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Propagation of Analytic and Gevrey Regularity
for a Class

of Semi-Linear Weakly Hyperbolic Equations.

MASSIMO CICOGNANI - LUISA ZANGHIRATI (*)

1. Introduction and notations.

Let S~ be an open set in I~n + 1 = x R~ (t the «time variable»),
Q+ = Q n {t &#x3E; 0}, Q+ = Q n {t &#x3E; 0}, Q0 = Q n {t = 0} and let u(t, x) 
be a real solution of a semilinear equation

where G is an analytic function of its arguments and Pm ( t, x, at, x ) is a
homogenuous differential operator of order m ~ 2 with analytic coeffi-
cients in S~ which is hyperbolic with respect to the hypersurfaces
t=to.
We are concerned with the problem of the propagation of the ana-

lytic regularity of u in a domain of influence D c S~ + provided that the
Cauchy data are analytic functions in w, cv a open bounded subset of 
such that a-) c Q o and 0} c w.

From the results of Alinhac and Metivier [2] we know that if Pm is
strictly hyperbolic and u is C °°, then u is analytic in D.

Weakly hyperbolic equations has been considered by Spagnolo [8].

(*) Indirizzo degli AA.: Dipartimento di Matematica, Universita di Ferrara,
Via Machiavelli 35, 1-44100, Ferrara, Italy.
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He proved that if (1.1) is of the type

then is analytic in D under one of the following conditions:

a) the coefficients ahk have the form ahk (t, x) = and u is
of class C 1;

b) the solution u is assumed to belong to some Gevrey class of or-
der less than two.

Here we consider the case where (1.1) is a weakly hyperbolic equa-
tion of the form + G(t, x, = 0, m ; 2, and prove_that
the solution is analytic in every cylinder [0, T] x cv contained in S~ + if
u is assumed to be in some Gevrey class of order Q smaller than 1 Ie
with a index g % 1 - 11m which is determined by the derivatives oaf u
that really appear as arguments of G. In fact we shall prove a more gen-
eral result (see Theorem 1 below) considering also the propagation of
the regularity of u in Gevrey classes when G and the Cauchy data are
not analytic but Gevrey functions of order (7i[.

Note that our result with m = 2 is not covered by [8] since the
derivatives of u do not appear in the non linear terms of (1.2).
We denote by ~a ( c~), 1 ~ Q  00, o an open subset of R’, the space of

Gevrey functions of index Q, i.e. the space of all functions in 
which satisfy for every compact subset of 9:

C, A constants depending on K (and v).
Moreover we denote by y a (n), 1  a  oo~ the space of all functions

v in C °° ( (~) satisfying the following condition: for every E &#x3E; 0, for every
compact subset K of 0 there exists a constants c, such that:

It is for every 1  o  o1  oo . We write v E
E ~a (K), v E if v E ~a ( c~), v E y a ( c~) respectively for some open
neighbourhood o of the compact set K.

Consider a function G(t, x, where (t, x) E Q (Q an open
set in containing the origin), x Z’ , 
~ m - 1 ~, m a positive integer, m ~ 2. Let g = max la’ I /(m - a o )

a e a

and assume that G is a Gevrey function of index a of its arguments
for some a e [ 1, 1 /~o[. Moreover assume that gj , 0  j  m - 1, are
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given Gevrey functions of index a in w, cv and open bounded subset
of such that C-0 c Then we have:

THEOREM 1. Let u be a sotution of the problem:

some a 1 E ] a, 1 /o[ then every cylin-
der

In particular if G, go , ... , are analytic functions and u E
e + ) for some ai e] 1, 1/~[, then u is analytic in e.

Note that the Cauchy problem for the linearized equation

of (1.3) at a solution u may present phenomena of non existence or non
uniqueness if u is in a Gevrey class of order greater or equal than 
(see Komatsu [5], Mizohata [7], Agliardi[1]). Thus it seems difficult to
weaken the hypotheses of Theorem 1 as it concerns the a propri regu-
larity of u (cf. the above condition a) and b) for the equation (1.2) in [8]:
if the coefficients are as in condition a) then the Cauchy problem for the
linearized equation of (1.2) at a C °° solution u is well posed in Coo. In the
case of general coefficients, condition b) ensures that the Cauchy prob-
lem for the linearized equation at u E G’i is well posed in G al as in our
Theorem 1).

We shall give the proof of Theorem 1 in section 3 after some prelimi-
nary lemmas which are the subject of next section 2.

2. Preliminary lemmas.

Lest 11 &#x3E; n/2, 0  g  1 be two fixed real numbers. For every T &#x3E; 0
we denote by the space of all that:

where 
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is a Hilbert space with respect to the inner product:

K the Fourier transform of u.
We denote the corresponding norm by i.e.

Since p &#x3E; n/2 and 0  e  1, it is easy to prove, as for the usual
Sobolev spaces, that is an algebra. More precisely we
have:

PROPOSITION 2.1. There exists a constant co , depending onLy on n
and p, such that

For o an open ball of we introduce the space of the re-
strictions to cv of the elements in 

endowed with the norm

E r (v) the element of minimum norm in the closed convex subset 
= (u E Xr ( lf~n ); u = v in of the Hilbert space Xr (Rn ).

Thus, is the quotient space of with the closed sub-

space M = u = 0 in 
Note that the Paley Wiener Theorem implies c with

continuous injection for a  and every r &#x3E; 0.
In view of Proposition 2.1, is a normed algebra and (2.1 ) is

valid with the same constant co (and ~, instead of 11.llr) for ~c,
v E Xr (C-0). 

’

LEMMA 2.2. Let w E Y (w) be a real valued function and let 0 E
for a [ 1, 1 /o [. Then we can find positive constants

To, C, R such that for every 0  z ~ To

where R depends only on 0 and cv , i o depends on 0, w and (9, whereas C
is a majorant of 
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PROOF. Let K be a compact subset of such that K D w and w e
E and let us denote H = w(K). then we have:

By using Faa-De Bruno’s formula, we obtain

for every where the constant d depends only on
on and n.

Let x E (Rn), supp X c K, X = 1 in a neighbourhood of C-0, and

From (2.3) it follows:

where (

Hence, by the arbitrariness of y:

for a constant d’ depending only Q.
From (2.4) it follows (2.2) for every r £ 1~1 /2 = To, with

and the proof is complete.

Now we introduce some notations: we consider the sequence

mp = a(p!a I(p + 1 )2 ), where a * 1 and the constant a is chosen in order
to satisfy:
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For E &#x3E; 0, p ~ 1 we define Mp = and for w E y 0 (C-0), ~ ~ 1 we
let

As in [2], from Proposition 2.1 and Lemma 2.2 we can prove the fol-
lowing lemma by the method of majorant series:

LEMMA 2.3. If w and 0 satisfy the hypotheses of Lemma 2.2, then
there exist To, L, Do &#x3E; 0 such that for 1, e &#x3E; 0, 0 ~ z  To the
condition

implies::

where t’ 0 is the constant found in Lemma 2.2, 0 depend only on
~ and I I grad 

Lemma 2.3 can be extended to functions w = (wl , ... , wv ) with
values in Iw , by defining In fact we have:

LEMMA 2.4. Let w = (wl , ... , wj real functions in (CO),
and let 0 (x, w) E x w(-)) for a a E [ 1, 1 /~o [. There exist four posi-
tive constants ro, E o , ðo, L such 1, e E ] 0, E o ], i E [ 0, ro],
condition (2.5) implies:
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In next section we apply Lemma 2.4 to functions w(t, x),
ø(t, x, w(t, r)), where w E T~ ]~ ~al (~)v)~ ~ E g~([0, T1] x W X
x w([ 0, Tl ] x w)), 1 ; o~  ~1  lie for which t is considered as a par-
ameter. By Lemma 2.4 there exist positive constants To, such
that for every integer p ~ 19 E E ]o, Eo ], 0 ~ 7: ~ ro , if )]p, ~ ~ d o
for every t E [ o, then j), jj), jjj) are true uniformly with respect to t
in this interval.

For the function w(t, x) we use also the seminorms we are going to
introduce. Let c, T be positive constants such that cT ~ io, T ~ T1 and
let

where ~, E R is a parameter which will be choosen in a suitable way at
the end of the proof of Theorem 1.1. For 0  ~ ~ ~ o , 0 ~ t ~ T, ~ ~ 1 we
define:

Moreover, for the solution u of (1.3) we write:

where

is the canonical basis of R n.

3. Proof of Theorem 1.

By deriving the equations (1.3) with respect to xj we get:
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Now we apply the operator ax to (3.1), so obtaining:

where P is the linear operator

and

From the hypotheses of Theorem 1 it follows that P can be written

in the form where Pj is a linear opera-
tor of _order less or equal to Qj with coefficients in (Q + ); also h,j E
E f101 (Q +) whereas f1° ( cv ). 

’

We extend the coefficients in the lower order terms of P outside a

neighborhood of [0, T1_] x w to functions in ~° (If~n + 1 ) with compact
support and denote by P the linear operator in [ 0, T1 ] x obtained in
this way. Moreover, we = = EcT 
where Ez is the extension operator defined at the beginning of sec-
tion 2.

By letting

the problem
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is equivalent to a system

where A = Dx )) is a suitable m x m matrix of pseudo-differ-
ential operators with symbols that satisfy:

In [3] Cattabriga-Mari proved that the Cauchy problem (3.4) is well
posed in ~al and constructed for it a fundamental solution M(t, s), t, s E
E [ o, T2 ], T2 ~ T1 a suitable positive number depending only on the con-
stant C in (3.5). It is M( t, s ) = M1 ( t, s ) R( t, s ) where R(t, s ) is an opera-
tor applying continuously (X, (Rn ))m into itself for every r, M1 ( t, s ) is a
matrix of pseudo-differential operators of infinite order on with

symbol M1 (t, s; x, ~) satisfying:

We can prove the following lemma (cf. Propositions 2.8 and 2.12
in [4]):

LEMMA 3.1. Let Q(x, Dx) be a pseudo-differential operator of infi-
nite order with symbol q satisfying

(3.7) ~ exp (d~~~e ) ~ ~ ~ 0 ,

for every x, ~ E IV. There exist two positive constants A and ð depends-
ing only on ,u, o, n and L in (3.7) such that

PROOF. Let y E Co (R") such that = 1 for [ i [ £ 1 /2 and
_ . Let us consider the operators
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Our aim is to prove that the symbols ~) satysfy

for every x, ~ E and every j E Z+, provided that -c - 6 1, with con-
stants Ca, fJ depending on a, {3, and 81 depending on p, and L
in (3.7). Then (3.8) will follow as a consequence of the Calderon-Vaillan-
court theorem about the £2 boundness of pseudo-differential-operators
with symbols in the space 

The symbol r~ (x, ~) is represented by means of an oscillatory
integral

For N = 0, 1, ... , and 61 1 a positive constant to be fixed later on,
and we write

1 a fixed integer greater than n/2.
Integrating by parts N times with respect to y in (3.10) we get

with CI depending on n and ,u, L 1 depending and L in (3.7).
Then we can choose d 1 = (L1 /2e)e to have (3.9) with a = fl = 0. In the
same way, we can achieve (3.9) for 1 p I &#x3E; 0, completing the
proof.

Returning to the fundamental solution M(t, s) of (3.4) constructed
in [3], from Lemma 3.1 it follows that there exist constants Ao &#x3E; 0, T3 E
e] 0, T2 [ , T3 depending on the constant C1 in (3.6), such that

for 0 ~ s  t ~ T ~ T3 and every V E (Xc (T - 8) with c the same
constant that appears in the right side of (3.6).
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Hence, for the solution

of (3.4), we have for t E [0, T]:

(see the definition at the end of section 2), then
Hence:

Since the solution of (3.2) is unique ([3], [4], [7], [9]), we have

x) = Vp,j(t, x) for (t, x) E [ o, T3] x cv. By 

above inequalities we obtain:~ . ~

0  t  T  T3.
Taking the maximum value for I PI [ = p and j = 1, ... , n in the left

side of (3.12) we have the seminorm Otp + 1 (u) of the solution u of (1.3).
Our next aim is to from above by seminorms
~p + 1 (u) in order to deduce from (3.12) an inequality to which we are
able to apply Gronwall’s Lemma, so obtaining estimates for ~p + 1 (u).
We state the following Lemma, which is an easy consequence of Lem-
ma 2.4. (See [2] for details).

LEMMA 3.2. There exist positive To, such that

for p ~ 2, 0  E ~ eo, cT ~ To, Â. ~ 0 the condition

implies:

for every I



110

Next we fix T = where ro is the constant in Lem-
ma 3.2 and T3, c are the constants for which (3.11) holds. From (3.12)
and Lemma 3.2 it follows that for ~ro ~ 2, 0  E £ eo, À ~ 0 the con-
dition (3.13) implies:

By using Gronwall’s inequality and letting LAo = Lo , we obtain
from (3.14)

For £ * 6 Lo , p ~ 2 we have:

for suitable positive constants
Ai, Hence for 0  E  £ 1, ~, ~ 2Lo , ~ ~ 2

From (3.15), (3.16), (3.17) we obtain for 1
A &#x3E; A0 = 6L0:

Summing up, we have proved that:

(3.19) Condition (3.13) implies inequality (3.18)

Now we let H = max (2L1, tJf2(u», A = max (~, o , 2HL1 ) and fix

~ E ] o, ~ o ] such that ~H  d o , where ð 0 is the same constant as in
Lemma 3.2. In this way we have L1 ( 1 + H2 /~,) ~ H.
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it is easy to prove inductively that

This means

for every f3, 1f31 I = q * 2, 0 ~ ~ ~ T. Hence u(t, .) e for 0 ~ ~ T.

Moreover, from equations (1.3), by using the method of majorant series
(see for example [6] we can prove that u is a Gevrey function of index a
also with respect to t E [ 0, T]. By applying this result a finite number
of times in the cylinders [ T , 2 T ] x ... , [ I~o T , T 1 ] x cv, we obtain
u E go ([0, T1] X w).
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