RENDICONTI

 del
SEminario Matematico

 della
Università di Padova

Massimo Cicognani

LUISA ZANGHIRATI

Propagation of analytic and Gevrey regularity for a class of semi-linear weakly hyperbolic equations

Rendiconti del Seminario Matematico della Università di Padova, tome 94 (1995), p. 99-111
http://www.numdam.org/item?id=RSMUP_1995__94__99_0

© Rendiconti del Seminario Matematico della Università di Padova, 1995, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Propagation of Analytic and Gevrey Regularity for a Class of Semi-Linear Weakly Hyperbolic Equations.

Massimo Cicognani - Luisa Zanghirati (*)

1. Introduction and notations.

Let Ω be an open set in $\mathbb{R}^{n+1}=\mathbb{R}_{t} \times \mathbb{R}_{x}^{n}$ (t the «time variable»), $\Omega_{+}=\Omega \cap\{t>0\}, \bar{\Omega}_{+}=\Omega \cap\{t \geqslant 0\}, \Omega_{0}=\Omega \cap\{t=0\}$ and let $u(t, x)$ be a real solution of a semilinear equation

$$
\begin{equation*}
P_{m}\left(t, x, \partial_{t, x}\right) u+G\left(t, x, u^{(\alpha)}\right)_{|\alpha| \leqslant m-1}=0 \quad \text { in } \Omega_{+}\left(u^{(\alpha)}=\partial_{t, x}^{\alpha} u\right) \tag{1.1}
\end{equation*}
$$

where G is an analytic function of its arguments and $P_{m}\left(t, x, \partial_{t, x}\right)$ is a homogenuous differential operator of order $m \geqslant 2$ with analytic coefficients in Ω which is hyperbolic with respect to the hypersurfaces $t=t_{0}$.

We are concerned with the problem of the propagation of the analytic regularity of u in a domain of influence $D \subset \bar{\Omega}+$ provided that the Cauchy data are analytic functions in $\bar{\omega}, \omega$ a open bounded subset of \mathbb{R}^{n} such that $\bar{\omega} \subset \Omega_{0}$ and $D \cap\{t=0\} \subset \omega$.

From the results of Alinhac and Metivier [2] we know that if P_{m} is strictly hyperbolic and u is C^{∞}, then u is analytic in D.

Weakly hyperbolic equations has been considered by Spagnolo [8].
$\left({ }^{*}\right)$ Indirizzo degli AA.: Dipartimento di Matematica, Università di Ferrara, Via Machiavelli 35, I-44100, Ferrara, Italy.

He proved that if (1.1) is of the type

$$
\begin{equation*}
\partial_{t}^{2} u-\sum_{h, k=1}^{n} \partial_{x_{k}}\left(a_{h k}(t, x) \partial_{x_{h}} u\right)=G(t, x, u) \tag{1.2}
\end{equation*}
$$

then u is analytic in D under one of the following conditions:
a) the coefficients $a_{h k}$ have the form $a_{h k}(t, x)=b(t) a_{h k}^{0}(x)$ and u is of class C^{1};
b) the solution u is assumed to belong to some Gevrey class of order less than two.

Here we consider the case where (1.1) is a weakly hyperbolic equation of the form $\partial_{t}^{m} u+G\left(t, x, u^{(\alpha)}\right)_{|\alpha| \leqslant m-1}=0, m \geqslant 2$, and prove that the solution is analytic in every cylinder [$0, T] \times \omega$ contained in $\bar{\Omega}_{+}$if u is assumed to be in some Gevrey class of order σ_{1} smaller than $1 / \varrho$ with a index $\varrho \leqslant 1-1 / m$ which is determined by the derivatives of u that really appear as arguments of G. In fact we shall prove a more general result (see Theorem 1 below) considering also the propagation of the regularity of u in Gevrey classes when G and the Cauchy data are not analytic but Gevrey functions of order $\sigma \in] 1, \sigma_{1}[$.

Note that our result with $m=2$ is not covered by [8] since the derivatives of u do not appear in the non linear terms of (1.2).

We denote by $\mathscr{G}^{\sigma}(\mathcal{O}), 1 \leqslant \sigma<\infty, \mathcal{O}$ an open subset of \mathbb{R}^{ν}, the space of Gevrey functions of index σ, i.e. the space of all functions in $C^{\infty}(\mathcal{O})$ which satisfy for every compact subset K of \mathcal{O} :

$$
\left|\partial^{\alpha} v(x)\right| \leqslant C A^{|\alpha|} \alpha!^{\sigma}, \quad x \in K, \quad \alpha \in \mathbb{Z}_{+}^{v}
$$

C, A constants depending on K (and v).
Moreover we denote by $\gamma^{\sigma}(\mathcal{O}), 1<\sigma<\infty$, the space of all functions v in $C^{\infty}(\mathcal{O})$ satisfying the following condition: for every $\varepsilon>0$, for every compact subset K of \mathcal{O} there exists a constants c_{ε} such that:

$$
\left|\partial^{\alpha} v(x)\right| \leqslant c_{\varepsilon} \varepsilon^{|\alpha|} a!^{\sigma}, \quad x \in K, \quad \alpha \in \mathbb{Z}_{+}^{\nu},
$$

It is $\mathscr{G}^{\sigma}(\mathcal{O}) \subset \gamma^{\sigma_{1}}(\mathcal{O}) \subset \mathcal{S}^{\sigma_{1}}(\mathcal{O})$ for every $1 \leqslant \sigma<\sigma_{1}<\infty$. We write $v \in$ $\in \mathscr{G}^{\sigma}(K), v \in \gamma^{\sigma}(K)$ if $v \in \mathscr{G}^{\sigma}(\mathcal{O}), v \in \gamma^{\sigma}(\mathcal{O})$ respectively for some open neighbourhood \mathcal{O} of the compact set K.

Consider a function $G\left(t, x, u^{(\alpha)}\right)_{a \in \mathfrak{a}}$, where $(t, x) \in \Omega$ (Ω an open set in \mathbb{R}^{n+1} containing the origin), $\mathfrak{a c}\left\{\left(\alpha_{0}, \alpha^{\prime}\right) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{n},|\alpha| \leqslant\right.$ $\leqslant m-1\}, m$ a positive integer, $m \geqslant 2$. Let $\varrho=\max _{\alpha \in \mathfrak{a}}\left|\alpha^{\prime}\right| /\left(m-\alpha_{0}\right)$ and assume that G is a Gevrey function of index σ of its arguments for some $\sigma \in\left[1,1 / \varrho\left[\right.\right.$. Moreover assume that $g_{j}, 0 \leqslant j \leqslant m-1$, are
given Gevrey functions of index σ in $\bar{\omega}, \omega$ and open bounded subset of \mathbb{R}^{n} such that $\bar{\omega} \subset \Omega_{0}$. Then we have:

Theorem 1. Let u be a solution of the problem:

$$
\left\{\begin{array}{l}
\partial_{t}^{m} u+G\left(t, x, u^{(\alpha)}\right)_{\alpha \in \mathfrak{a}}=0 \quad \text { in } \Omega_{+} \tag{1.3}\\
\partial_{t}^{k} u_{\left.\right|_{t=0}}=g_{k} \quad \text { in } \omega, k=0,1, \ldots, m-1
\end{array}\right.
$$

If $u \in \mathcal{G}^{\sigma_{1}}\left(\bar{\Omega}_{+}\right)$for some $\left.\sigma_{1} \in\right] \sigma, 1 / \varrho\left[\right.$ then $u \in \mathcal{G}^{\sigma}(\mathcal{C})$ for every cylinder

$$
\mathcal{C}=\left[0, T_{1}\right] \times \omega \subset \bar{\Omega}_{+} \cdot
$$

In particular if $G, g_{0}, \ldots, g_{m-1}$ are analytic functions and $u \in$ $\in \mathscr{G}^{\sigma_{1}}\left(\bar{\Omega}_{+}\right)$for some $\left.\sigma_{1} \in\right] 1,1 / \varrho[$, then u is analytic in \mathcal{C}.

Note that the Cauchy problem for the linearized equation

$$
P=\partial_{t}^{m}+\sum_{\alpha \in \mathfrak{a}} \frac{\partial G}{\partial u^{(\alpha)}}\left(t, x, u^{(\alpha)}\right) \partial_{t, x}^{\alpha}
$$

of (1.3) at a solution u may present phenomena of non existence or non uniqueness if u is in a Gevrey class of order greater or equal than $1 / \varrho$ (see Komatsu [5], Mizohata [7], Agliardi [1]). Thus it seems difficult to weaken the hypotheses of Theorem 1 as it concerns the a propri regularity of u (cf. the above condition a) and b) for the equation (1.2) in [8]: if the coefficients are as in condition a) then the Cauchy problem for the linearized equation of (1.2) at a C^{∞} solution u is well posed in C^{∞}. In the case of general coefficients, condition b) ensures that the Cauchy problem for the linearized equation at $u \in G^{\sigma_{1}}$ is well posed in $G^{\sigma_{1}}$ as in our Theorem 1).

We shall give the proof of Theorem 1 in section 3 after some preliminary lemmas which are the subject of next section 2.

2. Preliminary lemmas.

Let $\mu>n / 2,0<\varrho<1$ be two fixed real numbers. For every $\tau>0$ we denote by $\mathscr{A}_{\tau}\left(\mathbb{R}^{n}\right)$ the space of all $u \in L^{2}\left(\mathbb{R}^{n}\right)$ such that:

$$
\left\|\langle D\rangle^{\mu} \exp \left(\tau\langle D\rangle^{\varrho}\right) u\right\|_{L^{2}\left(\mathbf{R}^{n}\right)}<\infty,
$$

where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}, \xi \in \mathbb{R}^{n}$.
$\mathscr{H}_{\tau}\left(\mathbb{R}^{n}\right)$ is a Hilbert space with respect to the inner product:

$$
\langle u, v\rangle=(2 \pi)^{-n} \int\langle\xi\rangle^{2 \mu} \exp \left(2 \tau\langle\xi\rangle^{e}\right) \widehat{u}(\xi) \overline{\hat{v}}(\xi) d \xi,
$$

\widehat{u} the Fourier transform of u.
We denote the corresponding norm by $\|\cdot\|_{\tau}$, i.e.

$$
\|u\|_{\tau}=\left\|\langle D\rangle^{\mu} \exp \left(\tau\langle D\rangle^{\varrho}\right) u\right\|_{L^{2}\left(\mathrm{R}^{n}\right)} .
$$

Since $\mu>n / 2$ and $0<\varrho<1$, it is easy to prove, as for the usual Sobolev spaces, that $\mathcal{H}_{\tau}\left(\mathbb{R}^{n}\right)$ is an algebra. More precisely we have:

Proposition 2.1. There exists a constant c_{0}, depending only on n and μ, such that

$$
\begin{equation*}
\|u v\|_{\tau} \leqslant c_{0}\|u\|_{\tau}\|v\|_{\tau}, \quad u, v \in \mathscr{C}_{\tau}\left(\mathbb{R}^{n}\right) \tag{2.1}
\end{equation*}
$$

For ω an open ball of \mathbb{R}^{n}, we introduce the space $\mathscr{\mathscr { C }}_{\tau}(\bar{\omega})$ of the restrictions to ω of the elements in $\mathscr{C}_{\tau}\left(\mathbb{R}^{n}\right)$:

$$
\mathscr{\mathscr { }}_{\tau}(\bar{\omega})=\left\{v \in L^{2}\left(\mathbb{R}^{n}\right) ; \exists u \in \mathcal{N}_{\tau}\left(\mathbb{R}^{n}\right), u=v \text { in } \omega\right\}
$$

endowed with the norm

$$
\begin{equation*}
\|v\|_{\tau, \omega}=\left\|E_{\tau}(v)\right\|_{\tau}, \tag{2.2}
\end{equation*}
$$

$E_{\tau}(v)$ the element of minimum norm in the closed convex subset $\delta(v)=$ $=\left\{u \in \mathscr{H}_{\tau}\left(\mathbb{R}^{n}\right) ; u=v\right.$ in $\left.\omega\right\}$ of the Hilbert space $\mathscr{\mathscr { C }}_{\tau}\left(\mathbb{R}^{n}\right)$.

Thus, $\mathscr{K}_{\tau}(\bar{\omega})$ is the quotient space of $\mathscr{C}_{\tau}\left(\mathbb{R}^{n}\right)$ with the closed subspace $M=\left\{u \in \mathscr{K}_{\tau}\left(\mathbb{R}^{n}\right) ; u=0\right.$ in $\left.\omega\right\}$.

Note that the Paley Wiener Theorem implies $\mathscr{G}^{\sigma}(\bar{\omega}) \subset \mathscr{S}_{\tau}(\bar{\omega})$ with continuous injection for $\sigma<1 / \varrho$ and every $\tau>0$.

In view of Proposition 2.1, $\mathscr{C}_{\tau}(\bar{\omega})$ is a normed algebra and (2.1) is valid with the same constant c_{0} (and $\|\cdot\|_{\tau, \omega}$ instead of $\|\cdot\|_{\tau}$) for u, $v \in \mathcal{H}_{\tau}(\bar{\omega})$.

Lemma 2.2. Let $w \in \gamma^{1 / e}(\bar{\omega})$ be a real valued function and let $\phi \in$ $\in \mathscr{G}^{\sigma}(w(\bar{\omega}))$ for $a \sigma \in[1,1 / \varrho[$. Then we can find positive constants τ_{0}, C, R such that for every $0<\tau \leqslant \tau_{0}$

$$
\begin{equation*}
\left\|\phi^{(q)}(w)\right\|_{\tau, \omega} \leqslant C R^{q} q!^{\sigma}, \quad q \in \mathbb{Z}_{+} \tag{2.2}
\end{equation*}
$$

where R depends only on ϕ and ω, τ_{0} depends on ϕ, w and ω, whereas C is a majorant of $\|w\|_{\tau_{0}, \omega}$.

Proof. Let K be a compact subset of \mathbb{R}^{n} such that $\stackrel{\circ}{K} \supset \bar{\omega}$ and $w \in$ $\in \gamma^{1 / \varrho}(K)$ and let us denote $H=w(K)$. then we have:

$$
\begin{aligned}
& \sup _{H}\left|\phi^{(q)}\right| \leqslant R_{0} R_{1}^{q} q^{\sigma^{\sigma}} \quad\left(\exists R_{0}, R_{1}, \forall q\right), \\
& \sup _{K}\left|\partial^{a} w\right| \leqslant c_{h} h^{|\alpha|} \alpha!^{1 / e} \quad\left(\forall h \exists c_{h}, \forall \alpha\right) .
\end{aligned}
$$

By using Faa-De Bruno's formula, we obtain

$$
\begin{equation*}
\left|\partial^{\gamma} \phi^{(q)}(w(x))\right| \leqslant 2^{\sigma} R_{0}\left(2^{\sigma} R_{1}\right)^{q} q!^{\sigma}\left((2 d)^{\sigma} R_{1} h c_{h}\right)^{|\gamma|}|\gamma|^{|\gamma| / d} \tag{2.3}
\end{equation*}
$$

for every $x \in K, \gamma \in \mathbb{Z}_{+}^{n}, q \in \mathbb{Z}_{+}$, where the constant d depends only on σ and n.

Let $\chi \in \gamma^{1 / e}\left(\mathbb{R}^{n}\right), \operatorname{supp} \chi \subset K, \chi=1$ in a neighbourhood of $\bar{\omega}$, and

$$
\sup \left|\partial^{\alpha} \chi\right| \leqslant l_{h} h^{|\alpha|} \alpha!^{1 / e} \quad\left(\forall h \exists l_{h}, \forall \alpha\right) .
$$

From (2.3) it follows:

$$
\left|\xi^{\gamma}\left(\chi \overline{\phi^{(q)}(w)}\right)(\xi)\right| \leqslant C_{h}\left(A_{h} h\right)^{|\gamma|}|\gamma|^{|\gamma| / e} R^{q} q!^{\sigma}, \quad \xi \in \mathbb{R}^{n},
$$

where $C_{h}=2^{\sigma} R_{0} l_{h}$ meas (K), $A_{h}=(2 d)^{\sigma} R_{1} c_{h}+1, R=2^{\sigma} R_{1}$.
Hence, by the arbitrariness of γ :

$$
\begin{equation*}
\left|\left(\chi \overline{\phi^{(q)}(w)}\right)(\xi)\right| \leqslant C_{1} \exp \left(-k_{1}\langle\xi\rangle^{\varrho}\right) R^{q} q!^{\sigma} \tag{2.4}
\end{equation*}
$$

for a constant $k_{1} \geqslant d^{\prime} A_{1}^{-\varrho}, d^{\prime}$ depending only on n, σ, ϱ.
From (2.4) it follows (2.2) for every $\tau \leqslant k_{1} / 2=\tau_{0}$, with

$$
C=C_{1}\left(\int\langle\xi\rangle^{2 \mu} \exp \left(-2 \tau_{0}\langle\xi\rangle^{\varrho}\right) d \xi\right)^{1 / 2}
$$

and the proof is complete.
Now we introduce some notations: we consider the sequence $m_{p}=a\left(p!^{\sigma} /(p+1)^{2}\right)$, where $\sigma \geqslant 1$ and the constant a is chosen in order to satisfy:

$$
\begin{aligned}
& \sum_{0 \leqslant \beta \leqslant \alpha}\binom{\alpha}{\beta} m_{|\beta|} m_{|\alpha-\beta|} \leqslant m_{|\alpha|}, \\
& \sum_{0<\beta \leqslant \alpha}\binom{\alpha}{\beta} m_{|\beta|} m_{|\alpha-\beta|+1} \leqslant|\alpha| m_{|\alpha|}
\end{aligned}
$$

For $\varepsilon>0, p \geqslant 1$ we define $M_{p}=\varepsilon^{1-p} m_{p}$ and for $w \in \gamma^{\varrho}(\bar{\omega}), p \geqslant 1$ we let

$$
\begin{aligned}
|w|_{p, \tau} & =\sup _{|\alpha|=p}\left\|\partial_{x}^{\alpha} w\right\|_{\tau, w} \\
{[w]_{p, \tau} } & =\sup _{0<q \leqslant p} \frac{|w|_{q, \tau}}{M_{q}}
\end{aligned}
$$

As in [2], from Proposition 2.1 and Lemma 2.2 we can prove the following lemma by the method of majorant series:

Lemma 2.3. If w and ϕ satisfy the hypotheses of Lemma 2.2, then there exist $\tau_{0}, L, \delta_{0}>0$ such that for every $p \geqslant 1, \varepsilon>0,0 \leqslant \tau \leqslant \tau_{0}$ the condition

$$
\begin{equation*}
\varepsilon[w]_{p, \tau} \leqslant \delta_{0} \tag{2.5}
\end{equation*}
$$

implies:

$$
\begin{aligned}
& \text { i) }[\phi(w)]_{p, \tau} \leqslant L[w]_{p, \tau}, \\
& \text { ii) }|\phi(w)|_{p+1, \tau} \leqslant L\left(|w|_{p+1, \tau}+M_{p+1}[w]_{p, \tau}\right), \\
& \text { iii) for }|\alpha|=p+1, j=1, \ldots, n, \\
& \left\|\partial_{x}^{\alpha}\left(\phi(w) \partial_{j} w\right)-\phi(w) \partial^{\alpha} \partial_{j} w\right\|_{\tau, \omega} \leqslant \\
& \quad \leqslant(p+1) L\left\{|w|_{p+1, \tau}+M_{p+1}\left(1+[w]_{p, \tau}\right)^{2}\right\},
\end{aligned}
$$

where τ_{0} is the constant found in Lemma 2.2, L and δ_{0} depend only on ϕ and $\|\operatorname{grad} w\|_{\tau_{0}, \omega}$.

Lemma 2.3 can be extended to functions $w=\left(w_{1}, \ldots, w_{\nu}\right)$ with values in \mathbb{R}^{ν}, by defining $|w|_{p, \tau}=\max _{1 \leqslant j \leqslant \nu}\left|w_{j}\right|_{p, \tau}$. In fact we have:

Lemma 2.4. Let $w=\left(w_{1}, \ldots, w_{v}\right), w_{j}$ real functions in $\gamma^{1 / e}(\bar{\omega})$, and let $\phi(x, w) \in \mathfrak{G}^{\sigma}(\bar{\omega} \times w(\bar{\omega}))$ for $a \sigma \in[1,1 / \varrho[$. There exist four positive constants $\tau_{0}, \varepsilon_{0}, \delta_{0}, L$ such that for $\left.\left.p \geqslant 1, \varepsilon \in\right] 0, \varepsilon_{0}\right], \tau \in\left[0, \tau_{0}\right]$, condition (2.5) implies:
j) $[\phi(\cdot, w)]_{p, \tau} \leqslant L\left(1+[w]_{p, \tau}\right)$,
jj) $|\phi(\cdot, w)|_{p+1, \tau} \leqslant L\left\{|w|_{p+1, \tau}+M_{p+1}\left(1+[w]_{p, \tau}\right)\right\}$,
$\mathrm{jjj})$ for $|\alpha|=p+1, j=1, \ldots, n, k=1, \ldots, v$ it is $\left\|\partial_{x}^{\alpha}\left(\phi(\cdot, w) \partial_{j} w_{k}\right)-\phi(\cdot, w) \partial^{\alpha} \partial_{j} w_{k}\right\|_{\tau, \omega} \leqslant$

$$
\leqslant(p+1) L\left\{|w|_{p+1, \tau}+M_{p+1}\left(1+[w]_{p, \tau}\right)^{2}\right\}
$$

In next section we apply Lemma 2.4 to functions $w(t, x)$, $\phi(t, x, w(t, x))$, where $w \in \mathcal{G}^{\sigma_{1}}\left(\left[0, T_{1}\right] ; \mathcal{S}^{\sigma_{1}}(\bar{\omega})^{v}\right), \phi \in \mathcal{G}^{\sigma}\left(\left[0, T_{1}\right] \times \bar{\omega} \times\right.$ $\left.\times w\left(\left[0, T_{1}\right] \times \bar{\omega}\right)\right), 1 \leqslant \sigma<\sigma_{1}<1 / \varrho$ for which t is considered as a parameter. By Lemma 2.4 there exist positive constants $\tau_{0}, \varepsilon_{0}, \delta_{0}, L$ such that for every integer $\left.p \geqslant 1, \varepsilon \in] 0, \varepsilon_{0}\right], 0 \leqslant \tau \leqslant \tau_{0}$, if $\varepsilon[w(t, \cdot)]_{p, \tau} \leqslant \delta_{0}$ for every $t \in\left[0, T_{1}\right]$ then j), jj), jjj) are true uniformly with respect to t in this interval.

For the function $w(t, x)$ we use also the seminorms we are going to introduce. Let c, T be positive constants such that $c T \leqslant \tau_{0}, T \leqslant T_{1}$ and let

$$
M_{p}^{t}=(\varepsilon \exp (-\lambda t))^{1-p} m_{p}=\exp (-\lambda t(1-p)) M_{p}
$$

where $\lambda \in \mathbb{R}$ is a parameter which will be choosen in a suitable way at the end of the proof of Theorem 1.1. For $0<\varepsilon \leqslant \varepsilon_{0}, 0 \leqslant t \leqslant T, p \geqslant 1$ we define:

$$
\begin{aligned}
|w|_{p}^{t} & =\max _{|\beta|=p}\left\|\partial_{x}^{\beta} w(t, \cdot)\right\|_{c(T-t), \omega} \\
{[w]_{p}^{t} } & =\max _{1 \leqslant q \leqslant p} \frac{|w|_{q}^{t}}{M_{q}^{t}}
\end{aligned}
$$

Moreover, for the solution u of (1.3) we write:

$$
\begin{aligned}
& \Phi_{p}^{t}(u)=\max _{\alpha \in \mathfrak{a}_{1}}\left|\partial_{t, x}^{\alpha} u\right|_{p}^{t} \\
& \Psi_{p}(u)=\sup _{0 \leqslant t \leqslant T} \max _{1 \leqslant q \leqslant p} \frac{\Phi_{q}^{t}(u)}{M_{q-1}^{t}}, \quad p \geqslant 2
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathfrak{Q}_{1}=\left\{\left(\alpha_{0}, \alpha^{\prime}\right) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{n} ;\left(\alpha_{0}, \alpha^{\prime}+e_{j}\right) \in \mathfrak{A}, j=1, \ldots, n\right\} \cup \\
& \cup\left\{\left(\alpha_{0}, 0\right) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}^{n}, \alpha_{0} \leqslant m-1\right\},
\end{aligned}
$$

$\left\{e_{j}\right\}_{1 \leqslant j \leqslant n}$ is the canonical basis of \mathbb{R}^{n}.

3. Proof of Theorem 1.

By deriving the equations (1.3) with respect to x_{j} we get:

$$
\left\{\begin{array}{l}
\left.\left.\partial_{t}^{m} \partial_{j} u+\sum_{\alpha \in \mathfrak{a}} \frac{\partial G}{\partial u^{\alpha}} \partial_{t, x}^{\alpha} \partial_{j} u=-\frac{\partial G}{\partial_{x_{j}}} \quad \text { in }\right] 0, T_{1}\right] \times \omega \tag{3.1}\\
\partial_{t}^{k} \partial_{j} u_{\left.\right|_{t=0}}=\partial_{j} g_{k} \quad \text { in } \omega, k=0,1, \ldots, m-1
\end{array}\right.
$$

Now we apply the operator ∂_{x}^{β} to (3.1), so obtaining:

$$
\left\{\begin{array}{l}
\left.\left.P v_{\beta, j}=f_{\beta, j} \quad \text { in }\right] 0, T_{1}\right] \times \omega, \tag{3.2}\\
\partial_{t}^{k} v_{\beta, j_{t t=0}}=g_{k, \beta, j} \quad \text { in } \omega, k=0,1, \ldots, m-1,
\end{array}\right.
$$

where P is the linear operator

$$
\begin{gathered}
\partial_{t}^{m}+\sum_{\alpha \in \mathcal{G}} \frac{\partial G}{\partial u^{(\alpha)}}\left(t, x, u^{(\alpha)}\right) \partial_{t, x}^{\alpha}, \\
v_{\beta, j}=\partial_{x}^{\beta} \partial_{j} u,
\end{gathered}
$$

$$
\begin{aligned}
f_{\beta, j} & =-\partial_{x}^{\beta}\left(\frac{\partial G}{\partial x_{j}}\left(t, x, u^{(\alpha)}\right)\right)+ \\
& -\sum_{\alpha \in \mathfrak{a}}\left\{\partial_{x}^{\beta}\left[\frac{\partial G}{\partial u^{(\alpha)}}\left(t, x, u^{(\alpha)}\right) \partial_{t, x}^{\alpha} \partial_{j} u\right]-\frac{\partial G}{\partial u^{(\alpha)}}\left(t, x, u^{(\alpha)}\right) \partial_{t, x}^{\alpha} \partial_{x}^{\beta} \partial_{j} u\right\},
\end{aligned}
$$

and

$$
g_{k, \beta, j}=\partial_{x}^{\beta} \partial_{j} g_{k}(x), \quad k=0,1, \ldots, m-1 .
$$

From the hypotheses of Theorem 1 it follows that P can be written in the form $P=\partial_{t}^{m}+\sum_{j=1}^{m} P_{j}\left(t, x, D_{x}\right) D_{t}^{m-1}$, where P_{j} is a linear operator of order less or equal to ϱj with coefficients in $\mathfrak{G}^{\sigma_{1}}\left(\bar{\Omega}_{+}\right)$; also $f_{\beta, j} \in$ $\in \mathscr{G}^{\sigma_{1}}\left(\bar{\Omega}_{+}\right)$whereas $g_{k, \beta, j} \in \mathscr{G}^{\sigma}(\bar{\omega})$.

We extend the coefficients in the lower order terms of P outside a neighborhood of $\left[0, T_{1}\right] \times \bar{\omega}$ to functions in $\mathcal{G}^{\sigma}\left(\mathbb{R}^{n+1}\right)$ with compact support and denote by \widetilde{P} the linear operator in $\left[0, T_{1}\right] \times \mathbb{R}^{n}$ obtained in this way. Moreover, we set $\widetilde{f}_{\beta, j}(t)=E_{c(T-t)}\left(f_{\beta, j}(t)\right), \widetilde{g}_{k, \beta, j}=E_{c T}\left(g_{k, \beta, j}\right)$, where E_{τ} is the extension operator defined at the beginning of section 2.

By letting

$$
\begin{gathered}
\Lambda=\left\langle D_{x}\right\rangle^{e}, \quad U_{\beta, j}={ }^{t}\left(\Lambda^{m-1} \widetilde{v}_{\beta, j}, \Lambda^{m-2} \partial_{t} \widetilde{v}_{\beta, j}, \ldots, \partial_{t}^{m-1} \widetilde{v}_{\beta, j}\right), \\
F_{\beta, j}={ }^{t}\left(0, \ldots, \widetilde{f}_{\beta, j}\right), G_{\beta, j}={ }^{t}\left(\Lambda^{m-1} \widetilde{g}_{0, \beta, j}, \Lambda^{m-2} \widetilde{g}_{1, \beta, j}, \ldots, \widetilde{g}_{m-1, \beta, j}\right),
\end{gathered}
$$

the problem

$$
\begin{cases}\widetilde{P} \widetilde{v}_{\beta, j}=\widetilde{f}_{\beta, j} & \text { in } \left.] 0, T_{1}\right] \times \mathbb{R}^{n} \tag{3.3}\\ \partial_{t}^{j} \widetilde{v}_{t=0}=\widetilde{g}_{k, \beta, j} & \text { in } \mathbb{R}^{n}, k=0,1, \ldots, m-1\end{cases}
$$

is equivalent to a system

$$
\begin{cases}\partial_{t} U_{\beta, j}+A U_{\beta, j}=F_{\beta, j} & \text { in } \left.] 0, T_{1}\right] \times \mathbb{R}^{n} \tag{3.4}\\ U_{\beta,\left.j\right|_{t=0}}=G_{\beta, j} & \text { in } \mathbb{R}^{n},\end{cases}
$$

where $A=\left(a_{i, k}\left(t, x, D_{x}\right)\right)$ is a suitable $m \times m$ matrix of pseudo-differential operators with symbols that satisfy:

$$
\begin{equation*}
\left|\partial_{t}^{l} \partial_{x}^{\gamma} \partial_{\xi}^{\alpha} a_{i, k}(t, x, \xi)\right| \leqslant C^{l+|\alpha|+|\gamma|+1} \alpha!(\gamma!l!)^{\sigma}\langle\xi\rangle^{\varrho-|\alpha|} \tag{3.5}
\end{equation*}
$$

$\left(\exists C, \forall l, \alpha, \gamma, \forall(t, x, \xi) \in\left[0, T_{1}\right] \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$.
In [3] Cattabriga-Mari proved that the Cauchy problem (3.4) is well posed in $\mathscr{S}^{\sigma_{1}}$ and constructed for it a fundamental solution $M(t, s), t, s \in$ $\in\left[0, T_{2}\right], T_{2} \leqslant T_{1}$ a suitable positive number depending only on the constant C in (3.5). It is $M(t, s)=M_{1}(t, s) R(t, s)$ where $R(t, s)$ is an operator applying continuously $\left(\mathcal{K}_{\tau}\left(\mathbb{R}^{n}\right)\right)^{m}$ into itself for every $\tau, M_{1}(t, s)$ is a matrix of pseudo-differential operators of infinite order on \mathbb{R}^{n} with symbol $M_{1}(t, s ; x, \xi)$ satisfying:

$$
\begin{align*}
& \left|\partial_{t}^{k} \partial_{x}^{\gamma} \partial_{\xi}^{\alpha} M_{1}(t, s ; x, \xi)\right| \leqslant \tag{3.6}\\
&
\end{align*} \quad \leqslant C_{1}^{k+|\alpha|+|\gamma|+1} \alpha!(\gamma!k!)^{\sigma_{1}}\langle\xi\rangle^{-|\alpha|} \exp \left(c|t-s|\langle\xi\rangle^{\varrho}\right), ~ l
$$

$t, s \in\left[0, T_{2}\right], x, \xi \in \mathbb{R}^{n}$.
We can prove the following lemma (cf. Propositions 2.8 and 2.12 in [4]):

Lemma 3.1. Let $Q\left(x, D_{x}\right)$ be a pseudo-differential operator of infinite order with symbol q satisfying

$$
\begin{equation*}
\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} q(x, \xi)\right| \leqslant C_{\alpha} L^{-|\beta|}(\beta!)^{1 / \varrho}\langle\xi\rangle^{-|\alpha|} \exp \left(\delta\langle\xi\rangle^{\varrho}\right), \quad \delta \geqslant 0 \tag{3.7}
\end{equation*}
$$

for every $x, \xi \in \mathbb{R}^{n}$. There exist two positive constants A and δ_{1} depending only on μ, ϱ, n and L in (3.7) such that

$$
\begin{equation*}
\|Q u\|_{\tau} \leqslant A\|u\|_{\tau+\delta} \tag{3.8}
\end{equation*}
$$

for every $u \in \mathcal{H}_{\tau+\delta}\left(\mathbb{R}^{n}\right)$ with $\tau \leqslant \delta_{1}$.
Proof. Let $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\psi(\xi)=1$ for $|\xi| \leqslant 1 / 2$ and set $\psi_{j}(\xi)=\psi(\xi / j)$ for $j \in \mathbb{Z}_{+}$. Let us consider the operators $R_{j}\left(x, D_{x}\right)=$

$$
=\exp \left(\tau\left\langle D_{x}\right\rangle^{\varrho}\right)\left\langle D_{x}\right\rangle^{\mu} \psi_{j}\left(D_{x}\right) Q\left(x, D_{x}\right) \psi_{j}\left(D_{x}\right)\left\langle D_{x}\right\rangle^{-\mu} \exp \left(-(\tau+\delta)\left\langle D_{x}\right\rangle^{\varrho}\right)
$$

Our aim is to prove that the symbols $r_{j}(x, \xi)$ satysfy

$$
\begin{equation*}
\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} r_{j}(x, \xi)\right| \leqslant C_{\alpha, \beta} \tag{3.9}
\end{equation*}
$$

for every $x, \xi \in \mathbb{R}^{n}$ and every $j \in \mathbb{Z}_{+}$, provided that $\tau \leqslant \delta_{1}$, with constants $C_{\alpha, \beta}$ depending on α, β, n and μ, and δ_{1} depending on μ, ϱ, n and L in (3.7). Then (3.8) will follow as a consequence of the Calderón-Vaillancourt theorem about the L^{2} boundness of pseudo-differential-operators with symbols in the space $S_{0,0}^{0}$.

The symbol $r_{j}(x, \xi)$ is represented by means of an oscillatory integral

$$
r_{j}(x, \xi)=O s-(2 \pi)^{-n} \iint \exp (i(x-y)(\eta-\xi)) a_{j}(y, \eta, \xi) d y d \eta
$$

$a_{j}(y, \eta, \xi)=\exp \left(\tau\langle\eta\rangle^{\varrho}\right)\langle\eta\rangle^{\mu} \psi_{j}(\eta) q(\gamma, \xi) \psi_{j}(\xi)\langle\xi\rangle^{-\mu} \exp \left(-(\tau+\delta)\langle\xi\rangle^{\rho}\right)$.
For $N=0,1, \ldots$, and δ_{1} a positive constant to be fixed later on, we put $\Omega_{N}=\left\{\eta ;\left(N / \delta_{1}\right)^{1 / e} \leqslant|\xi-\eta| \leqslant\left((N+1) / \delta_{1}\right)^{1 / e}\right\}$ and we write $r_{j}(x, \xi)=\sum_{N=0}^{\infty} r_{j, N}(x, \xi)$ with

$$
\begin{equation*}
r_{j, N}(x, \xi)= \tag{3.10}
\end{equation*}
$$

$$
=\int_{\Omega_{N}}\left[\int \exp (i(x-y)(\eta-\xi))\langle x-y\rangle^{-2 l}\left(1-\Delta_{\eta}\right)^{l} a_{j}(y, \eta, \xi) d y\right](2 \pi)^{-n} d \eta
$$

l a fixed integer greater than $n / 2$.
Integrating by parts N times with respect to y in (3.10) we get

$$
\left|r_{j, N}(x, \xi)\right| \leqslant C_{1}\left(L_{1} \delta_{1}^{-1 / e}\right)^{-N} \exp \left(\left(\tau / \delta_{1}\right) N\right)
$$

with C_{1} depending on n and μ, L_{1} depending on n, μ, ϱ and L in (3.7). Then we can choose $\delta_{1}=\left(L_{1} / 2 e\right)^{\rho}$ to have (3.9) with $\alpha=\beta=0$. In the same way, we can achieve (3.9) for $|\alpha|,|\beta|>0$, completing the proof.

Returning to the fundamental solution $M(t, s)$ of (3.4) constructed in [3], from Lemma 3.1 it follows that there exist constants $A_{0}>0, T_{3} \in$ $\epsilon] 0, T_{2}\left[, T_{3}\right.$ depending on the constant C_{1} in (3.6), such that

$$
\begin{equation*}
\|M(t, s) V\|_{c(T-t)} \leqslant A_{0}\|V\|_{c(T-s)}, \tag{3.11}
\end{equation*}
$$

for $0 \leqslant s<t \leqslant T \leqslant T_{3}$ and every $V \in\left(\mathscr{\mathscr { C }}_{c(T-s)}\left(\mathbb{R}^{n}\right)\right)^{m}$ with c the same constant that appears in the right side of (3.6).

Hence, for the solution

$$
U_{\beta, j}(t, x)=\int_{0}^{t}\left(M(t, s) F_{\beta, j}(s)\right)(x) d s+M(t, 0) G_{\beta, j}(x)
$$

of (3.4), we have for $t \in[0, T]$:

$$
\left\|U_{\beta, j}(t)\right\|_{c(T-t)} \leqslant A_{0}\left(\int_{0}^{t}\left\|F_{\beta, j}(s)\right\|_{c(T-s)} d s+\left\|G_{\beta, j}\right\|_{c T}\right)
$$

If $\alpha=\left(\alpha_{0}, \alpha^{\prime}\right) \in \mathfrak{a}_{1}$ (see the definition at the end of section 2), then $\alpha_{0}+\left|\alpha^{\prime}\right| / \varrho \leqslant m-1$. Hence:

$$
\left\|\partial_{t, x}^{\alpha} \widetilde{v}_{\beta, j}(t)\right\|_{c(T-t)} \leqslant\left\|\Lambda^{m-1-a_{0}} \partial_{t}^{\alpha_{0}} \widetilde{v}_{\beta, j}(t)\right\|_{c(T-t)} \leqslant\left\|U_{\beta, j}(t)\right\|_{c(T-t)},
$$

$0 \leqslant t \leqslant T \leqslant T_{3}$.
Since the solution of (3.2) is unique([3],[4],[7], [9]), we have $v_{\beta, j}(t, x)=\widetilde{v}_{\beta, j}(t, x)$ for $(t, x) \in\left[0, T_{3}\right] \times \omega$. By $\left\|\partial_{t, x}^{\alpha} v_{\beta, j}(t)\right\|_{c(T-t), \omega} \leqslant$ $\leqslant\left\|\partial_{t, x}^{\alpha} \widetilde{v}_{\beta, j}(t)\right\|_{l(T-t)} \quad$ and $\quad\left\|f_{\beta, j}(s)\right\|_{c(T-s), \omega}=\left\|F_{\beta, j}(s)\right\|_{c(T-s)} \quad$ from the above inequalities we obtain:

$$
\begin{equation*}
\max _{\alpha \in \mathfrak{a}_{1}}\left\|\partial_{t, x}^{a} v_{\beta, j}(t)\right\|_{l(T-t), \omega} \leqslant A_{0}\left(\int_{0}^{t}\left\|f_{\beta, j}(s)\right\|_{c(T-s), \omega} d s+\left\|G_{\beta, j}\right\|_{c T}\right), \tag{3.12}
\end{equation*}
$$

$0 \leqslant t \leqslant T \leqslant T_{3}$.
Taking the maximum value for $|\beta|=p$ and $j=1, \ldots, n$ in the left side of (3.12) we have the seminorm Φ_{p+1}^{t} (u) of the solution u of (1.3). Our next aim is to estimate $\left\|f_{\beta, j}(s)\right\|_{c(T-s), \omega}$ from above by seminorms $\Phi_{p+1}^{t}(u)$ in order to deduce from (3.12) an inequality to which we are able to apply Gronwall's Lemma, so obtaining estimates for $\boldsymbol{\Phi}_{p+1}^{t}(u)$. We state the following Lemma, which is an easy consequence of Lemma 2.4. (See [2] for details).

Lemma 3.2. There exist positive constants $\varepsilon_{0}, \tau_{0}, \delta_{0}, L$ such that for $p \geqslant 2,0<\varepsilon \leqslant \varepsilon_{0}, c T \leqslant \tau_{0}, \lambda \geqslant 0$ the condition

$$
\begin{equation*}
\varepsilon \Psi_{p}(u) \leqslant \delta_{0} \tag{3.13}
\end{equation*}
$$

implies:

$$
\left\|f_{\beta, j}(t, \cdot)\right\|_{c(T-t), \omega} \leqslant L p\left\{\Phi_{p+1}^{t}(u)+M_{p}^{t}\left(1+\Psi_{p}(u)\right)^{2}\right\}
$$

for every $|\beta|=p, j=1, \ldots, n$.

Next we fix $T=\min \left\{T_{3}, \tau_{0} / c\right\}$, where τ_{0} is the constant in Lemma 3.2 and T_{3}, c are the constants for which (3.11) holds. From (3.12) and Lemma 3.2 it follows that for $p \geqslant 2,0<\varepsilon \leqslant \varepsilon_{0}, \lambda \geqslant 0$ the condition (3.13) implies:

$$
\begin{equation*}
\Phi_{p+1}^{t}(u) \leqslant L A_{0} p \int_{0}^{t}\left\{\Phi_{p+1}^{s}(u)+M_{p}^{s}\left(1+\Psi_{p}(u)\right)^{2}\right\} d s+G_{p}, \tag{3.14}
\end{equation*}
$$

$0 \leqslant t \leqslant T$, where $G_{p}=A_{0} \max _{|\beta|=p, 1 \leqslant j \leqslant n}\left\|G_{\beta, j}\right\|_{c T}$.
By using Gronwall's inequality and letting $L A_{0}=L_{0}$, we obtain from (3.14)

$$
\begin{align*}
& \Phi_{p+1}^{t}(u) \leqslant \tag{3.15}\\
& \quad \leqslant G_{p} \exp \left[L_{o} p t\right]+L_{o} p\left(1+\Psi_{p}(u)\right)^{2} \int_{0}^{t} \exp \left(L_{0} p(t-s)\right) M_{p}^{s} d s .
\end{align*}
$$

For $\lambda \geqslant 6 L_{0}, p \geqslant 2$ we have:

$$
\begin{equation*}
p \int_{0}^{t} \exp \left(L_{0} p(t-s)\right) M_{p}^{s} d s \leqslant p M_{p} \frac{\exp (\lambda(p-1) t)}{\lambda(p-1)-L^{\prime} p} \leqslant(3 / \lambda) M_{p}^{t} . \tag{3.16}
\end{equation*}
$$

Since $g_{k} \in \mathcal{G}^{\sigma}(\bar{\omega})$, it is $G_{p} \leqslant A_{1} \varepsilon_{1}^{1-p} m_{p}$ for suitable positive constants A_{1}, ε_{1}. Hence for $0<\varepsilon<\varepsilon_{1}, \lambda \geqslant 2 L_{0}, p \geqslant 2$

$$
\begin{equation*}
G_{p} \exp \left(L_{0} p t\right) \leqslant A_{1} M_{p}^{t} . \tag{3.17}
\end{equation*}
$$

From (3.15), (3.16), (3.17) we obtain for $p \geqslant 2,0<\varepsilon<\widetilde{\varepsilon}_{0}=\min \left(\varepsilon_{1}, \varepsilon_{0}\right)$, $\lambda \geqslant \lambda_{0}=6 L_{0}$:

$$
\begin{equation*}
\Phi_{p+1}^{t}(u) \leqslant L_{1}\left(1+\left(\Psi_{p}(u)\right)^{2} / \lambda\right) M_{p}^{t}, \quad 0 \leqslant t \leqslant T \tag{3.18}
\end{equation*}
$$

Summing up, we have proved that:
(3.19) Condition (3.13) implies inequality (3.18)

$$
\text { for } \left.p \geqslant 2, \varepsilon \in] 0, \widetilde{\varepsilon}_{0}\right], \lambda \geqslant \lambda_{0} .
$$

Now we let $H=\max \left(2 L_{1}, \Psi_{2}(u)\right), \lambda=\max \left(\lambda_{0}, 2 H L_{1}\right)$ and fix $\left.\varepsilon \in] 0, \widetilde{\varepsilon}_{0}\right]$ such that $\varepsilon H<\delta_{0}$, where δ_{0} is the same constant as in Lemma 3.2. In this way we have $L_{1}\left(1+H^{2} / \lambda\right) \leqslant H$.

Since $\Psi_{p+1}(u)=\max \left(\Psi_{p}(u), \sup _{t \in[0, T]}\left(\Phi_{p+1}^{t}(u) / M_{p}^{t}\right)\right)$, by using (3.19) it is easy to prove inductively that

$$
\Psi_{p}(u) \leqslant H, \quad p \geqslant 2 .
$$

This means

$$
\left\|\partial_{x}^{\beta} u(t, \cdot)\right\|_{c(T-t), \omega} \leqslant H M_{q-1}^{t}
$$

for every $\beta,|\beta|=q \geqslant 2,0 \leqslant t \leqslant T$. Hence $u(t, \cdot) \in \mathcal{G}^{\sigma}(\omega)$ for $0 \leqslant t \leqslant T$. Moreover, from equations (1.3), by using the method of majorant series (see for example [6] we can prove that u is a Gevrey function of index σ also with respect to $t \in[0, T]$. By applying this result a finite number of times in the cylinders $[T, 2 T] \times \omega, \ldots,\left[k_{0} T, T_{1}\right] \times \omega$, we obtain $u \in \mathcal{G}^{\sigma}\left(\left[0, T_{1}\right] \times \omega\right)$.

BIBLIOGRAPHY

[1] R. AgLIARDI, Fourier integral operators of infinite order on $D_{L^{2}}^{\{\sigma\}}\left(D_{L^{2}}^{\{\sigma\}^{\prime}}\right)$ with an application to a certain Cauchy problem, Rend. Sem. Mat. Univ. Padova, 84 (1990), pp. 71-82.
[2] S. Alinhac - G. Metivier, Propagation de l'analyticité des solutions de systèmes hyperboliques non-linéaires, Inv. Math., 75 (1984), pp. 189-203.
[3] L. Cattabriga - D. Mari, Parametrix of infinite order on Gevrey spaces to the Cauchy problem for hyperbolic operators with one multiplecharacteristic, Ricerche Mat. Suppl. (1987), pp. 127-147.
[4] K. Kajtani - S. Wakabayashi, Microhyperbolic operators in Gevrey classes, Publ. RIMS, Kyoto Univ., 25 (1989), pp. 169-221.
[5] H. Komatsu, Linear hyperbolic equations with Gevrey coefficients, J. Math. Pures Appl., 59 (1980), pp. 145-185.
[6] J. Leray - Y. Ohya, Equations et systemes non-linéaires, hyperboliques non-stricts, Math. Annalen, 170 (1967), pp. 167-205.
[7] S. Mizohata, On the Cauchy Problem, Science Press, Bejing (1958).
[8] S. Spagnolo, Some results of analytic regularity for the semilinear weakly hyperbolic equations of the second order, Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo speciale (1988), pp. 203-229.
[9] K. Taniguchi, Fourier integral operators in Gevrey class on \mathbb{R}^{n} and the fundamental solution for a hyperbolic operator, Publ. RIMS, Kyoto Univ., 20 (1984), pp. 491-542.

Manoscritto pervenuto in redazione l'11 febbraio 1994 e, in forma revisionata, il 7 aprile 1994.

