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Propagation of Analytic and Gevrey Regularity
for a Class
of Semi-Linear Weakly Hyperbolic Equations.

MassiMO CICOGNANI - LUISA ZANGHIRATI (*)

1. Introduction and notations.

Let 2 be an open set in R**!=R; X R} (¢ the «time variable»),
Q,=02Nn{t>0},2,=2Nn{t=0},2,=2N{t=0}andlet u(t, x)
be a real solution of a semilinear equation

(L) P, 0 )u+ Gl x, u )y em-1=0 in 2, @ =205 ,u)

where G is an analytic function of its arguments and P,, (¢, x, J; ,) is a
homogenuous differential operator of order m = 2 with analytic coeffi-
cients in 2 which is hyperbolic with respect to the hypersurfaces
t= to .

We are concerned with the problem of the propagation of the ana-
lytic regularity of » in a domain of influence D c Q , provided that the
Cauchy data are analytic functions in @, w a open bounded subset of R”
such that @ c 2, and DN {t =0} c .

From the results of Alinhac and Metivier [2] we know that if P, is
strictly hyperbolic and » is C*, then u is analytic in D.

Weakly hyperbolic equations has been considered by Spagnolo[8].

(*) Indirizzo degli AA.: Dipartimento di Matematica, Universita di Ferrara,
Via Machiavelli 35, 1-44100, Ferrara, Italy.
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He proved that if (1.1) is of the type

(1.2) Fu— 2 9, (an(t, x)3,,u) =G, x, u)

)
h k=1

then % is analytic in D under one of the following conditions:

a) the coefficients a,;, have the form ay; (¢, ) = b(t)ay; (x) and » is
of class C1;

b) the solution u is assumed to belong to some Gevrey class of or-
der less than two.

Here we consider the case where (1.1) is a weakly hyperbolic equa-
tion of the form &*u + G(t, «, u(“))|a, <m-1=0,m =2, and prove that
the solution is analytic in every cylinder [0, T] X @ contained in Q , if
w is assumed to be in some Gevrey class of order o, smaller than 1/o
with a index ¢ <1 — 1/m which is determined by the derivatives of »
that really appear as arguments of G. In fact we shall prove a more gen-
eral result (see Theorem 1 below) considering also the propagation of
the regularity of % in Gevrey classes when G and the Cauchy data are
not analytic but Gevrey functions of order o €]l, o,[.

Note that our result with m =2 is not covered by[8] since the
derivatives of % do not appear in the non linear terms of (1.2).

We denote by §?(0), 1 < 0 < », O an open subset of R”, the space of
Gevrey functions of index o, i.e. the space of all functions in C~*(0O)
which satisfy for every compact subset K of ©:

[3*v(x)| <CA'%lal’, xeK, aeZ,,

C, A constants depending on K (and v).

Moreover we denote by y?(0), 1 < g < o, the space of all functions
v in C*(0O) satisfying the following condition: for every ¢ > 0, for every
compact subset K of O there exists a constants c, such that:

|%v(x)| <c.el*al’, zek, ae?’ ,

It is §2(0) cy°(0) c g’ (0O) for every 1 <o <o0;< ». We write ve
e ¢ (K), vey°(K) if ve §°(0), ve y°(O) respectively for some open
neighbourhood © of the compact set K.

Consider a function G(¢, x, u'®),.q, Where (t, ) € 2 (2 an open
set in R"*! containing the origin), Ac{(ay,a’')eZ, X Z", |a| <
<m — 1}, m a positive integer, m = 2. Let o = max la"|/(m — ay)

and assume that G is a Gevrey function of index ¢ of its arguments
for some oe[1,1/g[. Moreover assume that g;, 0 <j<m —1, are
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given Gevrey functions of index o in w, w and open bounded subset
of R” such that w c ,. Then we have:

THEOREM 1. Let u be a solution of the problem:

Fru+ G, 2, u?)q=0 inQ,,
13) { t a +

Fu,_,=g9r nwk=0,1.,m-1.

If ue §°(Q,) for some o, €lo, 1/ol then u e &°(C) for every cylin-
der

e=[0,Ty1XwcQ, .

In particular if G, go, ..., 9m-1 are analytic functions and wue
€ %1 (R ,) for some o,€ll, 1/ol, then u is analytic in C.

Note that the Cauchy problem for the linearized equation

(a) a
P= am+a§eja au()(t ¢, u®)oe,

of (1.3) at a solution » may present phenomena of non existence or non
uniqueness if w is in a Gevrey class of order greater or equal than 1/o
(see Komatsu[5], Mizohata[7], Agliardi[1]). Thus it seems difficult to
weaken the hypotheses of Theorem 1 as it concerns the a propri regu-
larity of u (cf. the above condition a) and b) for the equation (1.2) in [8]:
if the coefficients are as in condition a) then the Cauchy problem for the
linearized equation of (1.2) at a C* solution u is well posed in C*. In the
case of general coefficients, condition b) ensures that the Cauchy prob-
lem for the linearized equation at u e G°! is well posed in G as in our
Theorem 1).

We shall give the proof of Theorem 1 in section 3 after some prelimi-
nary lemmas which are the subject of next section 2.

2. Preliminary lemmas.

Let 4 >n/2, 0 <o <1 be two fixed real numbers. For every 7 > 0
we denote by ¢, (R™) the space of all e L2(R") such that:

”(D)”exp (t(D)g)u”L2(Rn) < 0 ,

where () = (1 + |£|%)Y? EeR™
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I, (R"™) is a Hilbert space with respect to the inner product:
(u,0) = (27" [ (£ exp (20(8))i®) WO d,

% the Fourier transform of u.
We denote the corresponding norm by |-||,, ie.

”u”r = ”(D)” eXP(T<D>Q)“”L2<R") .

Since x> n/2 and 0 <o < 1, it is easy to prove, as for the usual
Sobolev spaces, that IC,(R") is an algebra. More precisely we
have:

PROPOSITION 2.1. There exists a constant c,, depending only on n
and u, such that

@.1) lleolle < eollellellell, %, v € oc (R™).

For @ an open ball of R" we introduce the space 3C,(w) of the re-
strictions to w of the elements in IC, (R"):

¥, (@) ={velL®R"); Iuei,(R"),u =vin v}
endowed with the norm
2.2) [olls, » = 1B @)]: »

E,(v) the element of minimum norm in the closed convex subset §(v) =
={u eI, (R");u=vin w} of the Hilbert space 3, (R").

Thus, IC,(w) is the quotient space of 3¢, (R") with the closed sub-
space M = {ued,(R"); u=0in w}.

Note that the Paley Wiener Theorem implies ¢°(@) c ¢, (@) with
continuous injection for o < 1/p and every 7 > 0.

In view of Proposition 2.1, 3C,(w) is a normed algebra and (2.1) is
valid with the same constant ¢, (and ||, , instead of |-|,) for w,
v e I, (w).

LEMMA 22. Let w ey (@) be a real valued function and let ¢ e
€ 8% (w(w)) for a oell,1/ol. Then we can find positive constants
79, C, R such that for every 0 <t < 1,

22) lo @ @)l,o < CR?¢Y,  qeZ,,

where R depends only on ¢ and w, v depends on ¢, w and w, whereas C
is @ majorant of [wl,, .-
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Proor. Let K be a compact subset of R" such that Kodand we
e y'/2(K) and let us denote H = w(K). then we have:

sup |¢? | < RyR{q" (3R, Ry, Vg),
H

sup |8°w| < ¢ h!? ! (Vh3c,, Va).
K

By using Faa-De Bruno’s formula, we obtain
23) |8 9@ (w(x))| < 2°Ry(2°R,)?q1° (2d)° Ry hey)!?! |y | 171/
for every x e K, y e Z" , q € Z,, where the constant d depends only on
o and n.
Let y e y/¢(R"), suppy c K, y =1 in a neighbourhood of @, and
sup |8%y| < L,h'*alMe  (VRIAL, Va).
From (2.3) it follows:
|67 (¢ @ W) )N&)| < Cr(4m)"! [y|1"1eRIql”,  EeR",

where C;, = 2°R,l;, meas (K), A, = (2d)°R;c;, + 1, R = 2°R,.
Hence, by the arbitrariness of y:

@24 | @@ (W) X&) < Crexp(—ki(£)*)Rq!’

for a constant k; = d'A; ¢ d’ depending only on n, g, o.
From (2.4) it follows (2.2) for every 7 <k, /2 = 7, with

0= ([ (& ex(~2eoiernrdg) "

and the proof is complete.

Now we introduce some notations: we consider the sequence
m, = a(p!” /(p + 1)?), where o = 1 and the constant a is chosen in order
to satisfy:

a
. 2 a’ﬂ]mlﬂlmla—ﬂl S Mg
a
)y [ ]mlmmm—mﬂs la|mq .
0<f<a

B
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For ¢ >0, p = 1 we define M, = ¢! ~?m,, and for we y°(®), p =1 we
let

|wlp,: = sup [z,
la] =p

|w]
07
[w], ;= sup

PT o<qsp M,

As in[2], from Proposition 2.1 and Lemma 2.2 we can prove the fol-
lowing lemma by the method of majorant series:

LEmMA 23. If w and ¢ satisfy the hypotheses of Lemma 2.2, then
there exist Ty, L, 6o > 0 such that for every p=1,e>0,0 < 7 < 7 the
condition

2.5) elwly, . < 6
implies:
i) [p(w)]y, r < LIw],, .,
i) |@pw)|ps1, e SLW|ps1, o+ Mpyilwly, o),
iii) for la|=p+1,j=1,...,n,
(185 (p(w) 3;w) — p(w) 3 & wll;, o <

S (p + l)L{|w|p+1,t+Mp+l(1 + [w]p,r)z}’

where 1 18 the constant found in Lemma 2.2, L and 6, depend only on
¢ and [lgradwll;,, .-

Lemma 2.3 can be extended to functions w = (w,, ..., w,) with
values in R”, by defining |w|, ,= max |w;|, .. In fact we have:

1sj<v

LEMMA 24. Let w= (w, ..., w,), w; real functions in yle(w),
and let ¢p(x, w) € §°(w X w(®)) for a o € [1, 1/o[. There exist four posi-
tive constants t,, €y, 09, L such that for p =1, e€]0, gy], 7€ [0, 74],
condition (2.5) implies:

3 [oC, w)l,, . < LA + [w],, ),
jj) |¢(1 w)lp+1,r s L{ |w|p+l,t +Mp+l(1 + [w]p,t)}’
jij) for lal=p+1,j=1,..,n k=1,..,vitis
02 (B(-, w) 8;wy,) — (-, w) 3wy, o <
S@+DL{|wlps1,c+ My (1+[w], )}
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In next section we apply Lemma 2.4 to functions w(t, x),
¢(t, x, w(t, x)), where w e §°1([0, T, ]; §°*(@)"), ¢ € §°([0, T1]1 X @ X
X w([0, T;]1 X @)), 1 < 0 < 0; < 1/p for which ¢ is considered as a par-
ameter. By Lemma 2.4 there exist positive constants 7, €,, 49, L such
that for every integer p = 1, £€10, 9], 0 < 7 < 7, if e[w(t, )], . < Jy
for every t € [0, T, ] then j), jj), jji) are true uniformly with respect to ¢
in this interval.

For the function w(t, x) we use also the seminorms we are going to
introduce. Let ¢, T be positive constants such that ¢T' < 7,, T' < T; and
let

M; = (eexp(—At))' "Pm, =exp(— (1 —p)M,,

where A4 € R is a parameter which will be choosen in a suitable way at
the end of the proof of Theorem 1.1. For 0 < e<¢y,0<t<T,p =1we
define:

ol = max 92206, er .0

|w]
[w], = max g
P i<e<r M}

Moreover, for the solution % of (1.3) we write:

&} (u) = max |37 ,ulh,
aed

W (u) = 24 >2
u sup max , =2,
P 0Sior154%p M_, P
where

={(ag,a')eZ, XZ%;(ag,a' +e)eq,j= L,n}uU

U{(aO’O)GZ ><Z+v(10 m_l}v

{€;}1<j<n is the canonical basis of R".

3. Proof of Theorem 1.

By deriving the equations (1.3) with respect to x; we get:

8’”8u+2 8G — O ,0ju = _ %G in]0, Ty1Xw,

3.1) Oy
%aju|t=0=3jgk ina), k=0, 1, ...,m_l.
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Now we apply the operator 95 to (3.1), so obtaining:

Po,=f,; nl0,T\1x0,
(32) J J '
afvﬂ,j',;:(}:gk,ﬁ,j m w, k—_-O, 1,...,m-1,

where P is the linear operator

o+ > G ¢z u@)a,,

aed au()
vﬂ,j=8*28ju,
~ 38 (a—G ¢, x,u<a>))+

u(a))ag,xaju] - %(t’ x, u(a))agxagaju ’

oG
B aga‘ag[ 8 (@

and
gk,ﬁ,j=858jgk(ac), k=0,1,...,m—1.
From the hypotheses of Theorem 1 it follows that P can be written
in the form P = 3" + f P,(t, v, D,) D*~", where P, is a linear opera-

tor of order less or equal to gj with coefficients in §°(Q,); also f; ; €
€ §°1(2, ) whereas g; 4 ;€ &°(®).

We extend the coefficients in the lower order terms of P outside a
neighborhood of [0, T;] X @ to functions in g°(R™*!) with compact
support and denote by P the linear operator in [0, 7] X R™ obtained in
this way. Moreover, we set f3 ;(t) = Eur 4 (f5,; (1), Gk, 5,; = Eer (gk, 5,5),
where E, is the extension operator defined at the beginning of sec-
tion 2.

By letting

= (Dx>g 5 Uﬂ,] =t(/1m_l’l‘7ﬂyj,/1m_28taﬁyj, ceey a{n_l'l’\)‘ﬂ'j),

Fpi=40,....0,) Gs; =A™ "G, 55> A™ 2G1. 8. js > Im—-1.5.4) >
the problem

53 { s, = Foi in 10, 7,1 X R"

30,.,=0Grp,; MR, k=0,1,...,m—1,
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is equivalent to a system

{atUﬂ’]‘l"AUﬁ’]:Fﬂ’] in]O, TI]X]Rn,

3.4) .
Ug,jlio = Gp,j inR*,

where A = (a; (¢, x, D,)) is a suitable m X m matrix of pseudo-differ-
ential operators with symbols that satisfy:

35)  |8!010¢a; x(t, %, &) < CLHIel+ I+ 1gypraye(g)e el

(30, Vl’ a,y, V(t’ &, S) € [0’ Tl] X R" X Rn)~

In[3] Cattabriga-Mari proved that the Cauchy problem (3.4) is well
posed in ¢°* and constructed for it a fundamental solution M(Z, s), t, s €
e[0, T;1, T; < T, a suitable positive number depending only on the con-
stant C in (38.5). It is M(t, s) = M, (t, s) R(t, s) where R(t, s) is an opera-
tor applying continuously (¢, (R™))™ into itself for every r, M, (¢, s) is a
matrix of pseudo-differential operators of infinite order on R™ with
symbol M, (¢, s; x, &) satisfying:

(36) |9F3L3EM (8, s; @, &)| <
< CErlal+ 7+ 111 ke (E) 1ol exp (c|t — s|(E)e),

t,sel0, T,], x, Ee R™
We can prove the following lemma (cf. Propositions 2.8 and 2.12
in[4]):

LeEmMA 3.1. Let Q(x, D,) be a pseudo-differential operator of infi-
nite order with symbol q satisfying

(3.7) |888¢q(x, &)| < C,L~1PI(BNYe(E)~ 1l exp(8(E)), =0,

for every x, £ e R™ There exist two positive constants A and 6, depend-
ing only on u, o, n and L in (3.7) such that

(3.8) lQull. < Alull; + 5
for every we IC, . s(R™) with v < 0,.

Proor. Let y e Cy° (R") such that ¢(&) =1 for |&| <1/2 and
set 9, (&) = yp(&/j) for je Z,. Let us consider the operators

R;(x, D,) =
= exp (T<D:c>g )<Dx)ﬂ 1/)] (Dx)Q(xy Dm)w](Da:)(Dx)_'u exP(_ (T + 6)<Da:>g) .



108 Massimo Cicognani - Luisa Zanghirati

Our aim is to prove that the symbols 7;(x, &) satysfy
3.9) |083¢r;(x, )| < Cyp

for every x, £ e R" and every j € Z,, provided that v < J,, with con-
stants C,, 4 depending on a, B, » and x, and 6, depending on x, ¢, 7 and L
in (3.7). Then (3.8) will follow as a consequence of the Calderén-Vaillan-
court theorem about the L2 boundness of pseudo-differential-operators
with symbols in the space S§ .

The symbol 7;(x, §) is represented by means of an oscillatory
integral

rj(x, §) =0s — (2n)‘”j feXp (i —y)n — &) a;(y, n, &) dydn,

a;(y,n, &) = exp (z(n)°)Xm)* v;(n)q(y, E)w,;(EXE)* exp (- (v + O)E)?).
For N=0,1, ..., and 6, a positive constant to be fixed later on,
we put Q5 = {n;(N/o)/e< |E—n| <((N +1)/6,)"/¢} and we write

7 (x, £) = N2=0/rj,N(x7 &) with
(3.10) 7y N(x, 8) =

= f “eXp(i(:v—y)(ﬂ—éE))(x—y)‘”(l—A,,)laj(y, 7, §)dy](2n)"”d77,
(%Y

l a fixed integer greater than n/2.
Integrating by parts N times with respect to ¥ in (3.10) we get

|7, v (@, §)] < Cy(Ly67¢)™N exp((z/61)N)

with C; depending on 7# and u, L, depending on %, u, ¢ and L in (3.7).
Then we can choose 6; = (L, /2¢)? to have (3.9) with a = 8 = 0. In the
same way, we can achieve (8.9) for |a|, |B8| >0, completing the
proof.

Returning to the fundamental solution M(t, s) of (3.4) constructed
in[3], from Lemma 3.1 it follows that there exist constants A, > 0, T5 e
€]0, Ty [, Ts depending on the constant C; in (3.6), such that

(8.11) M, $) Viler -1y < Ao [Vller-s) »

for 0<s<t<T<T;and every Ve (3, -4 (R"))™ with ¢ the same
constant that appears in the right side of (3.6).
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Hence, for the solution
t
U, (L, ) = J(M(t, 8)Fy ;(s))(@)ds + M(t, 0) Gy ; (x)
0

of (3.4), we have for te [0, T

t
“Uﬁ,j(t)”c(T— n < Ag IllFﬂ,j(s)I|dT—s)ds + ”Gﬂ,j"cT .

0

If a=(ay, a’')e @, (see the definition at the end of section 2), then
ag+ |a’|/e <m — 1. Hence:

182 Vs, ; Dllecr - 1y < |A™ =2 2088995 ; Oller - < U, ; WMoz - 19 »

0<t<T<T,.

Since the solution of (3.2) is unique([3],[4],[7],[9]), we have
v, (t, ®) = Vp ; (¢, x) for (t, ®) € [0, Ts] X w. By (|67 ;05 ; B)lecr- 1), 0
<68 .95, i ®llear - and || f,;Necr- s, 0 = IFp,j(Necr—5) from  the
above inequalities we obtain:

t
3.12) max 8¢ »vg, ; @llecr - 1), 0 < Ao J"f;‘l,j(s)"c(T—s),wds + Gy, jller |
0

0<t<T<T;.

Taking the maximum value for |ﬁ| pandj=1,..,n in the left
side of (3.12) we have the seminorm @! p+1(u) of the solutlon u of (1.3).
Our next aim is to estimate ||f;, ](s)llc(T s, o from above by seminorms

@}, . (w) in order to deduce from (3.12) an inequality to which we are
able to apply Gronwall’s Lemma, so obtammg estimates for @}, ().
We state the following Lemma, which is an easy consequence of Lem-
ma 2.4. (See[2] for details).

LEMMA 3.2. There exist positive constants €, Ty, 09, L such that
for p=2, 0<e<ggy, cT <14, A =0 the condition

3.13) e¥,(u) <9,
implies:
"fi‘?,j (tv ')”c(T -t),w < Lp{ qu) +1 (u) + Myt;(l + 'I’p (u))z }

for every Iﬂl =p,j=1,..,m
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Next we fix T = min {7}, 7o /c}, where 7, is the constant in Lem-
ma 3.2 and T, ¢ are the constants for which (3.11) holds. From (3.12)
and Lemma 3.2 it follows that for p =2, 0 <& < gy, 4 =0 the con-
dition (3.13) implies:

t
B.14) @1 (W) S LAp [{ B} 41 () + M3+ ¥, ) }ds + Gy,
0

0st¢<T, where G, = A°| max Gy, j“cT'

Bl=p,1sjsn
By using Gronwall’s inequality and letting LA, = L,, we obtain
from (3.14)

3.15) DL, (u)<

t
<G, exp[L,pt] + L,p(1 + ¥, (w))? j exp (Lop(t — ) M2 ds .
0

For 1 =6 Ly, p =2 we have:

t
8.16) »p I exp (Lyp(t — 8)) My ds < pM,

0

exp (A(p — 1)¢)

- t
-1 Ly S GIM

Since g, € §%(w), it is G, < A, s{"’m,, for suitable positive constants
Ay, €,. Hence for 0 <e<ey, A=2Ly, p=2
3.17) G, exp (Lopt) < Ai M} .

From (3.15), (3.16), (3.17) we obtain for p = 2, 0 < ¢ <€y, =min(e,, &),
AZdyg=6Ly:

(318) @, (w)<SLi(Q+ P,(w) /ML, 0<t<T.
Summing up, we have proved that:
(3.19) Condition (3.13) implies inequality (3.18)
forp=2,e€]0,590],A= 1.
Now we let H =max(2L,, ¥5(u)), A =max(4y, 2HL,) and fix

ee]0, €,] such that eH < 6,, where &, is the same constant as in
Lemma 3.2. In this way we have L,(1 + H2/A) < H.
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Since ¥, () = max (¥, (u),tés[%% (DL 11 (w)/M})), by using (3.19)
it is easy to prove inductively that
Y,(w)s H, p=2.
This means
8% 2(t, Moz - 1), 0 < HM 4

for every B, |B| =¢=2,0<t<T. Hence u(t, )e §(w)for0<t<T.
Moreover, from equations (1.3), by using the method of majorant series
(see for example [6] we can prove that « is a Gevrey function of index o
also with respect to ¢t € [0, T']. By applying this result a finite number
of times in the cylinders [7, 2T] X w, ...,[kyT, T;] X w, we obtain
uwe (0, T,] X w).
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