RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

MASSIMO CICOGNANI

LUISA ZANGHIRATI

Propagation of analytic and Gevrey regularity for a class of semi-linear weakly hyperbolic equations

Rendiconti del Seminario Matematico della Università di Padova, tome 94 (1995), p. 99-111

http://www.numdam.org/item?id=RSMUP_1995_94_99_0

© Rendiconti del Seminario Matematico della Università di Padova, 1995, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 94 (1995)

Propagation of Analytic and Gevrey Regularity for a Class of Semi-Linear Weakly Hyperbolic Equations.

MASSIMO CICOGNANI - LUISA ZANGHIRATI (*)

1. Introduction and notations.

Let Ω be an open set in $\mathbb{R}^{n+1} = \mathbb{R}_t \times \mathbb{R}_x^n$ (t the «time variable»), $\Omega_+ = \Omega \cap \{t > 0\}, \overline{\Omega}_+ = \Omega \cap \{t \ge 0\}, \Omega_0 = \Omega \cap \{t = 0\}$ and let u(t, x) be a real solution of a semilinear equation

(1.1)
$$P_m(t, x, \partial_{t, x}) u + G(t, x, u^{(a)})_{|a| \le m-1} = 0$$
 in $\Omega_+(u^{(a)} = \partial_{t, x}^a u)$

where G is an analytic function of its arguments and $P_m(t, x, \partial_{t,x})$ is a homogenuous differential operator of order $m \ge 2$ with analytic coefficients in Ω which is hyperbolic with respect to the hypersurfaces $t = t_0$.

We are concerned with the problem of the propagation of the analytic regularity of u in a domain of influence $D \in \overline{\Omega}_+$ provided that the Cauchy data are analytic functions in $\overline{\omega}$, ω a open bounded subset of \mathbb{R}^n such that $\overline{\omega} \in \Omega_0$ and $D \cap \{t = 0\} \in \omega$.

From the results of Alinhac and Metivier [2] we know that if P_m is strictly hyperbolic and u is C^{∞} , then u is analytic in D.

Weakly hyperbolic equations has been considered by Spagnolo [8].

(*) Indirizzo degli AA.: Dipartimento di Matematica, Università di Ferrara, Via Machiavelli 35, I-44100, Ferrara, Italy. He proved that if (1.1) is of the type

(1.2)
$$\partial_t^2 u - \sum_{k,k=1}^n \partial_{x_k}(a_{kk}(t,x)\partial_{x_k}u) = G(t,x,u)$$

then u is analytic in D under one of the following conditions:

a) the coefficients a_{hk} have the form $a_{hk}(t, x) = b(t)a_{hk}^0(x)$ and u is of class C^1 ;

b) the solution u is assumed to belong to some Gevrey class of order less than two.

Here we consider the case where (1.1) is a weakly hyperbolic equation of the form $\partial_t^m u + G(t, x, u^{(\alpha)})_{|\alpha| \leq m-1} = 0, m \geq 2$, and prove that the solution is analytic in every cylinder $[0, T] \times \omega$ contained in $\overline{\Omega}_+$ if u is assumed to be in some Gevrey class of order σ_1 smaller than $1/\varrho$ with a index $\varrho \leq 1 - 1/m$ which is determined by the derivatives of u that really appear as arguments of G. In fact we shall prove a more general result (see Theorem 1 below) considering also the propagation of the regularity of u in Gevrey classes when G and the Cauchy data are not analytic but Gevrey functions of order $\sigma \in]1, \sigma_1[$.

Note that our result with m = 2 is not covered by [8] since the derivatives of u do not appear in the non linear terms of (1.2).

We denote by $\mathcal{G}^{\sigma}(\mathcal{O})$, $1 \leq \sigma < \infty$, \mathcal{O} an open subset of \mathbb{R}^{ν} , the space of Gevrey functions of index σ , i.e. the space of all functions in $C^{\infty}(\mathcal{O})$ which satisfy for every compact subset K of \mathcal{O} :

$$\left|\partial^{\alpha} v(x)\right| \leq C A^{|\alpha|} \alpha!^{\sigma}, \qquad x \in K, \qquad \alpha \in \mathbb{Z}_{+}^{\nu},$$

C, A constants depending on K (and v).

Moreover we denote by $\gamma^{\sigma}(\mathcal{O})$, $1 < \sigma < \infty$, the space of all functions v in $C^{\infty}(\mathcal{O})$ satisfying the following condition: for every $\varepsilon > 0$, for every compact subset K of \mathcal{O} there exists a constants c_{ε} such that:

$$\left|\partial^{\alpha} v(x)\right| \leq c_{\varepsilon} \varepsilon^{|\alpha|} \alpha!^{\sigma}, \qquad x \in K, \qquad \alpha \in \mathbb{Z}^{\nu}_{+},$$

It is $\mathcal{G}^{\sigma}(\mathcal{O}) \subset \gamma^{\sigma_1}(\mathcal{O}) \subset \mathcal{G}^{\sigma_1}(\mathcal{O})$ for every $1 \leq \sigma < \sigma_1 < \infty$. We write $v \in \mathcal{G}^{\sigma}(K)$, $v \in \gamma^{\sigma}(K)$ if $v \in \mathcal{G}^{\sigma}(\mathcal{O})$, $v \in \gamma^{\sigma}(\mathcal{O})$ respectively for some open neighbourhood \mathcal{O} of the compact set K.

Consider a function $G(t, x, u^{(\alpha)})_{\alpha \in \mathcal{A}}$, where $(t, x) \in \Omega$ (Ω an open set in \mathbb{R}^{n+1} containing the origin), $\mathcal{A} \subset \{(\alpha_0, \alpha') \in \mathbb{Z}_+ \times \mathbb{Z}_+^n, |\alpha| \leq \leq m-1\}$, *m* a positive integer, $m \geq 2$. Let $\varrho = \max_{\alpha \in \mathcal{A}} |\alpha'|/(m-\alpha_0)$ and assume that *G* is a Gevrey function of index σ of its arguments for some $\sigma \in [1, 1/\varrho[$. Moreover assume that g_j , $0 \leq j \leq m-1$, are given Gevrey functions of index σ in $\overline{\omega}$, ω and open bounded subset of \mathbb{R}^n such that $\overline{\omega} \in \Omega_0$. Then we have:

THEOREM 1. Let u be a solution of the problem:

(1.3)
$$\begin{cases} \partial_t^m u + G(t, x, u^{(\alpha)})_{\alpha \in \mathfrak{a}} = 0 & \text{in } \Omega_+, \\ \partial_t^k u_{|_{t=0}} = g_k & \text{in } \omega, k = 0, 1, ..., m - 1. \end{cases}$$

If $u \in \mathcal{G}^{\sigma_1}(\overline{\Omega}_+)$ for some $\sigma_1 \in]\sigma$, $1/\varrho[$ then $u \in \mathcal{G}^{\sigma}(\mathcal{C})$ for every cylinder

$$\mathcal{C} = [0, T_1] \times \omega \subset \overline{\Omega}_+ .$$

In particular if G, $g_0, ..., g_{m-1}$ are analytic functions and $u \in \mathcal{G}^{\sigma_1}(\overline{\Omega}_+)$ for some $\sigma_1 \in]1, 1/\varrho[$, then u is analytic in C.

Note that the Cauchy problem for the linearized equation

$$P = \partial_t^m + \sum_{\alpha \in \mathfrak{a}} \frac{\partial G}{\partial u^{(\alpha)}}(t, x, u^{(\alpha)}) \partial_{t, x}^{\alpha}$$

of (1.3) at a solution u may present phenomena of non existence or non uniqueness if u is in a Gevrey class of order greater or equal than $1/\varrho$ (see Komatsu[5], Mizohata[7], Agliardi[1]). Thus it seems difficult to weaken the hypotheses of Theorem 1 as it concerns the a propri regularity of u (cf. the above condition a) and b) for the equation (1.2) in [8]: if the coefficients are as in condition a) then the Cauchy problem for the linearized equation of (1.2) at a C^{∞} solution u is well posed in C^{∞} . In the case of general coefficients, condition b) ensures that the Cauchy problem for the linearized equation at $u \in G^{\sigma_1}$ is well posed in G^{σ_1} as in our Theorem 1).

We shall give the proof of Theorem 1 in section 3 after some preliminary lemmas which are the subject of next section 2.

2. Preliminary lemmas.

Let $\mu > n/2$, $0 < \rho < 1$ be two fixed real numbers. For every $\tau > 0$ we denote by $\mathcal{H}_{\tau}(\mathbb{R}^n)$ the space of all $u \in L^2(\mathbb{R}^n)$ such that:

$$\|\langle D\rangle^{\mu}\exp\left(\tau\langle D\rangle^{\varrho}\right)u\|_{L^{2}(\mathbf{R}^{n})} < \infty ,$$

where $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}, \ \xi \in \mathbb{R}^n$.

 $\mathcal{H}_{\tau}(\mathbb{R}^n)$ is a Hilbert space with respect to the inner product:

$$\langle u, v \rangle = (2\pi)^{-n} \int \langle \xi \rangle^{2\mu} \exp\left(2\tau \langle \xi \rangle^{\varrho}\right) \widehat{u}(\xi) \overline{\widehat{v}}(\xi) d\xi,$$

 \hat{u} the Fourier transform of u.

We denote the corresponding norm by $\|\cdot\|_{\tau}$, i.e.

 $\|u\|_{\tau} = \|\langle D \rangle^{\mu} \exp\left(\tau \langle D \rangle^{\varrho}\right) u\|_{L^{2}(\mathbb{R}^{n})}.$

Since $\mu > n/2$ and $0 < \rho < 1$, it is easy to prove, as for the usual Sobolev spaces, that $\mathcal{H}_{\tau}(\mathbb{R}^n)$ is an algebra. More precisely we have:

PROPOSITION 2.1. There exists a constant c_0 , depending only on n and μ , such that

(2.1)
$$\|uv\|_{\tau} \leq c_0 \|u\|_{\tau} \|v\|_{\tau}, \qquad u, v \in \mathcal{H}_{\tau}(\mathbb{R}^n).$$

For ω an open ball of \mathbb{R}^n , we introduce the space $\mathcal{H}_{\tau}(\bar{\omega})$ of the restrictions to ω of the elements in $\mathcal{H}_{\tau}(\mathbb{R}^n)$:

$$\mathcal{H}_{\tau}(\bar{\omega}) = \{ v \in L^2(\mathbb{R}^n); \exists u \in \mathcal{H}_{\tau}(\mathbb{R}^n), u = v \text{ in } \omega \}$$

endowed with the norm

(2.2)
$$||v||_{\tau, \omega} = ||E_{\tau}(v)||_{\tau}$$

 $E_{\tau}(v)$ the element of minimum norm in the closed convex subset $\mathcal{E}(v) = \{u \in \mathcal{H}_{\tau}(\mathbb{R}^n); u = v \text{ in } \omega\}$ of the Hilbert space $\mathcal{H}_{\tau}(\mathbb{R}^n)$.

Thus, $\mathcal{H}_{\tau}(\bar{\omega})$ is the quotient space of $\mathcal{H}_{\tau}(\mathbb{R}^n)$ with the closed subspace $M = \{u \in \mathcal{H}_{\tau}(\mathbb{R}^n); u = 0 \text{ in } \omega\}.$

Note that the Paley Wiener Theorem implies $\mathcal{G}^{\sigma}(\bar{\omega}) \subset \mathcal{H}_{\tau}(\bar{\omega})$ with continuous injection for $\sigma < 1/\rho$ and every $\tau > 0$.

In view of Proposition 2.1, $\mathcal{H}_{\tau}(\bar{\omega})$ is a normed algebra and (2.1) is valid with the same constant c_0 (and $\|\cdot\|_{\tau,\omega}$ instead of $\|\cdot\|_{\tau}$) for u, $v \in \mathcal{H}_{\tau}(\bar{\omega})$.

LEMMA 2.2. Let $w \in \gamma^{1/\varrho}(\bar{\omega})$ be a real valued function and let $\phi \in \mathfrak{S}^{\sigma}(w(\bar{\omega}))$ for a $\sigma \in [1, 1/\varrho[$. Then we can find positive constants τ_0, C, R such that for every $0 < \tau \leq \tau_0$

(2.2)
$$\|\phi^{(q)}(w)\|_{\tau,\omega} \leq CR^{q} q!^{\sigma}, \qquad q \in \mathbb{Z}_{+},$$

where R depends only on ϕ and ω , τ_0 depends on ϕ , w and ω , whereas C is a majorant of $||w||_{\tau_0, \omega}$.

102

PROOF. Let K be a compact subset of \mathbb{R}^n such that $\mathring{K} \supset \bar{\omega}$ and $w \in \varphi^{1/\varrho}(K)$ and let us denote H = w(K). then we have:

$$\sup_{H} |\phi^{(q)}| \leq R_0 R_1^q q!^{\sigma} \quad (\exists R_0, R_1, \forall q),$$
$$\sup_{K} |\partial^{\alpha} w| \leq c_h h^{|\alpha|} \alpha!^{1/\varrho} \quad (\forall h \exists c_h, \forall \alpha).$$

By using Faa-De Bruno's formula, we obtain

$$(2.3) \quad \left| \partial^{\gamma} \phi^{(q)}(w(x)) \right| \leq 2^{\sigma} R_0 (2^{\sigma} R_1)^q q!^{\sigma} ((2d)^{\sigma} R_1 h c_h)^{|\gamma|} |\gamma|^{|\gamma|/d}$$

for every $x \in K$, $\gamma \in \mathbb{Z}_+^n$, $q \in \mathbb{Z}_+$, where the constant d depends only on σ and n.

Let $\chi \in \gamma^{1/\varrho}(\mathbb{R}^n)$, supp $\chi \subset K$, $\chi = 1$ in a neighbourhood of $\overline{\omega}$, and

$$\sup |\partial^{\alpha} \chi| \leq l_{h} h^{|\alpha|} \alpha!^{1/\varrho} \qquad (\forall h \exists l_{h}, \forall \alpha).$$

From (2.3) it follows:

$$\left|\xi^{\gamma}(\chi \overline{\phi^{(q)}(w)})(\xi)\right| \leq C_{h}(A_{h}h)^{|\gamma|} |\gamma|^{|\gamma|/\varrho} R^{q} q!^{\sigma}, \qquad \xi \in \mathbb{R}^{n},$$

where $C_h = 2^{\sigma} R_0 l_h$ meas (K), $A_h = (2d)^{\sigma} R_1 c_h + 1$, $R = 2^{\sigma} R_1$. Hence, by the arbitrariness of γ :

(2.4)
$$\left| \left(\chi \, \widehat{\phi^{(q)}(w)} \right)(\xi) \right| \leq C_1 \exp\left(-k_1 \langle \xi \rangle^{\varrho} \right) R^q \, q!^{\sigma}$$

for a constant $k_1 \ge d' A_1^{-\varrho}$, d' depending only on n, σ , ϱ . From (2.4) it follows (2.2) for every $\tau \le k_1/2 = \tau_0$, with

$$C = C_1 \left(\int \langle \xi \rangle^{2\mu} \exp\left(-2\tau_0 \langle \xi \rangle^{\varrho}\right) d\xi \right)^{1/2}$$

and the proof is complete.

Now we introduce some notations: we consider the sequence $m_p = a(p!^{\sigma}/(p+1)^2)$, where $\sigma \ge 1$ and the constant a is chosen in order to satisfy:

$$\sum_{0 \leq \beta \leq \alpha} {\alpha \choose \beta} m_{|\beta|} m_{|\alpha - \beta|} \leq m_{|\alpha|} ,$$
$$\sum_{0 < \beta \leq \alpha} {\alpha \choose \beta} m_{|\beta|} m_{|\alpha - \beta| + 1} \leq |\alpha| m_{|\alpha|}$$

For $\varepsilon > 0$, $p \ge 1$ we define $M_p = \varepsilon^{1-p} m_p$ and for $w \in \gamma^{\varrho}(\bar{\omega})$, $p \ge 1$ we let

$$|w|_{p,\tau} = \sup_{|\alpha| = p} \|\partial_x^{\alpha} w\|_{\tau,w},$$
$$[w]_{p,\tau} = \sup_{0 < q \leq p} \frac{|w|_{q,\tau}}{M_q}.$$

As in [2], from Proposition 2.1 and Lemma 2.2 we can prove the following lemma by the method of majorant series:

LEMMA 2.3. If w and ϕ satisfy the hypotheses of Lemma 2.2, then there exist τ_0 , L, $\delta_0 > 0$ such that for every $p \ge 1$, $\varepsilon > 0$, $0 \le \tau \le \tau_0$ the condition

(2.5)
$$\varepsilon[w]_{p,\tau} \leq \delta_0$$

implies:

i)
$$[\phi(w)]_{p,\tau} \leq L[w]_{p,\tau}$$
,
ii) $|\phi(w)|_{p+1,\tau} \leq L(|w|_{p+1,\tau} + M_{p+1}[w]_{p,\tau})$,
iii) for $|\alpha| = p+1, j = 1, ..., n$,

$$\|\partial_x^a(\phi(w)\,\partial_j w) - \phi(w)\,\partial^a\,\partial_j w\|_{\tau,\,\omega} \leq$$

$$\leq (p+1)L\{ \|w\|_{p+1,\tau} + M_{p+1}(1+[w]_{p,\tau})^2 \},\$$

where τ_0 is the constant found in Lemma 2.2, L and δ_0 depend only on ϕ and $\|\text{grad } w\|_{\tau_0, \omega}$.

Lemma 2.3 can be extended to functions $w = (w_1, ..., w_{\nu})$ with values in \mathbb{R}^{ν} , by defining $|w|_{p,\tau} = \max_{1 \le j \le \nu} |w_j|_{p,\tau}$. In fact we have:

LEMMA 2.4. Let $w = (w_1, ..., w_r)$, w_j real functions in $\gamma^{1/\varrho}(\bar{\omega})$, and let $\phi(x, w) \in \mathcal{G}^{\sigma}(\bar{\omega} \times w(\bar{\omega}))$ for a $\sigma \in [1, 1/\varrho[$. There exist four positive constants $\tau_0, \varepsilon_0, \delta_0$, L such that for $p \ge 1, \varepsilon \in]0, \varepsilon_0]$, $\tau \in [0, \tau_0]$, condition (2.5) implies:

$$\begin{aligned} \mathbf{j}) & [\phi(\cdot, w)]_{p, \tau} \leq L(1 + [w]_{p, \tau}), \\ \mathbf{jj}) & |\phi(\cdot, w)|_{p+1, \tau} \leq L\{ |w|_{p+1, \tau} + M_{p+1}(1 + [w]_{p, \tau})\}, \\ \mathbf{jjj}) & \text{for } |\alpha| = p+1, \ j = 1, \ \dots, \ n, \ k = 1, \ \dots, \ \nu \ it \ is \\ \|\partial_x^{\alpha}(\phi(\cdot, w)\partial_j w_k) - \phi(\cdot, w)\partial^{\alpha}\partial_j w_k\|_{\tau, \omega} \leq \\ \end{aligned}$$

$$\leq (p+1)L\{ \|w\|_{p+1,\tau} + M_{p+1}(1+[w]_{p,\tau})^2 \}.$$

104

In next section we apply Lemma 2.4 to functions w(t, x), $\phi(t, x, w(t, x))$, where $w \in \mathbb{S}^{\sigma_1}([0, T_1]; \mathbb{S}^{\sigma_1}(\bar{\omega})^{\nu})$, $\phi \in \mathbb{S}^{\sigma}([0, T_1] \times \bar{\omega} \times w([0, T_1] \times \bar{\omega}))$, $1 \leq \sigma < \sigma_1 < 1/\rho$ for which t is considered as a parameter. By Lemma 2.4 there exist positive constants τ_0 , ε_0 , δ_0 , L such that for every integer $p \geq 1$, $\varepsilon \in [0, \varepsilon_0]$, $0 \leq \tau \leq \tau_0$, if $\varepsilon[w(t, \cdot)]_{p,\tau} \leq \delta_0$ for every $t \in [0, T_1]$ then j), jj), jjj) are true uniformly with respect to t in this interval.

For the function w(t, x) we use also the seminorms we are going to introduce. Let c, T be positive constants such that $cT \le \tau_0$, $T \le T_1$ and let

$$M_p^t = (\varepsilon \exp((-\lambda t))^{1-p} m_p = \exp((-\lambda t(1-p))) M_p,$$

where $\lambda \in \mathbb{R}$ is a parameter which will be choosen in a suitable way at the end of the proof of Theorem 1.1. For $0 < \varepsilon \leq \varepsilon_0$, $0 \leq t \leq T$, $p \geq 1$ we define:

$$\begin{split} \|w\|_p^t &= \max_{|\beta| = p} \|\partial_x^\beta w(t, \cdot)\|_{c(T-t), \omega}, \\ [w]_p^t &= \max_{1 \leq q \leq p} \frac{|w|_q^t}{M_q^t}. \end{split}$$

Moreover, for the solution u of (1.3) we write:

$$\begin{split} \Psi_p^t(u) &= \max_{\alpha \in \mathcal{C}_1} |\partial_{t,x}^{\alpha} u|_p^t , \\ \Psi_p(u) &= \sup_{0 \leq t \leq T} \max_{1 \leq q \leq p} \frac{\Phi_q^t(u)}{M_{q-1}^t} , \qquad p \geq 2 , \end{split}$$

where

$$\begin{aligned} \mathfrak{C}_1 &= \left\{ (\alpha_0, \, \alpha' \,) \in \mathbb{Z}_+ \times \mathbb{Z}_+^n \,; (\alpha_0, \, \alpha' + e_j) \in \mathfrak{C}, \, j = 1, \, \dots, \, n \right\} \cup \\ &\qquad \qquad \cup \left\{ (\alpha_0, \, 0) \in \mathbb{Z}_+ \times \mathbb{Z}_+^n \,, \, \alpha_0 \leq m - 1 \right\}, \end{aligned}$$

 $\{e_j\}_{1 \le j \le n}$ is the canonical basis of \mathbb{R}^n .

3. Proof of Theorem 1.

By deriving the equations (1.3) with respect to x_j we get:

(3.1)
$$\begin{cases} \partial_t^m \partial_j u + \sum_{\alpha \in \mathfrak{A}} \frac{\partial G}{\partial u^{\alpha}} \partial_{t,x}^a \partial_j u = -\frac{\partial G}{\partial_{x_j}} & \text{in }]0, T_1] \times \omega, \\ \partial_t^k \partial_j u_{|_{t=0}} = \partial_j g_k & \text{in } \omega, \ k = 0, \ 1, \dots, m-1. \end{cases}$$

Now we apply the operator ∂_x^{β} to (3.1), so obtaining:

(3.2)
$$\begin{cases} Pv_{\beta,j} = f_{\beta,j} & \text{in }]0, T_1] \times \omega, \\ \partial_t^k v_{\beta,j_{|t=0}} = g_{k,\beta,j} & \text{in } \omega, \ k = 0, \ 1, \dots, m-1, \end{cases}$$

where P is the linear operator

$$\partial_t^m + \sum_{\alpha \in \mathfrak{A}} \frac{\partial G}{\partial u^{(\alpha)}}(t, x, u^{(\alpha)}) \partial_{t, x}^{\alpha},$$
$$v_{\beta, j} = \partial_x^\beta \partial_j u,$$
$$f_{\beta, j} = -\partial_x^\beta \left(\frac{\partial G}{\partial x_j}(t, x, u^{(\alpha)}) \right) +$$
$$-\sum_{\alpha \in \mathfrak{A}} \left\{ \partial_x^\beta \left[\frac{\partial G}{\partial u^{(\alpha)}}(t, x, u^{(\alpha)}) \partial_{t, x}^\alpha \partial_j u \right] - \frac{\partial G}{\partial u^{(\alpha)}}(t, x, u^{(\alpha)}) \partial_{t, x}^\alpha \partial_x^\beta \partial_j u \right\},$$

and

$$g_{k,\beta,j} = \partial_x^\beta \partial_j g_k(x), \qquad k = 0, 1, \dots, m-1.$$

From the hypotheses of Theorem 1 it follows that P can be written in the form $P = \partial_t^m + \sum_{j=1}^m P_j(t, x, D_x) D_t^{m-1}$, where P_j is a linear operator of order less or equal to ϱj with coefficients in $\mathcal{G}^{\sigma_1}(\overline{\Omega}_+)$; also $f_{\beta,j} \in \mathcal{G}^{\sigma_1}(\overline{\Omega}_+)$ whereas $g_{k,\beta,j} \in \mathcal{G}^{\sigma}(\overline{\omega})$.

We extend the coefficients in the lower order terms of P outside a neighborhood of $[0, T_1] \times \bar{\omega}$ to functions in $\mathcal{G}^{\sigma}(\mathbb{R}^{n+1})$ with compact support and denote by \tilde{P} the linear operator in $[0, T_1] \times \mathbb{R}^n$ obtained in this way. Moreover, we set $\tilde{f}_{\beta,j}(t) = E_{c(T-t)}(f_{\beta,j}(t))$, $\tilde{g}_{k,\beta,j} = E_{cT}(g_{k,\beta,j})$, where E_{τ} is the extension operator defined at the beginning of section 2.

By letting

$$\Lambda = \langle D_x \rangle^{\varrho} , \qquad U_{\beta,j} = {}^t (\Lambda^{m-1} \widetilde{v}_{\beta,j}, \Lambda^{m-2} \partial_t \widetilde{v}_{\beta,j}, ..., \partial_t^{m-1} \widetilde{v}_{\beta,j}),$$

$$F_{\beta,j} = {}^t (0, ..., \widetilde{f}_{\beta,j}), G_{\beta,j} = {}^t (\Lambda^{m-1} \widetilde{g}_{0,\beta,j}, \Lambda^{m-2} \widetilde{g}_{1,\beta,j}, ..., \widetilde{g}_{m-1,\beta,j}),$$

the problem

(3.3)
$$\begin{cases} \widetilde{P}\widetilde{v}_{\beta,j} = \widetilde{f}_{\beta,j} & \text{in }]0, T_1] \times \mathbb{R}^n, \\ \partial_t^j \widetilde{v}_{|_{t=0}} = \widetilde{g}_{k,\beta,j} & \text{in } \mathbb{R}^n, \ k = 0, 1, \dots, m-1, \end{cases}$$

106

is equivalent to a system

(3.4)
$$\begin{cases} \partial_t U_{\beta,j} + A U_{\beta,j} = F_{\beta,j} & \text{in }]0, T_1] \times \mathbb{R}^n, \\ U_{\beta,j|_{t=0}} = G_{\beta,j} & \text{in } \mathbb{R}^n, \end{cases}$$

where $A = (a_{i,k}(t, x, D_x))$ is a suitable $m \times m$ matrix of pseudo-differential operators with symbols that satisfy:

$$(3.5) \qquad \left|\partial_t^l \partial_x^{\gamma} \partial_{\xi}^a a_{i,k}(t,x,\xi)\right| \leq C^{l+|\alpha|+|\gamma|+1} \alpha! (\gamma! l!)^{\sigma} \langle \xi \rangle^{\varrho-|\alpha|}$$

 $(\exists C, \forall l, \alpha, \gamma, \forall (t, x, \xi) \in [0, T_1] \times \mathbb{R}^n \times \mathbb{R}^n).$

In [3] Cattabriga-Mari proved that the Cauchy problem (3.4) is well posed in \mathcal{G}^{σ_1} and constructed for it a fundamental solution M(t, s), $t, s \in [0, T_2]$, $T_2 \leq T_1$ a suitable positive number depending only on the constant C in (3.5). It is $M(t, s) = M_1(t, s)R(t, s)$ where R(t, s) is an operator applying continuously $(\mathcal{H}_{\tau}(\mathbb{R}^n))^m$ into itself for every τ , $M_1(t, s)$ is a matrix of pseudo-differential operators of infinite order on \mathbb{R}^n with symbol $M_1(t, s; x, \xi)$ satisfying:

$$(3.6) \qquad \left|\partial_t^k \partial_x^{\gamma} \partial_{\xi}^a M_1(t,s;x,\xi)\right| \leq$$

$$\leq C_1^{k+|\alpha|+|\gamma|+1} \alpha! (\gamma! k!)^{\sigma_1} \langle \xi \rangle^{-|\alpha|} \exp(c|t-s|\langle \xi \rangle^{\varrho}),$$

 $t, s \in [0, T_2], x, \xi \in \mathbb{R}^n$.

We can prove the following lemma (cf. Propositions 2.8 and 2.12 in [4]):

LEMMA 3.1. Let $Q(x, D_x)$ be a pseudo-differential operator of infinite order with symbol q satisfying

$$(3.7) \left| \partial_x^{\beta} \partial_{\xi}^{\alpha} q(x, \xi) \right| \leq C_{\alpha} L^{-|\beta|} \left(\beta! \right)^{1/\varrho} \left\langle \xi \right\rangle^{-|\alpha|} \exp\left(\delta \left\langle \xi \right\rangle^{\varrho} \right), \qquad \delta \geq 0,$$

for every $x, \xi \in \mathbb{R}^n$. There exist two positive constants A and δ_1 depending only on μ , ϱ , n and L in (3.7) such that

$$\|Qu\|_{\tau} \leq A \|u\|_{\tau+\delta}$$

for every $u \in \mathcal{H}_{\tau+\delta}(\mathbb{R}^n)$ with $\tau \leq \delta_1$.

PROOF. Let $\psi \in C_0^{\infty}(\mathbb{R}^n)$ such that $\psi(\xi) = 1$ for $|\xi| \leq 1/2$ and set $\psi_j(\xi) = \psi(\xi/j)$ for $j \in \mathbb{Z}_+$. Let us consider the operators $R_j(x, D_x) =$ $= \exp(\tau \langle D_x \rangle^{\varrho}) \langle D_x \rangle^{\mu} \psi_j(D_x) Q(x, D_x) \psi_j(D_x) \langle D_x \rangle^{-\mu} \exp(-(\tau + \delta) \langle D_x \rangle^{\varrho}).$ Our aim is to prove that the symbols $r_i(x, \xi)$ satysfy

(3.9)
$$\left|\partial_x^\beta \partial_\xi^\alpha r_j(x,\xi)\right| \leq C_{\alpha,\beta}$$

for every $x, \xi \in \mathbb{R}^n$ and every $j \in \mathbb{Z}_+$, provided that $\tau \leq \delta_1$, with constants $C_{\alpha,\beta}$ depending on α, β, n and μ , and δ_1 depending on μ, ϱ, n and L in (3.7). Then (3.8) will follow as a consequence of the Calderón-Vaillancourt theorem about the L^2 boundness of pseudo-differential-operators with symbols in the space $S_{0,0}^0$.

The symbol $r_j(x, \xi)$ is represented by means of an oscillatory integral

$$r_j(x,\,\xi) = Os - (2\pi)^{-n} \int \int \exp(i(x-y)(\eta-\xi)) a_j(y,\,\eta,\,\xi) \, dy \, d\eta$$

 $a_j(y,\eta,\xi) = \exp\left(\tau\langle\eta\rangle^{\varrho}\right)\langle\eta\rangle^{\mu}\psi_j(\eta)q(\gamma,\xi)\psi_j(\xi)\langle\xi\rangle^{-\mu}\exp\left(-(\tau+\delta)\langle\xi\rangle^{\varrho}\right).$

For $N = 0, 1, ..., \text{ and } \delta_1$ a positive constant to be fixed later on, we put $\Omega_N = \{\eta; (N/\delta_1)^{1/\varrho} \le |\xi - \eta| \le ((N+1)/\delta_1)^{1/\varrho} \}$ and we write $r_j(x, \xi) = \sum_{N=0}^{\infty} r_{j,N}(x, \xi)$ with

(3.10)
$$r_{j,N}(x,\xi) =$$

= $\int_{\Omega_N} \left[\int \exp(i(x-y)(\eta-\xi)) \langle x-y \rangle^{-2l} (1-\Delta_\eta)^l a_j(y,\eta,\xi) dy \right] (2\pi)^{-n} d\eta,$

l a fixed integer greater than n/2.

Integrating by parts N times with respect to y in (3.10) we get

$$|r_{i,N}(x,\xi)| \leq C_1 (L_1 \delta_1^{-1/\varrho})^{-N} \exp((\tau/\delta_1)N)$$

with C_1 depending on n and μ , L_1 depending on n, μ , ϱ and L in (3.7). Then we can choose $\delta_1 = (L_1/2e)^{\varrho}$ to have (3.9) with $\alpha = \beta = 0$. In the same way, we can achieve (3.9) for $|\alpha|$, $|\beta| > 0$, completing the proof.

Returning to the fundamental solution M(t, s) of (3.4) constructed in [3], from Lemma 3.1 it follows that there exist constants $A_0 > 0$, $T_3 \in \epsilon$]0, $T_2[$, T_3 depending on the constant C_1 in (3.6), such that

(3.11)
$$||M(t, s) V||_{c(T-t)} \leq A_0 ||V||_{c(T-s)},$$

for $0 \le s < t \le T \le T_3$ and every $V \in (\mathcal{H}_{c(T-s)}(\mathbb{R}^n))^m$ with c the same constant that appears in the right side of (3.6).

Hence, for the solution

$$U_{\beta,j}(t, x) = \int_{0}^{t} (M(t, s) F_{\beta,j}(s))(x) ds + M(t, 0) G_{\beta,j}(x)$$

of (3.4), we have for $t \in [0, T]$:

$$\|U_{\beta,j}(t)\|_{c(T-t)} \leq A_0\left(\int_0^t \|F_{\beta,j}(s)\|_{c(T-s)} ds + \|G_{\beta,j}\|_{cT}\right).$$

If $a = (a_0, a') \in \mathcal{C}_1$ (see the definition at the end of section 2), then $a_0 + |a'|/\varrho \leq m - 1$. Hence:

$$\|\partial_{t,x}^{a}\widetilde{v}_{\beta,j}(t)\|_{c(T-t)} \leq \|A^{m-1-\alpha_{0}}\partial_{t}^{\alpha_{0}}\widetilde{v}_{\beta,j}(t)\|_{c(T-t)} \leq \|U_{\beta,j}(t)\|_{c(T-t)},$$

 $0 \leq t \leq T \leq T_3.$

Since the solution of (3.2) is unique ([3], [4], [7], [9]), we have $v_{\beta,j}(t, x) = \tilde{v}_{\beta,j}(t, x)$ for $(t, x) \in [0, T_3] \times \omega$. By $\|\partial_{t, x}^a v_{\beta,j}(t)\|_{c(T-t), \omega} \leq \|\partial_{t, x}^a \tilde{v}_{\beta,j}(t)\|_{c(T-t)}$ and $\|f_{\beta,j}(s)\|_{c(T-s), \omega} = \|F_{\beta,j}(s)\|_{c(T-s)}$ from the above inequalities we obtain:

$$(3.12) \qquad \max_{a \in d_1} \left\| \partial_{t, x}^a v_{\beta, j}(t) \right\|_{c(T-t), \omega} \leq A_0 \left(\int_0^t \|f_{\beta, j}(s)\|_{c(T-s), \omega} ds + \|G_{\beta, j}\|_{cT} \right),$$

 $0 \leq t \leq T \leq T_3.$

Taking the maximum value for $|\beta| = p$ and j = 1, ..., n in the left side of (3.12) we have the seminorm $\Phi_{p+1}^t(u)$ of the solution u of (1.3). Our next aim is to estimate $||f_{\beta,j}(s)||_{c(T-s),\omega}$ from above by seminorms $\Phi_{p+1}^t(u)$ in order to deduce from (3.12) an inequality to which we are able to apply Gronwall's Lemma, so obtaining estimates for $\Phi_{p+1}^t(u)$. We state the following Lemma, which is an easy consequence of Lemma 2.4. (See [2] for details).

LEMMA 3.2. There exist positive constants ε_0 , τ_0 , δ_0 , L such that for $p \ge 2$, $0 < \varepsilon \le \varepsilon_0$, $cT \le \tau_0$, $\lambda \ge 0$ the condition

$$(3.13) \qquad \qquad \varepsilon \Psi_p(u) \leq \delta_0$$

implies:

$$\|f_{\beta,j}(t,\cdot)\|_{c(T-t),\omega} \leq Lp\{\Phi_{p+1}^{t}(u) + M_{p}^{t}(1+\Psi_{p}(u))^{2}\}$$

for every $|\beta| = p, j = 1, ..., n$.

Next we fix $T = \min \{T_3, \tau_0/c\}$, where τ_0 is the constant in Lemma 3.2 and T_3 , c are the constants for which (3.11) holds. From (3.12) and Lemma 3.2 it follows that for $p \ge 2$, $0 < \varepsilon \le \varepsilon_0$, $\lambda \ge 0$ the condition (3.13) implies:

(3.14)
$$\Phi_{p+1}^{t}(u) \leq LA_0 p \int_0^t \left\{ \Phi_{p+1}^s(u) + M_p^s(1 + \Psi_p(u))^2 \right\} ds + G_p,$$

 $0 \leq t \leq T$, where $G_p = A_0 \max_{|\beta| = p, 1 \leq j \leq n} ||G_{\beta,j}||_{cT}$.

By using Gronwall's inequality and letting $LA_0 = L_0$, we obtain from (3.14)

(3.15)
$$\Phi_{p+1}^{t}(u) \leq \leq G_{p} \exp[L_{o}pt] + L_{o}p(1 + \Psi_{p}(u))^{2} \int_{0}^{t} \exp(L_{0}p(t-s)) M_{p}^{s} ds$$

For $\lambda \ge 6 L_0$, $p \ge 2$ we have:

(3.16)
$$p \int_{0}^{t} \exp(L_{0} p(t-s)) M_{p}^{s} ds \leq p M_{p} \frac{\exp(\lambda(p-1)t)}{\lambda(p-1) - L'p} \leq (3/\lambda) M_{p}^{t}.$$

Since $g_k \in \mathcal{G}^{\sigma}(\bar{\omega})$, it is $G_p \leq A_1 \varepsilon_1^{1-p} m_p$ for suitable positive constants A_1, ε_1 . Hence for $0 < \varepsilon < \varepsilon_1, \lambda \ge 2L_0, p \ge 2$

$$(3.17) G_p \exp\left(L_0 p t\right) \le A_1 M_p^t$$

From (3.15), (3.16), (3.17) we obtain for $p \ge 2$, $0 < \varepsilon < \tilde{\varepsilon}_0 = \min(\varepsilon_1, \varepsilon_0)$, $\lambda \ge \lambda_0 = 6L_0$:

$$(3.18) \qquad \Phi_{p+1}^{t}(u) \leq L_1 (1 + (\Psi_p(u))^2 / \lambda) M_p^t, \qquad 0 \leq t \leq T.$$

Summing up, we have proved that:

(3.19) Condition (3.13) implies inequality (3.18)

for
$$p \ge 2$$
, $\varepsilon \in [0, \widetilde{\varepsilon}_0]$, $\lambda \ge \lambda_0$.

Now we let $H = \max(2L_1, \Psi_2(u))$, $\lambda = \max(\lambda_0, 2HL_1)$ and fix $\varepsilon \in]0, \tilde{\varepsilon}_0]$ such that $\varepsilon H < \delta_0$, where δ_0 is the same constant as in Lemma 3.2. In this way we have $L_1(1 + H^2/\lambda) \leq H$.

Since $\Psi_{p+1}(u) = \max(\Psi_p(u), \sup_{t \in [0, T]} (\Phi_{p+1}^t(u)/M_p^t))$, by using (3.19) it is easy to prove inductively that

$$\Psi_p(u) \leq H, \qquad p \geq 2.$$

This means

$$\|\partial_x^{\beta} u(t, \cdot)\|_{c(T-t), \omega} \leq HM_{q-1}^t$$

for every β , $|\beta| = q \ge 2$, $0 \le t \le T$. Hence $u(t, \cdot) \in \mathcal{G}^{\sigma}(\omega)$ for $0 \le t \le T$. Moreover, from equations (1.3), by using the method of majorant series (see for example[6] we can prove that u is a Gevrey function of index σ also with respect to $t \in [0, T]$. By applying this result a finite number of times in the cylinders $[T, 2T] \times \omega$, ..., $[k_0T, T_1] \times \omega$, we obtain $u \in \mathcal{G}^{\sigma}([0, T_1] \times \omega)$.

BIBLIOGRAPHY

- [1] R. AGLIARDI, Fourier integral operators of infinite order on $D_{L^2}^{\{\sigma\}}(D_{L^2}^{\{\sigma\}'})$ with an application to a certain Cauchy problem, Rend. Sem. Mat. Univ. Padova, 84 (1990), pp. 71-82.
- [2] S. ALINHAC G. METIVIER, Propagation de l'analyticité des solutions de systèmes hyperboliques non-linéaires, Inv. Math., 75 (1984), pp. 189-203.
- [3] L. CATTABRIGA D. MARI, Parametrix of infinite order on Gevrey spaces to the Cauchy problem for hyperbolic operators with one multiplecharacteristic, Ricerche Mat. Suppl. (1987), pp. 127-147.
- [4] K. KAJTANI S. WAKABAYASHI, Microhyperbolic operators in Gevrey classes, Publ. RIMS, Kyoto Univ., 25 (1989), pp. 169-221.
- [5] H. KOMATSU, Linear hyperbolic equations with Gevrey coefficients, J. Math. Pures Appl., 59 (1980), pp. 145-185.
- [6] J. LERAY Y. OHYA, Equations et systemes non-linéaires, hyperboliques non-stricts, Math. Annalen, 170 (1967), pp. 167-205.
- [7] S. MIZOHATA, On the Cauchy Problem, Science Press, Bejing (1958).
- [8] S. SPAGNOLO, Some results of analytic regularity for the semilinear weakly hyperbolic equations of the second order, Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo speciale (1988), pp. 203-229.
- [9] K. TANIGUCHI, Fourier integral operators in Gevrey class on Rⁿ and the fundamental solution for a hyperbolic operator, Publ. RIMS, Kyoto Univ., 20 (1984), pp. 491-542.

Manoscritto pervenuto in redazione l'11 febbraio 1994 e, in forma revisionata, il 7 aprile 1994.