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Conjugacy Class Lengths of Metanilpotent Groups.

CARLO CASOLO - SILVIO DOLFI (*)

ABSTRACT - We study prime divisors of the lengths of conjugacy classes of a finite
group G, with emphasis on the metanilpotent case. In particular, we compare
the number of prime divisors of G/Z( G ) ~ with the maximum number of dis-
tinct prime divisors of the length of a single conjugacy class of G.

If G is a finite group, we write .7r(G) for the set of all primes dividing
the order of G. If g e G, we denote by ~G (g) the set of all prime divisors
of , the length of the conjugacy class of g; then we put

Thus ~o * ( G ) is the set of all primes dividing the lengths of conjugacy
classes of G. It is an elementary fact that e*(G) = oT(GIZ(G)).

Similarly, in character theory, one defines the set of all

primes dividing the degrees of the irreducible characters of the

group G, and the maximum number a~( G ) of distinct primes dividing
the degree of a single irreducible character of G. It is conjectured
that, for soluble groups, ~(G)~ ~2~(G). This has been verified by
0. Manz [ 13] for o~( G ) = 1, and by D. Gluck [11] for a(G) = 2. To

(*) Indirizzo dell’A.: Universita di Firenze, Dipartimento di Matematica «U..
Dini», Viale Morgagni 67/A, 50134 Firenze, Italy.
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Gruppi a Algebra non commutativa»; second author supported by a research
grant from Istituto Nazionale di Alta Matematica «F. Severi».
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date, the best general result to be known is: ~ ~o( G ) ~ ~ 3 ~( G ) + 2
(Manz and Wolf [14], see also [15]).

On the conjugacy class side, B. Huppert has asked whether, for solu-
ble groups

This inequality has been verified by Chillag and Herzog [5] for

Q * ( G ) = 1, by P. Ferguson [7] for Q * (G) = 2, and by Casolo [4] for
~ * ( G ) = 3; also, it showed in [3] that it holds for every perfect group.
Several results about the connection between {} * ( G) and a~ * ( G ) have
been published by P. Ferguson. In particular she proves in [10]
that ~o * ( G ) ~ I ~ 4 0~ * ( G ) + 6 for every finite soluble group G, and
that o * ( G ) ~ I 12 0~ * ( G ) for supersoluble groups in which G/G ’ is

cyclic [8].
In this paper we collect some observations on Huppert’s and related

questions. In particular we prove that, even for metabelian groups, the
answer to it is negative; we show that, for metanilpotent groups,

(G) I  3 Q * (G) and construct in Example 2 a of super-
soluble metabelian groups such that Lim ~o * (Gn) ~ /(~* (Gn)) = 3.
All groups considered are finite. 

~°°

Throughout the paper, we will use without reference the following
elementary and well known facts (see, for instance [5,6]).

Let G be a finite group.

1) If x and y are commuting elements of coprime order of G,
then

3) Let p Then p o- Q * ( G ) if and only if G has ac centraL Sy-
low p-subgroup.

If G is a finite group, we denote by F(G) the Fitting subgroup of G,
by Z(G) the centre of G and by A(G) the subgroup of G generated by all
the normal abelian Sylow subgroups of G. By the Ito-Michler Theorem,
a prime p E Jt(G) does not divide the degree of any irreducible character
of G if and only if G has a normal abelian Sylow p-subgroup. Thus
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(which clearly coincides with n(G/Z(F(G»). Our
first proposition is a conjugacy class analogue of [11; Lemma 1.1].

PROPOSITION 1. Let G be a finite metanilpotent group. Then there
exists x E F(G) such that a G (x) = o(G).

PROOF. Let G be a metanilpotent group, let F = F(G), and argue by
induction on 

We first observe that we may assume that G/F is abelian. In fact, if
Gi /F is the centre of G/F, then F(Gl) = F and, because G/F is nilpo-
tent, :rt(G/F) = n(G1 /F).

We show that, for each p e n(F), if Fp is the Sylow p-subgroup
of F, there exists xp e Fp such that a G (X) = G : CG (Fp) ~ ). By taking
x = TI xp , we will have

p E 7l(F)

and therefore the conclusion will follow, because CG (F) = Z(F).
Thus, let K = Fp for some pr= Suppose that K’ ~ 1. Then

F(G/K’) = F/K’ so, if p divides ,’ then e(G) = g(G/K’) and
we are done by the inductive hypothesis. Otherwise K is a Sylow
p-subgroup of F and G = KH where H is a Hall p’-subgroup of G.
Let C = CH (K); as H/C is abelian, by [4; Lemma 2.4] we have
K = ~ x E K; KC). Since K is not abelian, there exists x E
e KBZ(K) such that CG (x) ~ KC. Since CG (K) = Z(K) CH (K), for such an
element x we 

Suppose now that K is abelian. Then CG (K) ~ F and so G/CG (K) is
an abelian group, the direct product of its p’-component T and its p-
component P. Observe that is a normal subgroup of G and that it
is a proper subgroup of K if P # 1. As above, we can apply [4; Lemma
2.4] to get an element x E K whose orbit under T is regular, with the ad-
ditional property that x f1. if P # 1. For such an x, we obtain

QG (x) _ Jr( G : CG (K) ~ ). This completes the proof.

For each prime divisor p of the order of the group G, let Gp be a Sy-
low p-subgroup of G and let n(p) = . It is shown
in [3] that

Observing that, by the Burnside’s criterion for p-nilpotency, n(p) = 1 if
and only if it follows that the inequality I 
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 2 a* (G) holds for any finite group G. More precisely, the following is
true:

PROPOSITION 2. Let G be a finite group and let p be the smallest
prime divisor of . Then

For soluble groups, we can say slightly more.

PROPOSITION 3. Let G be a finite soluble group and let p be the
smallest prime divisor of I G: G’Z(G) 1. . Then

That this inequality is best possible it is shown by Example 1 be-
low. For the proof of it we need the following elementary observa-
tion.

LEMMA 1. Let G be a finite soluble group, P a Sylow p-subgroup of
G, acnd suppose that G = G’ CG (P). Then G is p-nilpotent cxnd P is
abelian (in particular n( p) = 1).

PROOF. By induction on Let N be a normal p’-subgroup of G.
Write G = G/N and adopt the bar convention. Then, clearly, G =
= G’ CG (P). If N # 1, by the inductive hypothesis, we have that G is p-
nilpotent and P is abelian; as P = P we get the conclusion. Otherwise
Op, (G) = 1, whence Op (G) = F(G) and so

Thus G = G’ Z(Op(G)). As G is soluble, this yields G=Z(Op(G». 8
PROOF OF PROPOSITION 3. By formula (1), it is enough to show that

n(q) &#x3E; p for every q E,7r(G’). Thus, let q E.7r(G), let Gq be a Sylow q-sub-
group of G, and let N = NG ( Gq ) and C = CG ( Gq ). Now, the number v =
= NG ’ Z( G ) : CG ’ Z( G ) I = C(NnG’Z(G)) I is a divisor of n( q ) =

C I. By our choice of p, we have either %(q) a v a p or v = 1. Also,
clearly CG ’ Z(G) = CG ’ and, by the Frattinit argument, NG ’ Z(G) = G.
However, if v = 1, we have G = CG ’ and hence n( q ) = 1 by Lemma 1;
therefore in this case. *

We define the class covering number cln ( G ) of a finite group G as
the smallest integer k for which there exist 1~ elements gl , g2 , ... , gk of



125

G such that Similarly, the character
covering number ccn(G) is the smallest integer k for which there exist
1~ irreducible characters x 2 , ... , x k of G such that n(x 1 ( 1 )) U ... U
U n(Xk (1) = ~o(G). Alvis and Barry [1, 2] prove that, for any finite simple
group G, dn (G) £ 2 and ccn ( G ) ~ 3. We will observe in Example 1 that
the class covering number of a metabelian group can be arbitrarily
high. It is interesting to note that, in this respect, the parallelism be-
tween conjugacy classes and characters fails. The proof of the results in
Section 1 of Manz and Wolf [14] can be easily modified to give the fol-
lowing statement:

Let G be a soluble group, then there exist irreducible characters x 1,
x2, x3 of G such that n(x 1 (1» U n(X2 (1» U n(X3 (1» ¿ ~o(G)~~2, 31.

Thus ccn ( G ) ~ 5 for any soluble group G.

EXAMPLE 1. Let A be an elementary abelian p-group of
rank % a 1, and OR be the set of all maximal subgroups of A. Thus

I = ( ~ro n - 1 )/( p - 1) =: k. M E be a set of k distinct

primes such that 1 for all For each let CM be a
cyclic group of order qM and let A act on CM with kernel M.
Set N = Dir CM with the action of A induced by the action on

M E M

each CM . Then each non identity element of A centralizes exactly
( ~ro n ~ ~ - 1 )/( p - 1) primary components of N, as any such element is
contained in that number of maximal subgroups of A. Let G = Gn
be the semidirect product and let g be an element of it.
Then we can write with x E N, a e A and [ x, a ] = 1. Now,

U aG(a); clearly and, by what we have ob-
served, ( pn - 1)/( p - 1) - (~n -1 - 1)/(~ro - 1) _ ~ron -1.
Thus a*(G)=pn-l+1. Now N=G’, whence ~,~(G’)~ =(~n-1)/(~ro-1)
and the factor tends to ~ro/( p - 1 ) as n goes to infinity.
In particular, by taking p = 2, we get a family of metabelian groups Gn
such that Lim = 2.

n-, 
n

These same classes of examples show that the class covering num-
ber of a metabelian group cannot be bounded by any positive integer.
Having fixed a prime number p, let Gn be the group constructed above.
We claim that cln(Gn) = n.

Let gl , g2 , ... , 
... U QG (at ), where, for each i = 1, 2, ... , t, ai is the p-component of gi .
By replacing gi with a conjugate if necessary, we may suppose without
loss of generality that all ai’s belong to A. Now, the subgroup of A gen-
erated ... , at ~ is elementary abelian of rank at most t, and is
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therefore contained in at least v = (pn - t - 1 )/( p - 1) maximal sub-
groups, of A. Hence (aI’ ..., a,), and so (gl , ..., gt), centralizes at least v
primary components of Gn . It follows that 
= to 

* (Gn) implies t ~ n .

THEOREM 1. Let G be metanilpotent groups, and let p be the
srnallest prime divisor of G : G ’ Z( G ) ~ . Then

PROOF. We first observe that for any finite group G, e * (G) =
= n(G/F) U ,r(G’), where F is the Fitting subgroup of G. In fact, let p ~
ø jr(G/F) U and let P be a Sylow p-subgroup of G. Then P ~ F and
so P is normal in G. Also, P n G ’ = 1, whence [G, P] ~ P n G ’ = 1;
thus P ~ Z(G) The converse is clear.

Let now G be a metanilpotent group; then 
&#x3E; I by Proposition 3, and o~ * ( G ) ~ ~ I by Proposition 1.
Thus

That the inequality in Theorem 1 is best possible it is shown by
Example 2; in particular, by letting p = 2, we construct an infinite fam-
ily of supersoluble metabelian groups Gn such that

EXAMPLE 2. Let p be a fixed prime number. For any pair (n, k) of
positive integers set

We fix a positive integer n, and write B = (vn, n - For

simplicity, we take n ; 3, in which case @ is an integer.
...,a,j=

= 1, ..., /3) of a~3 distinct primes such that p divides 1 for all i, j. For
each i = 1, ... , a, let Ri be a cyclic group of order pip.

Let A be an abelian group which is the direct product of n cyclic
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groups of order p n . Then A has exactly a maximal subgroups
M1, ... , Ma . For each i = 1, ... , a there is a fixed-point-free action of
A/Mi on Ri . These actions determine an action of A on the direct prod-
uct R = R1 x ... x Ra , with kernel O(A) = Ap. In the semidirect prod-
uct RA, we have (in a way similar to that in Example 1), for any
a E A: 

’

Write now y = vn, n’ and let q, ql, ... , q. be distinct primes (and all dis-
tinct from p and the chosen in such a way (use Dirichlet’s Theorem)
that gi92-"?y divide q - 1. Let C be a cyclic group of order
q, q2 ... 9y and N = N1 x ... x Ny an elementary abelian group of order
q Y . It is not hard to check that y = vn, n is exactly the number of sub-
groups K of A such that A/K is cyclic of order we list as A1, ..., AY
all such subgroups.

We define an action of A x C on R x N in the following way. We let
C centralize R and induce a non trivial automorphism of order qk on
each k = 1, ... , y, and let A act on R as described above, and on N
by stabilizing each Nk and inducing on Nk a group of automorphisms of

with kernel Ak . Now, if y is an element of order p n in A then
A/ y) is the direct product of n - 1 cyclic groups of order ~n . Thus y is
contained in exactly vn. n -1 subgroups of A whose corresponding factor
group is cyclic of order p n. Each of such subgroups is one of the Ai’s, i.e.
the centralizer in A of one of the components Nk of N. Hence, we have
that the number of components Nk contained in CN(y) is precisely

i also, clearly, CN( y) is the direct product of such components.’ 

Let G = Gn be the semidirect product (R x N) ~ (A x C).
Then le*(G)1 = In(R)lln(C)1 [ + + y + 2.
We compute 7*(G). Let g e G; by replacing g with a conjugate if

necessary, we can write g = xa, where x e (R x N) C, a E A and

[x, a] = 1. If = z(R) then, by formula (2),

Now, by construction of G, x centralizes R, so c .7l( C) U {p, g}. In
fact, if h E N is the q-component of x, U ~ p, q ~, where

9 QG (h) fl .7r(C). Also, h E CN (a), so, if lal I = pn then h is con-
tained in the product of at most vn, n -1 1 of the Nk’s. It follows that,
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In any case, we have

Hence,

in fact it is easy to see that

Finally, we have:

as

Appendix.

We add some remarks on the general soluble case, refering to a re-
cent paper [14] of Manz and Wolf. Firstly, we observe that the argu-
ments in their Section 1, involving irreducible characters, can be easily
rephrased in terms of conjugacy classes. In particular, modifications in
Lemma 1.3 of [14] lead to the following parallel statement.

LEMMA 2. Suppose that M = CG (M) is a normal elementary
abeLian subgroups of a soluble group G and a completely reducible
G-module (possibly of mixed characteristic). Assume that G splits
over M with complement H. Then there exist x E M, y E H such that

From this it follows, as in [14; Theorem 1.4] that, given a soluble
group G, then 2 a* (G) + 2 (see Theorem 3 below for an
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easy improvement). This fact can be used to give an alternative proof of
a (slightly improved) result of P. Ferguson.

THEOREM 2. Let G be a soluble group. Then I e * (G) ~ I  4a * (G) +
+ 2. More precisely, let p be the smallest prime divisor of G : G’ Z(G) ,.
Then

PROOF. Simply apply to the above observation Proposition 3, as in
the proof of Theorem 1.

Indeed, the constant term + 2 in Manz and Wolfs inequality is at-
tached to the occurrence of the primes ~ 2, 3} among the divisors of

observing that if the prime 2 or 3 occurs as divisor of I
then it is controlled by Proposition 3, we can remove the additive con-
stant 2 in Theorem 2 if p ~ 5. In particular, if G is a soluble group such
that all prime divisors of I are greater or equal to 5, then
le*(G)1 I  3.25a * (G) (another slight improvement of a result of P.
Ferguson’s).

Also, the arguments of Manz and Wolf can be exploited to get a re-
sult for arbitrary soluble groups, comparable to Proposition 1, namely

THEOREM 3. Let G be a soluble group, F the Fitting subgroup of G.
Then there exist x, y E G such that U aG(Y);2 ~(G)B{2, 3}.

PROOF. Let y be the set of all primes p such that G has a normal
non-abelian Sylow p-subgroup. By Ito’s Theorem Q(G) = y U 
Let N = ~(G), G = G/N and adopt the bar convention. Thus F = CZ7 (F)
and, by a Theorem of Gaschiiltz, _F is a completely redu_cible_G-module
and it is complemented in G. If H is a complement of F in G, we can
choose H to be a y’-subgroup of G. By Lemma 2, there exist x E F and
y e H such that QG (x) U 3}. Clearly then, U
U aG ( y) ~ ~(G/F)B~ 2, 3}. Let,8 be the set of allpey such that y central-
izes the normal Sylow p-subgroup of G; that is ~8 = YBUG (y). For each
q E,8, we may take a non-central element gq of Oq (G) and set g = q fl e gq .

q E B
Then 6G(g) D B. Also, g and y are two commuting elements of G of co-
prime order so: aG aG (g) U aG (y) D B U QG ( y) = y U aG ( y).

Finally, U (y U ~c(G/F))B~ 2, 31 = e(G)Bf 2, 3}.

COROLLARY Let G be a soluble group. Then le(G)1 ( ~ 2~ * (G) + 2.
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