism on the non-trivial factor group $G'/\gamma_3(G)$. Therefore $h \overline{g}_{|G'}^{-1} = \mathrm{id}_{G'}$, hence $h \overline{g}^{-1} \in \mathrm{In}(G)$ by the part treated above. The claim follows.

REFERENCES

- S. BACHMUTH, Automorphisms of free metabelian groups, Trans. Amer. Math. Soc., 118 (1965), pp. 93-104.
- [2] S. BACHMUTH G. BAUMSLAG J. DYER H. Y. MOCHIZUKI, Automorphism groups of two generator metabelian groups, J. London Math. Soc., 36 (1987), pp. 393-406.
- [3] A. CARANTI C. M. SCOPPOLA, Endomorphisms of two-generated metabelian groups that induce the identity modulo the derived subgroup, Arch. Math. (Basel), 56 (1991), pp. 218-227.
- [4] C. K. GUPTA, IA-automorphisms of two generator metabelian groups, Arch. Math., 37 (1981), pp. 106-112.
- [5] G. KARPILOVSKY, Unit Groups of Group Rings, Longman Sci. Techn. (1989).
- [6] YU. V. KUZ'MIN, Inner endomorphisms of abelian groups (Russian), Sibirsk. Mat. Zh., 16 (1975), pp. 736-744; translation in Siberian Math. J., 16 (1975), pp. 563-568.
- [7] H. LAUE, On group automorphisms which centralize the factor group by an abelian normal subgroup, J. Algebra, 96 (1985), pp. 532-543.
- [8] F. MENEGAZZO, Automorphisms of p-groups with cyclic commutator subgroup, Rend. Sem. Mat. Univ. Padova, 90 (1993), pp. 81-101.
- [9] B. A. F. WEHRFRITZ, Infinite Linear Group, Springer-Verlag, Berlin (1973).

Manoscritto pervenuto in redazione il 29 novembre 1994 e, in forma revisionata, il 15 maggio 1995.

104