RENDICONTI

 del
SEMINARIO MATEMATICO

 della
Università di Padova

Nicolae Popescu
 Constantin Vraciu
 On the extension of a valuation on a field K to $K(X)$. - II

Rendiconti del Seminario Matematico della Università di Padova, tome 96 (1996), p. 1-14
http://www.numdam.org/item?id=RSMUP_1996__96__1_0
© Rendiconti del Seminario Matematico della Università di Padova, 1996, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the Extension of a Valuation on a Field K to $K(X)$. - II.

Nicolae Popescu (${ }^{*}$) - Constantin Vraciu (**)

Summary - Let K be a field and v a valuation on K. Denote by $K(X)$ the field of rational functions of one variable over K. In this paper we go further in the study of the extensions of v to $K(X)$. Now our aim is to characterize two types of composite valuations: r.a. extensions of first kind (Theorem 2.1) and the composite of two r.t. extension (Theorem 3.1). The results obtained are based on the fundamental theorem of characterization of r.t. extensions of a valuation (see [2], Theorem 1.2, and [6]) and on the theorem of irreducibility of lifting polynomials (see [7], Corollary 4.7 and [9], Theorem 2.1). The result of this work can be utilised, for example, to describe all valuations on $K\left(X_{1}, \ldots, X_{n}\right)$ (the field of rational functions of n independent variables) and elsewhere. A first account of this application is given in [10].

1. - Notations. General results.

1) By a valued field (K, v) we mean a field K and a valuation v on it. We shall utilise the notations given in [8, § 1] for notions like: residue field, value group, etc. Denote by \bar{K} a fixed algebraic closure of K and denote by \bar{v} a (fixed) extension of v to \bar{K}. Then $G_{\bar{v}}$ is just the rational closure of $G_{v}\left(G_{\bar{v}}=G_{v} \otimes_{Z} Q\right)$ and $k_{\bar{v}}$ is an algebraic closure of k_{v}. If $a \in \bar{K}$, the number $[K(a): K]$ will be denoted by $\operatorname{deg} a$ (or $\operatorname{deg}_{K} a$ if there is danger of confusion). An element $(a, \delta) \in \bar{K} \times G_{\bar{v}}$ will be called a minimal pair with respect to (K, v) if for any $b \in \bar{K}$, the condition
(*) Indirizzo dell'A.: Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-70700 Bucharest, Romania.

Partially supported by the «PECO» contract 4004.
(**) Indirizzo dell'A.: University of Bucharest, Department of Mathematics, Str. Academiei 14, 70109 Bucharest, Romania.

Partially supported by the «PECO» contract 1006.
$\bar{v}(a-b) \geqslant \delta$ implies $\operatorname{deg} a \leqslant \operatorname{deg} b$. We shall say simply «minimal pair» if there are no doubts about (K, v).

Let $K(X)$ be the field of rational functions in an indeterminate X over K. If $r \in K(X)$, let $\operatorname{deg} r=[K(X): K(r)]$. A valuation w on $K(X)$ will be called a r.t. (residual transcendental) extension of v to $K(X)$ if the (canonical) extension $k_{v} \subseteq k_{w}$ is transcendental. The r.t. extensions of v to $K(X)$ are closely related to minimal pairs $(a, \delta) \in \bar{K} \times G_{\bar{v}}$.

Let (a, δ) be a minimal pair. Denote by: f the monic minimal polynomial of a over K and let $\gamma=\sum_{a^{\prime}} \inf \left(\delta, \bar{v}\left(a-a^{\prime}\right)\right)$, where a^{\prime} runs over all roots of f.

Moreover let v^{\prime} the restriction of \bar{v} to $K(a)$ (it may be proved that v^{\prime} is the unique extension of v to $K(a)$).

Finally let e be the smallest non-zero positive integer such that $e \gamma \in G_{v^{\prime}}$.

If $F \in K[X]$, let:

$$
F=F_{0}+F_{1} f+\ldots+F_{s} f^{s}, \quad \operatorname{deg} F_{i}<\operatorname{deg} f
$$

be the f-expansion of F. Let us put:

$$
\begin{equation*}
w_{(a, \delta)}(F)=\inf _{0 \leqslant i \leqslant s}\left(\bar{v}\left(F_{i}(a)\right)+i \gamma\right) \tag{1}
\end{equation*}
$$

Then one has:
TheOrem 1.1 (see[2],[6]). The assignment (1) defines a valuation on $K[X]$ which has a unique extension to $K(X)$. This valuation, denoted by $w_{(a, \delta)}$ is an r.t. extension of v to $K(X)$. Moreover one has:
a) $G_{w(a, \delta)}=G_{v^{\prime}}+Z \gamma \subseteq G_{\bar{v}}$.
b) Let $h \in K[X]$ be such that $\operatorname{deg} h<\operatorname{deg} f$ and that $v^{\prime}(h(a))=e \gamma$. Then $r=f^{e} / h$ is an element of $K(X)$ of smallest degree such that $w_{(a, \delta)}(r)=0$, and such that r^{*} the image of r in the residue field, is transcendental over k_{v}. One also has: $k_{w(a, \delta)}=k_{v^{\prime}}\left(r^{*}\right)$.
c) If $(a, \delta),\left(a^{\prime}, \delta^{\prime}\right)$ are two minimal pairs, then $w_{(a, \delta)}=w_{\left(a^{\prime}, \delta^{\prime}\right)}$ whenever $\delta=\delta^{\prime}$ and $\bar{v}\left(a-a^{\prime}\right) \geqslant \delta$.
d) If w is a r.t. extension of v to $K(X)$, there exists a minimal pair (a, δ) (with respect to (K, v)) such that $w=w_{(a, \delta)}$.

If $w=w_{(a, \delta)}$, we shall say that w is defined by the minimal pair (a, δ) and v.

Let $w=w_{(a, \delta)}$ be an r.t. extension of v to $K(X)$. We keep the notations of the previous theorem. Let g be a monic polynomial in $k_{v^{\prime}}\left[r^{*}\right]$,
(with respect to the «indeterminate» r^{*}), i.e.:

$$
g\left(r^{*}\right)=r^{* m}+A_{1} r^{* m-1}+\ldots+A_{m}, \quad A_{i} \in k_{v^{\prime}}, 1 \leqslant i \leqslant m
$$

By a lifting of g to $K[X]$ with respect to w we mean (see [9]) a polynomial $G \in K[X]$ such that:
i) $\operatorname{deg} G=m e$,
ii) $w(G)=m e \gamma$,
iii) $\left(G / h^{m}\right)^{*}=g$.

It is clear that there are many liftings of g to $K[X]$ with respect to w. However one has the following result:

THEOREM 1.2 ([9]). Let g be an irreducible polynomial of $k_{v^{\prime}}\left[r^{*}\right]$ with non-zero free term. Then any lifting G of g to $K[X]$ (with respect to $w)$ is also an irreducible polynomial.
2) The reader can refer to [11] for the notion of composite valuations appearing in the next result.

Theorem 1.3. Let $w=w_{(a, \delta)}$ be a r.t. extension of v to $K(X)$. Let $g \in k_{v^{\prime}}\left[r^{*}\right]$ be an irreducible polynomial with non-zero free term and let G be a lifting of g to $K[X]$ (with respect to w). Let u^{\prime} be the valuation on $k_{v^{\prime}}\left(r^{*}\right)$, trivial on $k_{v^{\prime}}$, defined by irreducible polynomial g. Denote by u the valuation on $K(X)$ composite with w and u^{\prime}. Then:
i) G_{u} (the value group of u) is isomorphic to the direct product $G_{w} \times G_{u^{\prime}}$, ordered lexicografically.
ii) Let $F \in K[X]$ and let

$$
F=F_{0}+F_{1} G+\ldots+F_{q} G^{q}, \quad \operatorname{deg} F_{j}<\operatorname{deg} G, 0 \leqslant j \leqslant q
$$

be the G-expansion of F. Then one has:

$$
\begin{gathered}
u(G)=(m e \gamma, 1) \\
u(F)=\inf _{0 \leqslant j \leqslant q}\left(w\left(F_{j}\right)+m j \gamma, j\right)
\end{gathered}
$$

Proof. It is well know that $G_{u^{\prime}} \simeq Z$. We shall divide the proof in two steps.
A) At this point we shall prove that $G_{u} \simeq G_{w} \times Z$, this last group being ordered lexicografically. According to the general theory of com-
posite valuations (see (11) or (5)) there exists the exact sequence of groups:

$$
0 \rightarrow G_{u^{\prime}} \xrightarrow{\varepsilon} G_{u} \xrightarrow{p} G_{w} \rightarrow 0
$$

where ε and p are defined in a canonical way. Now look at the Theorem 1.1. Let $\alpha \in K(X)$. Since $G_{w}=G_{v^{\prime}}+Z \gamma$, and $e \gamma \in G_{v^{\prime}}$, one has $w(\alpha)=$ $=q+t \gamma$, where $q \in G_{v^{\prime}}$, and $0 \leqslant t<e$. Let us denote:

$$
A=\left\{H f^{t}, H \in K[X], \operatorname{deg} H<n, 0 \leqslant t<e\right\} .
$$

For any $\alpha \in K(X)$ there exists $\alpha^{\prime} \in A$ such that $w(\alpha)=w\left(\alpha^{\prime}\right)$. Thus one has $w\left(\alpha / \alpha^{\prime}\right)=0$ and $u\left(\alpha / \alpha^{\prime}\right)=\varepsilon\left(u^{\prime}\left(\left(\alpha / \alpha^{\prime}\right)^{*}\right)\right)$. Hence

$$
\begin{equation*}
u(\alpha)=u\left(\alpha^{\prime}\right)+\varepsilon\left(u^{\prime}\left(\left(\alpha / \alpha^{\prime}\right)^{*}\right)\right) . \tag{2}
\end{equation*}
$$

Now we shall prove that the subset:

$$
B=\{u(\alpha) \mid \alpha \in A\}
$$

is a subgroup of G and $B \cap \varepsilon\left(G_{u^{\prime}}\right)=0$. Indeed, let $b=u\left(H f^{t}\right) \in B$. Then $p(b)=w\left(H f^{t}\right)=v^{\prime}(H(a))+t \gamma$. If $b=\varepsilon(c)$, then $p(b)=0$, and so $v^{\prime}(H(a))=0$, and $t=0$. But then $c=u^{\prime}\left(H(a)^{*}\right)=0$, since $H(a)^{*} \in k_{v^{\prime}}$, and u^{\prime} is trivial over $k_{u^{\prime}}$. Hence $B \cap \varepsilon\left(G_{u^{\prime}}\right)=0$, as claimed.

Let $u\left(H f^{t}\right), u\left(H^{\prime} f^{t^{\prime}}\right)$ be two elements of B. In order to prove that B is a subgroup, one must show that their difference: $b=u\left(\left(H / H^{\prime}\right) f^{t-t^{\prime}}\right)$ also belongs to B. First, let us assume that $t-t^{\prime} \geqslant 0$. Let $H^{\prime \prime} \in K[X]$ be such that $\operatorname{deg} H^{\prime \prime}<n$ and that $w\left(H^{\prime \prime}\right)=v^{\prime}\left(H^{\prime \prime}(a)\right)=w\left(H / H^{\prime}\right)$. Then $b=u\left(H^{\prime \prime} f^{t-t^{\prime}}\right)$. Indeed, one has $w\left(\left(H / H^{\prime}\right) H^{\prime \prime}\right)=0$ and so, according to ([7], Corollary 1.4), $\left(\left(H / H^{\prime}\right) H^{\prime \prime}\right)^{*} \in k_{u^{\prime}}$. Therefore, $u^{\prime}\left(\left(\left(H / H^{\prime}\right) f^{t-t^{\prime}} / H^{\prime \prime} f^{t-t^{\prime}}\right)^{*}\right)=0, \quad$ and \quad so $\quad u\left(\left(H / H^{\prime}\right) f^{t-t^{\prime}}\right)=b=$ $=u\left(H^{\prime \prime} f^{t-t^{\prime}}\right) \in B$.

Now consider the case $t-t^{\prime}<0$. Then $\left(H / H^{\prime}\right) f^{t-t^{\prime}}=$ $=\left(H /\left(H^{\prime} f^{e}\right)\right) f^{e+t-t^{\prime}}$. Let $H^{\prime \prime} \in K[X], \operatorname{deg} H^{\prime \prime}<n$, be such that $w\left(H^{\prime \prime}\right)=$ $=w\left(H /\left(H^{\prime} f^{e}\right)\right)$. As above, one has: $u\left(\left(H / H^{\prime}\right) f^{t-t^{\prime}}\right)=u\left(H^{\prime \prime} f^{e+t-t^{\prime}}\right) \in B$. Therefore B is a subgroup of G_{u}, and by (2) it follows that there exists an isomorphism of groups:

$$
G_{u} \xrightarrow{j} B \times \varepsilon\left(G_{u^{\prime}}\right) .
$$

If $B \times \varepsilon\left(G_{u^{\prime}}\right)$ is ordered lexicografically, then j is an isomorphism of ordered groups. Indeed, let $\alpha, \beta \in K(X)$ be such that $u(\alpha) \leqslant u(\beta)$. Let $\alpha^{\prime}, \beta^{\prime} \in A$ be such that $w(\alpha)=w\left(\alpha^{\prime}\right)$ and $w(\beta)=w\left(\beta^{\prime}\right)$. Then $u(\beta)=$ $=u\left(\beta^{\prime}\right)+\varepsilon\left(u^{\prime}\left(\left(\beta / \beta^{\prime}\right)^{*}\right)\right.$). Since $u(\alpha) \leqslant u(\beta)$, it follows that $w(\alpha) \leqslant w(\beta)$ and so $w\left(\beta / \alpha^{\prime}\right) \geqslant 0$. Since the restriction of p to B defines an isomor-
phism of ordered groups to B onto G_{w}, it follows that $u\left(\beta^{\prime}\right) \geqslant$ $\geqslant u\left(\alpha^{\prime}\right)$.

Let us assume that $u(\alpha)<u(\beta)$ and $u\left(\alpha^{\prime}\right)=u\left(\beta^{\prime}\right)$. Then by (2), it follows: $\varepsilon\left(u^{\prime}\left(\left(\beta / \beta^{\prime}\right)^{*}\right)\right)>\varepsilon\left(u^{\prime}\left(\left(\alpha / \alpha^{\prime}\right)^{*}\right)\right)$. Hence $j(u(\beta))>j(u(\alpha))$, as claimed.

We have already noticed that $B \simeq G_{w}$ and since $G_{u^{\prime}} \simeq Z$ we may assume that

$$
G_{u} \simeq G_{w} \times Z
$$

where the right hand side is ordered lexicografically. Moreover, if $\alpha \in$ $\in K(X)$ and $\alpha^{\prime} \in A$ is such that $w(\alpha)=w\left(\alpha^{\prime}\right)$, then, by (2), one has: $u(\alpha)=\left(w\left(\alpha^{\prime}\right), u^{\prime}\left(\left(\alpha / \alpha^{\prime}\right)^{*}\right)\right) \in G_{w} \times Z$.
B) Let G be a lifting of g (with respect to w). Now we shall determine u using G and w. Since $w(G)=m e \gamma$ then we may choose $H \in A$ be such that $w(H)=m e \gamma$. Then $u(G)=\left(w(H), u^{\prime}\left((G / H)^{*}\right)\right)$. But $(G / H)^{*}=\left(G / h^{m}\right)^{*}\left(h^{m} / H\right)^{*}=a g$, where $a \in k_{v}^{\prime}$ (see [7] Corollary 1.4). Hence $u^{\prime}\left((G / H)^{*}\right)=1$. Therefore, one has:

$$
u(G)=(w(H), 1)=(m e \gamma, 1)
$$

Now let $F \in K[X]$ be such that $\operatorname{deg} F<\operatorname{deg} G$. We assert that:

$$
\begin{equation*}
u(F)=(w(F), 0) \tag{3}
\end{equation*}
$$

Indeed, let $\alpha \in A, \alpha=H f^{t}$ be such that $w(\alpha)=w(F)$. Also, let $F=F_{0}+$ $+F_{1} f+\ldots+F_{s} f^{s}$ be the f-expansion of F. Since $w(F)=w(\alpha)=$ $=v^{\prime}(H(a))+t \gamma$, then the smallest index i such that $w(F)=w\left(F_{i}\right)+i \gamma$ (see (1)) is necessary bigger than t, and thus

$$
\begin{equation*}
(F / \alpha)^{*}=\sum_{j=1}^{s}\left(\frac{F_{j}}{H} f^{j-t}\right)^{*} \tag{4}
\end{equation*}
$$

It is clear that if $j-t \neq 0(\bmod e)$, then $w\left(F_{j} / H f^{j-t}\right)>0$ and so we may assume that only terms with $j-t \equiv 0(\bmod e)$ appear in (4). If we write for a such term:

$$
\left(\frac{F_{j}}{H} f^{j-t}\right)^{*}=\left(\frac{F_{j} h^{(j-t) / e}}{H}\right) *\left(\frac{f^{j-t}}{h^{(j-t) / e}}\right) *
$$

then, according to ([7], Corollary 1.4), it follows (4) is an element of $k_{v^{\prime}}\left[r^{*}\right]$ whose degree (relatively to the variable r^{*}) is smaller than $m=$ $=\operatorname{deg} g$. Hence $u^{\prime}\left((F / \alpha)^{*}\right)=0$, and so (3) holds, as claimed.

Furthermore, let $F \in K[X]$, and let $F=F_{0}+F_{1} G+\ldots+F_{q} G^{q}$ be the G-expansion of F. Let i be the smallest index such that $w\left(F_{i}\right)+$
$+i w(G) \leqslant w\left(F_{j}\right)+j w(G)$ for all $j, 0 \leqslant j \leqslant q$, and such that $w\left(F_{i}\right)+$ $+i w(G)<w\left(F_{j}\right)+j w(G)$ for all $j<i$. We assert that one has:

$$
\begin{equation*}
w(F)=w\left(F_{i}\right)+i w(G) \tag{5}
\end{equation*}
$$

For that, we shall prove that an inequality in (5) (necessarily $>$) leads to a contradiction. Indeed, since $w\left(F_{j} G^{j} / F_{i} G_{i}\right) \geqslant 0$ for all $j, 0 \leqslant j \leqslant q$, by the choice of i one has:

$$
\begin{equation*}
1+\sum_{t=1}^{q-i}\left(\frac{F_{i+t}}{F_{i}} G^{t}\right)^{*}=0 \tag{6}
\end{equation*}
$$

or equivalently, since $\left(G / h^{m}\right)^{*}=g$,

$$
\begin{equation*}
1+\sum_{t=1}^{s-i}\left(\frac{F_{i+t}}{F_{i}} h^{t m}\right)^{*} g^{t}=0 \tag{7}
\end{equation*}
$$

At this stage it is easy to see (according to the above considerations) that for all t, the non-zero coefficients of g^{t} in (6) are of the form U / V where $U, V \in k\left[r^{*}\right]$ and that $\operatorname{deg} U<m, \operatorname{deg} V<m$ (the degrees with respect to r^{*}). This shows that (6) is impossible, and so (5) holds, as claimed.

Furthermore by (7) it follows that $u^{\prime}\left(\left(F / F_{i} G^{i}\right)^{*}\right)=0$ so that $u\left(F / F_{i} G^{i}\right)=\varepsilon\left(u^{\prime}\left(\left(F / F_{i} G\right)^{*}\right)\right)=0$. Since $\operatorname{deg} F_{i}<\operatorname{deg} G$ we then have

$$
\begin{array}{r}
u(F)=u\left(F_{i} G^{i}\right)+u\left(F / F_{i} G^{i}\right)=u\left(F_{i}\right)+i u(G)=\left(w\left(F_{i}\right), 0\right)+i(w(G), 1)= \\
=(w(F), i)=\inf _{0 \leqslant j \leqslant q}\left(w\left(F_{j} G^{j}\right), j\right)=\inf _{0 \leqslant j \leqslant q}\left(w\left(F_{j}\right)+m e j \gamma, j\right)
\end{array}
$$

The proof of Theorem 1.3 is now complete.

2. - Extensions of the first kind in general setting.

We shall freely use the notations and definitions given in the previous section.

Let (K, v) be a valued field. A valuation u on $K(X)$ will be called an r.a. (residual algebraic) extension of v if u is an extension of v and the extension $k_{v} \subseteq k_{u}$ is algebraic. The r.a. extension u is called of the first kind if there exists an r.t. extension w of v to $K(X)$ such that $u \leqslant w$. Theorem 4.4 in [8] describes all r.a. extensions of the first kind of v when K is algebraically closed. Now we shall describe these extensions in the general setting (i.e. K is not necessarily algebraically closed). The results of this section
generalise the results given in ([8], Section 3). Moreover, we give a simplified proof.

THEOREM 2.1. Let (K, v) be a valued field. Let u be an r.a. extension of the first kind of v to $K(X)$. Let w be an r.t. extension of v to $K(X)$ such that $u \leqslant w$. Let u^{\prime} be the valuation induced by u on k_{w} such that u is the composite with valuations w and u^{\prime}. Then one has:

1) There exists an isomorphism of ordered groups $G_{u} \simeq G_{w} \times Z$, the direct product being ordered lexicografically.
2) Let u^{\prime} be defined by the monic irreducible polynomial $g \in$ $\in k_{v^{\prime}}\left[r^{*}\right]$, whose free term is not zero (i.e. $g \not \equiv r^{*}$). Let G be a lifting of g to $K[X]$ with respect to w. If $F \in K[X]$ and $F=F_{0}+F_{1} G+\ldots+F_{q} G^{q}$ is the G-expansion of F, then one has:

$$
u(F)=\inf _{0 \leqslant j \leqslant q}\left(w\left(F_{j} G^{j}\right), j\right)
$$

3) Let u^{\prime} be defined by r^{*}. If $F \in K[X]$ and $F=F_{0}+F_{1} f+\ldots+$ $+F_{q} f^{q}$ is the f-expansion of F, then one has:

$$
u^{\prime}(F)=\inf _{0 \leqslant j \leqslant q}\left(w\left(F_{j} f^{j}\right),[j / e]\right)
$$

4) If u^{\prime} is the valuation at the infinity (i.e. defined by r^{*-1}) then:

$$
u(F)=\inf _{0 \leqslant j \leqslant q}\left(u\left(F_{j} f^{j}\right),-[j / e]\right)
$$

(Here $[j / e]$ means the integral part of a real number).
Proof. The points 1) and 2) have been proved in Theorem 1.3, so we have to prove only 3) and 4).

Consider again the set A defined in the proof of Theorem 1.3. Let $\alpha \in A$ be such that $w(\alpha)=w(F)$. Let i be the smallest index j, such that, according to (1), one has:

$$
\begin{equation*}
w(F)=w\left(F_{i} f^{i}\right)=w(\alpha) \tag{7}
\end{equation*}
$$

By this equality it follows that $i \geqslant t$. Hence:

$$
\left(\frac{F}{\alpha}\right)^{*}=\sum_{j=i}^{q}\left(\frac{F_{j}}{H} f^{j-t}\right)^{*} .
$$

By (7) it follows that for any j such that $j-i \not \equiv 0(\bmod e)$, one has $\left(\left(F_{j} / H\right) f^{j-t}\right)^{*}=0$. Therefore, we may assume that in the last equality only terms with $j-t \equiv 0(\bmod e)$ appear. Since every term in the right
hand side of the last equality may be written as:

$$
\left(\frac{F_{j}}{H} f^{j-t}\right)^{*}=\left(\frac{F_{j}}{H} h^{(j-t) / e}\right)^{*}\left(\frac{f^{j-t}}{h^{(j-t) / e}}\right)^{*}=a_{j} r^{*(j-t) / e}
$$

where $a_{j} \in k_{v^{\prime}}$ (see [7], Corollary 1.4), and since $a_{i} \neq 0$, then one has:

$$
u^{\prime}\left((F / \alpha)^{*}\right)=\frac{i-t}{e}
$$

if u^{\prime} is defined by r^{*}, and

$$
u^{\prime}\left((F / \alpha)^{*}\right)=-\frac{i^{\prime}-t}{e}
$$

if u^{\prime} is the valuation at infinity. (Here i^{\prime} is the smallest index j such that $w(F)=w\left(F_{j} f^{j}\right)$.)

The proof of 3) and 4) follows by these two last equalities and (2).

3. - Composite of r.t. extensions.

Now, we are considering the Theorem 4.3 of [8] in the general setting.

Let (K, v) be a valued field (K is not necessarily algebraically closed) and let w be an r.t. extension of v to $K(X)$. As always, we preserve the notation and hypotheses given in Theorem 1.1. Let z^{\prime} be a valuation on k_{v} and u^{\prime} an extension of z^{\prime} to $k_{w}=k_{v^{\prime}}\left(r^{*}\right)$. Let z be the valuation on K composite with the valuations v and z^{\prime} and let u be the valuation on $K(X)$ composite with the valuations w and u^{\prime}. It is easy to see that u is an extension of z to $K(X)$. Moreover, according to ([8], Section 4.2), it follows that u is an r.t. extension of z to $K(X)$ if and only if u^{\prime} is an r.t. extension of z^{\prime} to $k_{v^{\prime}}\left(r^{*}\right)$.

In this section we shall describe u by means of $z^{\prime}, z, u^{\prime}, v$ and w. We shall use also Theorem 4.3 of [8].

Let \bar{K} be an algebraic closure of K and let \bar{z} be an extension of z to \bar{K}. Let \bar{u} be a common extension of u and \bar{z} to $\bar{K}(X)$ (see [3], Section 2). Let $s: G_{u} \rightarrow G_{w}$ be the canonical homomorphism of ordered groups for which $s u=w$. Let $\bar{G}_{w}=G_{w} \otimes_{Z} Q$ and let $\bar{s}: G_{\bar{u}} \rightarrow \bar{G}_{w}$ be the unique homomorphism of ordered groups which naturally extends s. Let $\bar{w}=\bar{s} \bar{u}$. It is easy to see that \bar{w} is a valuation on $\bar{K}(X)$ which extends w. Let \bar{v} be the restriction of \bar{w} to \bar{K}. It is clear that \bar{v} is an extension of v to \bar{K} and that \bar{w} is a common extension of \bar{v} and w to $\bar{K}(X)$. Also it is easy to see that (under the notation in [8]) one has: $\bar{z} \leqslant \bar{v}$ and $\bar{u} \leqslant \bar{w}$. Denote by \bar{u}^{\prime}
the valuation induced by \bar{u} on $k_{\bar{w}}$ and denote by \bar{z}^{\prime} the valuation induced by \bar{z} on $k_{\bar{v}}$. It is clear that \bar{u}^{\prime} is an r.t. extension of \bar{z}^{\prime} and \bar{z}^{\prime} is an extension of z^{\prime} to $k_{\bar{v}}$. Moreover, \bar{u}^{\prime} is a common extension of u^{\prime} and \bar{z}^{\prime} to $k_{\bar{w}}$. One should note that $k_{\bar{w}}=k_{\bar{v}}(t)$, where t is a suitable element of $k_{\bar{w}}$, and t is transcendental over $k_{\bar{v}}(t$ will be defined later).

Let $w=w_{(a, \delta)}$ (see Theorem 1.1). Then \bar{w} is also defined by the minimal pair (a, δ) (with respect to valuation \bar{v}). One has the following commutative diagram, whose rows are exact sequences:

$$
\begin{aligned}
0 \rightarrow G_{u^{\prime}} & \xrightarrow{\varepsilon} G_{u} \xrightarrow{s} G_{w} \rightarrow 0 \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
0 \rightarrow G_{\bar{u}^{\prime}} & \xrightarrow{\bar{\varepsilon}} G_{\bar{u}} \xrightarrow{\bar{s}} G_{\bar{w}} \rightarrow 0 .
\end{aligned}
$$

In this diagram s and \bar{s} are defined above and $\varepsilon, \bar{\varepsilon}$ are the natural inclusions. Since $G_{\bar{w}}=G_{\bar{v}}$, then (see [8], Theorem 3.3) we may assume that $G_{\bar{u}}$ is canonically isomorphic to the direct product $G_{\bar{w}} \times G_{\bar{u}}$ ordered lexicografically.

Let ($\left.a^{\prime}, \delta^{\prime}\right) \in k_{\bar{v}} \times G_{\bar{z}}$, be a minimal pair with respect $k_{v^{\prime}}$ such that \bar{u}^{\prime} is defined by this minimal pair and \bar{z}^{\prime}. Denote by g the monic minimal polynomial of a^{\prime} over $k_{v^{\prime}}$. Because r^{*} is transcendental over $k_{v^{\prime}}$ and $k_{v^{\prime}}$ is a finite extension of k_{v}, then we may assume that $g \in k_{v^{\prime}}$ [$\left.r^{*}\right]$. Let us assume that $g \neq r^{*}$ or, equivalently, $a^{\prime} \neq 0$. Let G be a lifting of g in $K[X]$ with respect to w. Set $\lambda=\left(\delta, \delta^{\prime}\right) \in G_{\bar{u}}$. One has the fundamental result:

Theorem 3.1. There exists a root c of G in \bar{K} such that (c, λ) is a minimal pair with respect to (K, z), and that u is defined by (c, λ) and z (i.e. one has: $u=w_{(c, \lambda)}$).

Proof. Denote by m the degree of the polynomial g with respect to variable r^{*}. According to the definition of a lifting polynomial, one has in $k_{w}: g=\left(G / h^{m}\right)^{*}$. Now we shall determine $\left(G / h^{m}\right)^{* *}$, the image of G / h^{m} in $k_{\bar{w}}$. For that, we know that g is transcendental over k_{v}. Then, according to ([3], Proposition 1.1), there exist the roots c_{1}, \ldots, c_{p} of $G(X)$ such that $\left(c_{i}, \delta\right)$ is a pair of definition of \bar{w} and $v\left(a-c_{i}\right) \geqslant \delta$, for all $1 \leqslant$ $\leqslant i \leqslant p$. Moreover, for other roots c^{\prime} of G, which do not belong to $\left\{c_{1}, \ldots, c_{p}\right\}$ one has: $v\left(a-c^{\prime}\right)<\delta$. Therefore, in $\bar{K}(X)$, we may write: $G(X)=\prod_{i=1}^{p}\left(X-c_{i}\right) G_{1}$, where $G_{1} \in \bar{K}[X]$. It is clear that $\bar{w}\left(G_{1}(X)\right)=$
$=\bar{v}\left(G_{1}(a)\right)$. Let $d \in \bar{K}$ be such that $\bar{v}(d)=\delta$. We may write:

$$
G(X)=\prod_{i=1}^{p}\left(X-c_{i}\right) G_{1}(X)=\prod_{i=1}^{p}\left(\frac{X-a}{d}-\frac{\left(c_{i}-a\right)}{d}\right) G_{1}(X) d^{p}
$$

and thus:

$$
\begin{aligned}
& \left(\frac{G(X)}{G_{1}(a) d^{p}}\right)^{*}=\prod_{i=1}^{p}\left(\left(\frac{X-a}{d}\right)^{*}-\left(\frac{c_{i}-a}{d}\right)^{*}\right)\left(\frac{G_{1}(X)}{G_{1}(a)}\right)^{*}= \\
& =b \prod_{i=1}^{p}\left(t-\left(\frac{c_{i}-a}{d}\right)^{*}\right)=\psi(t)
\end{aligned}
$$

where

$$
t=\left(\frac{X-a}{d}\right)^{*}, \quad b=\left(\frac{G_{1}(X)}{G_{1}(a)}\right)^{*} \in k_{\bar{v}} .
$$

Therefore, in the field $k_{\bar{w}}$, one has:

$$
\left(G / h^{m}\right)^{* *}=\left(\frac{G}{G_{1}(a) d^{p}}\right)^{*}\left(\frac{G_{1}(a) d^{p}}{h^{m}(a)}\right)^{*}=b_{1} \psi(t) .
$$

Now, since \bar{w} is an extension of w to $\bar{K}(X)$, there exists the natural inclusion $k_{w}=k_{v}^{\prime}\left(r^{*}\right) \rightarrow k_{\bar{w}}=k_{\bar{v}}(t)$. That inclusion is defined by the canonical inclusion $k_{v}^{\prime} \subseteq k_{\bar{v}}$ and by the assignment:

$$
r^{*} \mapsto \varphi(t)
$$

where $\varphi(t)$ is a polynomial defined as follows: Let $f(X)=\prod_{i=1}^{q}\left(X-a_{i}\right) f_{1}$, where $a_{1}=a, a_{2}, \ldots, a_{q}$ are all the roots of f such that $\bar{v}\left(a_{i}-a\right) \geqslant \delta$, and $f_{1} \in \bar{K}[X]$. One has: $\bar{w}\left(f_{1}(X)\right)=\bar{v}\left(f_{1}(a)\right)$, and $w(h(X))=\bar{v}(h(a))$. We may write:

$$
\begin{align*}
&\left(\frac{f^{e}}{h}\right)^{* *}=r^{*}=\left(\frac{f^{e}}{h(a)}\right)^{* *}=\left(\left(\prod_{i=1}^{q}\left(X-a_{i}\right)\right)^{e} \frac{f_{1}^{e}(a)}{h(a)}\right)^{* *}= \tag{8}\\
&= \prod_{i=1}^{q}\left(\left(\frac{X-a}{d}\right)-\left(\frac{a_{i}-a}{d}\right)\right)^{* *}\left(\frac{d^{e q} f_{1}^{e}(a)}{h(a)}\right)^{* *}= \\
&=\prod_{i=1}^{q}\left(t-\left(\frac{a_{i}-a}{d}\right)^{* *}\right)^{e} b^{\prime}=\varphi(t), \quad b^{\prime} \in k_{\bar{v}}
\end{align*}
$$

Therefore, one has:

$$
(G / h)^{* *}=(G / h)^{*}(\varphi(t))=g(\varphi(t)) .
$$

On the other hand, if $a_{1}^{\prime}, \ldots, a_{m}^{\prime}$ are all the roots of $g\left(r^{*}\right)$ in $k_{\bar{v}}$, then, according to (8) the last equality becomes:

$$
\begin{align*}
(G / h)^{* *}=\prod_{j=1}^{m}\left(\varphi(t)-a_{j}^{\prime}\right)= & \prod_{j=1}^{m}\left(\prod_{i=1}^{q}\left(t-\left(\frac{a_{i}-a}{d}\right)^{* *}\right)^{e} b^{\prime}-a_{j}^{\prime}\right)= \tag{9}\\
& =b_{1} \varphi(t)=b_{1} b \prod_{i=1}^{p}\left(t-\left(\frac{c_{i}-a}{d}\right)^{* *}\right)
\end{align*}
$$

Denote by $a_{1}^{\prime}=a^{\prime}$. Then, by (9), there exists a root c of $G(X)$ such that $t-((c-a) / d)^{*}$ is a root of $\varphi(t)-a^{\prime}$, or, equivalently, $\varphi\left(((c-a) / d)^{*}\right)=a^{\prime}$. This c is the root we looked for Theorem 3.1. We assert that:

$$
\begin{equation*}
a^{\prime}=\left(\frac{f^{e}(c)}{h(c)}\right)^{*}=\varphi\left(\left(\frac{c-a}{d}\right)^{*}\right) \tag{10}
\end{equation*}
$$

i.e. a^{\prime} is the image of $f^{e}(c) / h(c)$ in $k_{\bar{v}}$. Hence we must show that this last element has an image in $k_{\bar{v}}$ and this image is just a^{\prime}. In order to do this, we notice that $\bar{w}(X-c)=\delta$, or equivalently, $\bar{v}(a-c) \geqslant \delta$. Therefore, for any $A \in K[X]$ with $\operatorname{deg} A<n$, one has: $\bar{v}(A(a))=w(A(X))=$ $=\bar{v}(A(c))$. Also, one has:

$$
\bar{v}(f(c))=\bar{v}\left(\prod_{i=1}\left(c-a_{i}\right)\right)=\sum_{i} \bar{v}\left(c-a_{i}\right)
$$

But $\bar{v}\left(c-a_{i}\right) \geqslant \inf \left(\delta, \bar{v}\left(a-a_{i}\right)\right)=\bar{w}\left(X-a_{i}\right), \quad$ and thus $\left.\bar{v}(f(c))\right) \geqslant$ $\geqslant w(f(X))=\gamma$. In conclusion, $\bar{v}\left(f^{e}(c)\right) \geqslant e \gamma=w(h)=\bar{v}(h(c))$ and thus $\bar{v}\left(f^{e}(c) / h(c)\right) \geqslant 0$ i.e. there exists $\left(f^{e}(c) / h(c)\right)^{*}$. On the other hand we can write:

$$
\begin{aligned}
\frac{f^{e}(c)}{h(c)}=\frac{\prod_{i=1}^{n}\left(c-a_{i}\right)^{e}}{h(c)} & = \\
& =\prod_{i=1}^{q} \frac{\left(c-a_{i}\right)^{e} f_{1}^{e}(c)}{h(c)}=\prod_{i=1}^{q}\left(\frac{c-a}{d}-\frac{a-a_{i}}{d}\right)^{e} \frac{d^{e q} f_{1}^{e}(c)}{h(c)}= \\
& =\prod_{i=1}^{q}\left(\frac{c-a}{d}-\frac{\left(a-a_{i}\right)}{d}\right)^{e} \frac{d^{e q}}{h(a)} f_{1}^{e}(a) \cdot \frac{h(a)}{h(c)} \cdot \frac{f_{1}^{e}(c)}{f_{1}^{e}(a)}
\end{aligned}
$$

and thus:

$$
\left(\frac{f^{e}(c)}{h(c)}\right)^{*}=\varphi\left(\left(\frac{c-a}{d}\right)^{*}\right) \cdot\left(\frac{h(a)}{h(c)} \cdot \frac{f_{1}^{e}(c)}{f_{1}^{e}(a)}\right)^{*} .
$$

In proving (10) we must show that the second factor in the right hand side of the last equality is 1 . This will result by the following statement:
(Δ). - Let $B(X) \in \bar{K}[X]$ and let b_{1}, \ldots, b_{t} be the roots of B in \bar{K}. Assume that, for any $1 \leqslant i \leqslant t$, one has: $\bar{v}\left(a-b_{i}\right)<\delta$. Then $\bar{v}\left(c-b_{i}\right)<\delta$, $1 \leqslant i \leqslant t, \bar{v}(B(a))=\bar{v}(B(c))$ and $(B(a) / B(c))^{*}=1$.

Proof of Δ. Since $\bar{v}(a-c) \geqslant \delta$, then, by hypothesis, it follows that $\bar{v}(B(a))=\bar{v}(B(c))$. Furthermore, we may write:

$$
\frac{B(a)}{B(c)}=\prod_{i=1}^{t}\left(\frac{a-b_{i}}{c-a_{i}}\right)=\prod_{i}\left(1+\frac{a-c}{c-a_{i}}\right)
$$

and so, since $\bar{v}(a-c)>v\left(c-a_{i}\right), \quad 1 \leqslant i \leqslant t, \quad$ it follows that: $(B(a) / B(c))^{*}=1$, as claimed.

Now we are proving that (c, λ) is a minimal pair with respect to (K, z). In order to do this let $c^{\prime} \in \bar{K}$ be such that $\bar{z}\left(c-c^{\prime}\right) \geqslant \lambda$. We must show that $[K(c): K] \leqslant\left[K\left(c^{\prime}\right): K\right]$. According to the definition of \bar{z}, one has: $\bar{v}\left(c-c^{\prime}\right) \geqslant \delta$ whence $\left(c^{\prime}, \delta\right)$ is also a pair of definition of \bar{w}. Hence we may write:

$$
\left(\frac{X-c^{\prime}}{d}\right)^{*}=\left(\frac{X-a}{d}\right)^{*}-\left(\frac{c^{\prime}-a}{d}\right)^{*}=t-\left(\frac{c^{\prime}-a}{d}\right)^{*} .
$$

By the hypothesis $\bar{z}\left(c-c^{\prime}\right) \geqslant \lambda$, the following holds:

$$
\begin{equation*}
\bar{z}^{\prime}\left(\varphi\left(\left(\frac{c-a}{d}\right)^{*}\right)-\varphi\left(\left(\frac{c^{\prime}-a}{d}\right)^{*}\right)\right) \geqslant \delta^{\prime} \tag{11}
\end{equation*}
$$

Now, since ($a^{\prime}, \delta^{\prime}$) is a minimal pair with respect to ($k_{v^{\prime}}, z^{\prime}$), by (10) and (11) it follows that the minimal polynomial of $\varphi\left(\left(\left(c^{\prime}-a\right) / d\right)^{*}\right)$ over $k_{v^{\prime}}$, has the degree at least m.

Suppose that $[K(c): K]>\left[K\left(c^{\prime}\right): K\right]$. Let G_{1} be the monic minimal
polynomial of c^{\prime} over K and let

$$
G_{1}=A_{0}+A_{1} f+\ldots+A_{q} f^{q}
$$

be the f-expansion of G_{1}. By hypothesis, one has: $q \leqslant(m e-1) n$. Let $H \in K[X], \operatorname{deg} H<n$ and let $0 \leqslant t<e$ be such that $w\left(G_{1}\right)=w\left(H f^{t}\right)$. Let i be the smallest index j such that $w\left(G_{1}\right)=w\left(A_{i} f^{i}\right)$ (see (1)). Then, necessarily, $i \geqslant t$ and for any $j \geqslant i, w\left(\left(A_{j} / H\right) f^{j-t}\right)>0$ if $j-t \not \equiv 0$ $(\bmod e)$. Hence $g_{1}\left(r^{*}\right)=\left(G_{1} / H f^{t}\right)$ belongs to $k_{v}^{\prime}\left(r^{*}\right)$ and its degree (with respect to r^{*}) is at most $m-1$. As above (see (Δ)) it is easy to see that $\left.\left(f^{e}\left(c^{\prime}\right) / h\left(c^{\prime}\right)\right)^{*}=\varphi\left(\left(\left(c^{\prime}-a\right) / d\right)\right)^{*}\right)$ is a root of $g_{1}\left(r^{*}\right)$. But this is a contradiction to (11) and to the result which claims that $\left.\left(\varphi(((c-a) / d))^{*}\right), \delta^{\prime}\right)$ is a minimal pair (with respect to $\left.\left(k_{v^{\prime}}, z^{\prime}\right)\right)$. In conclusion (c, λ) is a minimal pair, as claimed.

To finish the proof we must show that \bar{u} is defined by (c, λ). In order to do this let \bar{u}_{1} be the r.t. extension of \bar{z} to $\bar{K}(X)$ defined by the pair (c, λ) (see Theorem 1.1). Since $\bar{s}(\lambda)=\delta$, and $\bar{v}(c-a) \geqslant \delta$ it follows that (c, δ) is a pair of definition of \bar{w}, hence one has: $\bar{u}_{1} \leqslant \bar{w}$. According to ([8], Proposition 3.2) one has necessarily that $\bar{u}_{1}=\bar{u}$ and so, the restriction of \bar{u}_{1} to $K(X)$ is just u. Hence u is defined by the minimal pair (c, λ), as claimed.

REFERENCES

[1] V. Alexandru - N. Popescu, Sur une classe de prolongements a $K(X)$ d'une valuation sur un corps K, Revue Roum. Math. Pures. Appl., 33, 5 (1988), pp. 393-400.
[2] V. Alexandru - N. Popescu - A. Zaharescu, A theorem of characterization of residual transcendental extensions of a valuation, J. Math. Kyoto Univ., 28 (1988), pp. 579-592.
[3] V. Alexandru - N. Popescu - A. Zaharescu, Minimal pair of definition of a residual transcendental extension of a valuation, J. Math. Kyoto Univ., 30 (1990), pp. 207-225.
[4] V. Alexandru - N. Popescu - A. Zaharescu, All valuations on $K(X)$, J. Math. Kyoto Univ., 30 (1990), pp. 281-296.
[5] N. Bourbaki, Algebre Commutative, Ch. V: Entiers, Ch. VI: Valuations, Hermann, Paris (1964).
[6] L. Popescu - N. Popescu, Sur la definition des prolongements residuels transcendents d'une valuation sur un corps K a $K(X)$, Bull. Math. Soc. Math. R. S. Roumanie, 33 (81), 3 (1989).
[7] E. L. Popescu - N. Popescu, On the residual transcendental extensions of a valuation. Key polynomials and augumented valuations, Tsukuba J. Math., 15 (1991), pp. 57-78.
[8] N. Popescu - C. Vraciu, On the extension of valuations on a field K to $K(X)$ - I, Rend. Sem. Mat. Univ. Padova, 87 (1992), pp. 151-168.
[9] N. Popescu - A. Zaharescu, On the structure of the irreducible polynomials over local fields, J. Number Theory, 52, No. 1 (1995), pp. 98-118.
[10] N. Popescu - A. Zaharescu, On a class of valuations on $K(X)$, to appear.
[11] P. Samuel - O. Zariski, Commutative Algebra, Vol. II, D. Van Nostrand, Princeton (1960).

Manoscritto pervenuto in redazione il 26 luglio 1993
e, in forma revisionata, il 20 marzo 1995.

