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REND. SEM. MAT. UN1v. PADOVA, Vol. 94 (1995)

A Maximum Principle for Optimally Controlled Systems
of Conservation Laws.

ALBERTO BRESSAN - ANDREA MARSON (¥)

ABSTRACT - We study a class of optimization problems of Mayer form, for the
strictly hyperbolic nonlinear controlled system of conservation laws
u; + [F(w)], = h(t, x, u, z), where z = 2(t, x) is the control variable. Intro-
ducing a family of «generalized cotangent vectors», we derive necessary con-
ditions for a solution # to be optimal, stated in the form of a Maximum
Principle.

1. Introduction.

This paper is concerned with a class of optimization problems for a
strictly hyperbolic system of conservation laws with distributed con-
trol, in one space dimension:

(1.1) uy + [F(u)l, = h(t, @, u, 2), u(0, ) = u().

Here (¢, ) e [0, T] X R, while u e R™ is the state variable, and the
control z =z(f, x) varies inside an admissible set ZcR”. Given a
smooth function V:R X R™+—R, we consider the optimization prob-
lem

(1.2) max Ju(z)),

where Z is the family of all measurable control functions taking values
inside Z, u(z) is the solution of (1.1) corresponding to the control z, and

(*) Indirizzo degli AA.: S.I.S.S.A., Via Beirut 4, Trieste 34014, Italy.
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J is a functional which depends on the terminal values of u:

1.3) J(u) = j Ve, u(T, x)) de.

—

Necessary conditions will be derived, in order that a control function
z = 2(t, x) be optimal for the problem (1.1)-(1.2). The key for obtaining
such conditions is to understand how the values (¢, ) of the solution
of (1.1) are affected, if the control z is varied in the neighborhood of any
given point (ty, 2y).

Assuming that the optimal solution # is piecewise Lipschitz with
finitely many lines of discontinuity, the behavior of a slightly per-
turbed solution #° can be described using the calculus for first order
generalized tangent vectors developed in[2]. In this paper, we intro-
duce a class of «generalized cotangent vectors» and derive an adjoint
system of linear equations and boundary conditions, determining how
these covectors are transported backward in time along . We then
prove a necessary condition for the optimality of a sufficiently regular
control z, stated in the form of a Maximum Principle.

The main technical problem arising in the proof is the fact that the
transport equations for tangent vectors can be justified only under the
a-priori assumption that all perturbed solutions %° remain piecewise
Lipschitz continuous, with the same number of jumps as #%. Therefore,
when a family {z°} of control variations is constructed, it is essential to
check that the corresponding solutions %° = #(z°) do not develop a gra-
dient catastrophe before the terminal time 7. For this reason, strong
regularity assumptions on the optimal control z and on the optimal sol-
ution % will be used. We conjecture that these requirements could be
considerably relaxed.

Our main theorem, stated in § 5 in the form of a Maximum Principle,
covers the case of an optimal solution with finitely many, non-intersect-
ing lines of discontinuity. In the light of the analysis in [2], it is expect-
ed that similar results should be valid also in the case of interacting
shocks.

2. Basic assumptions and notations.

In the following, |- | and (-, - ) denote the Euclidean norm and inner
product on R™, respectively. We first consider the unperturbed system
of conservation laws

2.1) w + [F(w)], =0,
2.2) u(0, ) = u(x),
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under the basic hypotheses

(H1) The set 2 c R™ is open and convex, F': Q —R™ is a @ vector field.
The system is strictly hyperbolic, and each characteristic field is
either linearly degenerate or genuinely nonlinear.

For the basic theory of discontinuous solutions of conservative sys-
tems, we refer to [5,6,7,8].

We denote by A;(u), r;(u), [;(u) respectively the i-th eigenvalue
and i-th right and left eigenvector of the Jacobian matrix A(u) =
= DF(u), normalized so that

|ri(w)| =1,  (li(u), r(w)=0dy,

where 0 is the Kronecker symbol. For u, u'e Q, define the averaged
matrix

1
2.3) A(u,u')=jA(0u+(1—0)u')d9.
0

Clearly A(u, u') =A(u', w) and A(u, w) = A(u). For i =1, ..., m, the
i-th eigenvalue and eigenvectors of A(u,u’') will be denoted by
Ai(u,u'), ri(u,u'), l;(u,u’). We assume that the ranges of the
eigenvalues 1; do not overlap, ie. that there exist disjoint intervals
[A7, A ], such that

Ay, u')eldi , A1, Vu,u'e®, ie{l,...,m}.

Because of the regularity of A, it is possible to choose 7;, I; to
be ! functions of u, u’, normalized according to

|ri(u, u")| =1, (L(u,u'), ri(u,u"))=0y.

If ¢ is any function defined on £, its directional derivative along
r; at u is denoted by

r; o p(u) = [Vop(u)lr;(u) = eh_lf}) o(u + er; (;u,)) — o(u) .

For the differential of the i-th eigenvalue of the matrix A in (2.3)

we write

Aiut+evt,u +ev ) A (uwt,u)
: .

Dii(u™,u™) (0", v7)= lim
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A similar notation is used for the differentials of the right and
left eigenvectors of A.

For each ke {1, ..., m}, we assume that either the k-th characteris-
tic field is genuinely nonlinear and

M) +eut—u | <Aw,u ) <A@ )—¢e lut —u].

for some ¢, >0and allu*, u~ € 2 connected by an admissible shock of
the k-th family, or else that the k-th characteristic field is linearly de-
generate, so that r,e1,(u) =0 and

Aut)=Au™, u")=24,(u")

whenever #* and »~ are connected by a contact discontinuity of the
k-th family. _
For every fixed ke {1, ..., m}, the couples of states »*, «~ which

are connected by a shock of the k-th characteristic family can be deter-
mined by the system of m — 1 equations

2.4) Lw*,u™), ut—u")=0 i=k.
Differentiating (2.4) w.rt. u*, u ™, one obtains the system
(2.5) o, ut,w ,w)=0 i=k,
where

m
Q;(w ,ut,w,wt)= EI(Dli(u+, w” ) (wt o wT ), et —u )+
i2

+ 2wt w), witrt —w ).
j=1
To express the general solution of (2.5), define the sets § and © (incom-
ing and outgoing) of signed indices
(2.6) s={it;i<k}U{i;i=k},
@7 o={j7j<k}U{j*;j>k},
if the k-th characteristic field is genuinely nonlinear, while
(2.8) g={i*;i<k}U{i;i>k},

in the linearly degenerate case. Observe that the system of n» — 1 scalar
equations (2.7) is linear homogeneous w.r.t. w~, w*, with coefficients
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which depend continuously on % ~, »*. When ™ =« * one has

0P,
81,0]-i

=iéij'

Therefore, if 4~ and u* are sufficiently close to each other, one
has

a(p —7 +7 _’ * . 7
@9  det| 22U LWLW) ) Ly 2F, jreo).
8wj—

In turn, when the (n —1) X (n —1) determinant in (2.9) does not
vanish, one can solve (2.5) for the n —1 outgoing variables w;*,
jTeo:

(2.10) wE =W, u")w) j=k.

Here w’ denotes the set of % + 1 incoming variables {w;"; i* € 3}. We
remark that, in the case where the k-th characteristic field is linearly
degenerate, one has

(2.11) L =0,

hence all functions W;- do not depend on wy", wy . This is consistent
with our definition (2.8) of incoming waves.
Next, consider the perturbed system

where & is a continuously differentiable function of its arguments. We

say that u = u(t, x) is a piecewise @' solution of (2.12) if there exists
finitely many @' curves

Yo ={t, x); x=2a,0), telts, t;1}

in the t-z-plane, such that

(i) The function » is a continuously differentiable solution of
(2.12) on the complement of the curves y,.
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(ii) Along each curve x = x,(?), the right and left limits

u(t, x, *) = lim wu(t, x),
r—ox,(t)
uy(t, 2, ) = lim u,(t, x),

te]tu,utclz,[,

exist and remain uniformly bounded. Moreover, the usual Rankine-
Hugoniot and the entropy admissibility conditions hold.

For the uniqueness of solutions of (2.12) within this class of func-
tions, we refer to [3,4,10]. We say that u has a weak discontinuity along
x, if u, is discontinuous but the function u itself is continuous at each
point (¢, x, (t)). In the case u(t, x, +) = u(t, x, —), we say that « has a
strong discontinuity, or a jump, at «x,.

3 - Generalized tangent vectors.

Let %:[a, b]—>R™ be a piecewise Lipschitz continuous function
with discontinuities at points x; < ... < xy. Following [2], we define
the space T, of generalized tangent vectors to » as the Banach space
L' X RY. On the family X, of all continuous paths y: [0, o]+~ L' with
y(0) = u (with ¢ > 0 possibly depending on ), consider the equiva-
lence relation ~ defined by

3.1) )~y lim lye) =7 (|

=0.
>0 3

We say that a continuous path y € &, generates the tangent vector
(v, §) e T, if y is equivalent to the path y, ¢ ,) defined as

(3.2) '}/(,,)’ & u)(E) =u+ v+ EEO(u(x;) - u(xa— ))X[J:a +ekg, %a]

- §2>0(u(xa+) - u(xa_))xua,a:a+e§a] .

Up to higher order terms, y(¢) is thus obtained from « by adding ev
and shifting the points x,, where the discontinuities of u occur, by &&,.
In order to derive an evolution equation satisfied by these tangent vee-
tors, one needs to consider more regular paths y € 2, taking values in-
side the set of all piecewise Lipschitz functions.
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DEFINITION 1. In connection with the system (2.12), we say that a
funetion %: R+~ R" is in the class PLSD of Piecewise Lipschitz func-
tions with Simple Discontinuities if it satisfies the following condi-
tions.

(i) » has finitely many discontinuities, say at x; < x, < ... < ay,
and there exists a constant L such that

3.3) |u(e) —u(x')| <Lz —2a'|
whenever the interval [«, '] does not contain any point «,.

(i) Each jump of u consists of a contact discontinuity or of a sin-
gle, stable shock. More precisely, for every a e {1, ..., N}, there exists
k,e{1,...,m} such that

(8.4) G, u)ut—u")y=0 Vizk,,
8.5) utFu", A,wT)<A, (T, uT) <A (u"),

where ", u~ denote respectively the right and left limits of u(x) as
T—x,.

DEFINITION 2. Let % be a PLSD function. A path y € X, is a Regu-
lar Variation (R.V.) for u if, for £ € [0, 4], all functions %° = y(¢) are in
PLSD, with jumps at points xf < ... < x§ depending continuously on e.
They all satisfy Definition 1 with a Lipschitz constant L independent
of e.

For each ¢ € [0, ), let u® = u(t, ) be a piecewise ! solution of the
system (2.12), with jumps at xf(f) < ... < x;(t). Assume that, at some
initial time ¢, the family »°(t, -) is a R.V. of 4°(¢, -), generating the tan-
gent vector (v, £). Then, as long as the discontinuities in % ¢ do not inter-
act and the Lipschitz constants of the u® (outside the jumps) remain
uniformly bounded, for ¢ > ¢ the family »°(¢, -) is still a R.V. of u’(t, )
and generates a tangent vector (v(t, -, £(t)). According to Theorem 2.2
in [2], this vector can be determined as the unique broad solution with
initial condition (v, £)(t) = (v, &) of the linear system

(3.6) v+ A(u)v, + [DAw) - vlu, = h, (¢, x, u)v

outside the discontinuities of %, coupled with the boundary condi-
tions

3.7 <Dli(u+; u-)'(gau; +’U+, Eaum_ +’U_),(’LL+ _u_)>+
+{Lwt,u), Equs vt —Eu, v )=0, Vizk,,

B8) E,=Di, (ut,u") (Equt +v*, Equy +v7),
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along each line x = x, () where w suffers a discontinuity in the k,-th
characteristic family. We recall that a broad solution of a semilinear hy-
perbolic system is a locally integrable function whose components sat-
isfy the appropriate integral equations along almost all characteristics.
See[1,6] for details.

For future applications, it is convenient to derive a version of (3.6)-
(3.8) involving the components %} = (I;(u), u,), v; = (l; (), v). Differen-
tiating w.r.t. ¢ the equation

A+ ev)u, = ﬁ:lli(u + ev)(l;(w + ev), u, ) r; (u + €v),

one obtains

3.9 [DAMw)-v]u, =

= (rye A uivpm + 2 Ay(ry o by, wp) vy + 2 A ul(rjer)v; .
i] iJ i

Using (3.9) together with the relations
iy = Z(”'j'li)( = A;ud + (I, b)),
J

Le.=2el)ul, Ai,=22(rjel)ul,
J J

(rpoly, re) + (b, rjor)y =rje{l;, 1) =0,
multiplying (3.6) on the left by I; we find

3.10)  (v;) + (A;v), + kz‘('rk OZi){ugvk — u;‘vi} +
+ 3 (g, )i - ) ujv, =
j=
= — %(l’i, /’}'.Tk)-<lj, h)’l)k + %<li’ Tk.h>?)k (’L = 1’ cers m).
Js

Here [1}, 7] = r; @ 7, — 7, @ 7; denotes the Lie bracket of the vector fields
’rj y Tk

Concerning the equations (3.7)-(3.8), for each fixed a call w ~, u * the
limits of (¢, x) as ¢ — x, (¢) from the left and from the right, respect-
ively. Similarly, define the components v;* = ([;(%*), v*), so that v* =
=27 v, v~ =27 v . Comparing (8.7) with (2.5), where & = k,, it
follows that if (2.9) holds then, for any fixed values »;* (i * e J) of the in-
coming components, the linear equations (3.7) can be uniquely solved
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for the m — 1 outgoing components:
(8.11) v = Viw®, &) j*eo.

Observe that the V7 are linear homogeneous functions of &, and of the
incoming variables v°. In turn, inserting these values in (3.8), one ob-
tains an expression for the time derivatives

(3.12) Ea=Y,(0" Eq).

4 - The adjoint equations.

Let the function »: R—R™ be piecewise Lipschitz continuous with
N points of jump. We then define the space of generalized cotangent
vectors (or adjoint vectors) to u as the Banach space T* =L* (R) X RV.
Elements of T will be written as (v*, £*) and regarded as row
vectors.

Given a piecewise Lipschitz solution u = wu(f, ) of (2.12), with
jumps along the lines « = z,(t), a = 1, ..., N, we shall derive an adjoint
system of linear equations on T whose solutions (v* (¢, -), £*(t)) have
the property that the duality product

N
@D (0%, £, 0, 0)= [v*(t2) ot @) do + 3 EEDED

remains constant in time, for every solution (v, &) of the linear system
(3.6)-(3.8).

Assume that (4.1) holds for every solution v of (3.6) which vanishes
on a neighborhood of all lines « = x,(¢). Then an integration by parts
shows that, away from the discontinuities of u, the function »* must
satisfy

4.2) v¥ +v*A() + v*DAW) u, = —v* h, (¢, , u),

where, referred to a standard basis {ey, ..., e, } of R™, DA(u)u, is the
m X m matrix whose (j, 1) entry is

n (845 (w) A4 (w) ) Su,

(DA, b 12’ 1\ O Ou; ox
In order to formulate also a suitable set of boundary conditions, valid
along the lines x = x, (), it is convenient to work with the components
ul = (l;(w), uy), v¥={(v*, r;(w)). For each fixed a, we shall write
Ai(uwt)=2A;(u(x, +)) and A;(u ") = A;(u(x, —)) for the the i-th charac-
teristic speeds to the right and to the left of the a-th discontinuity, re-
spectively. Similarly, we write v* =v* (x, +), v¥ =v*(x, —). In the
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following, Vi, ¥, are the linear homogeneous functions introduced at
(3.11)-(3.12).

PROPOSITION 1. Let u be a piecewise C! solution of the hyperbolic
system (2.12), with jumps occurring along the (nowintersecting) lines
x = x,(t). Assume that the map t— (v*(t, ), E*(t)) e T¥, with v* =
= > I;(u)v¥, provides a solution to the linear system

(4.3) (’I) )t + /l (’U )a;
= 2 [(ried)wfof = (o2 wfvr 1+ 3 ([, mil) (i — Ap ufoi +
=i 7=
+ %(lk, Tj""i)(lj, hl)’vl::lg - %(lk, Ti.h>vlzk
Js

outside the lines where u is discontinuous, together with the equa-
tions

4.4) Er=-gr = 2 1A = d | vt A
aga j*eo 8«5,,
* = 1 *, a'pa . ) _m X . anl
@45 vE PRGN E¥ av,-:+,-:§;'o|l’(u) To | V% ;=
ite'j’

along each line x = x,(t). Then, for every solution (v, &) of (3.6)-(3.8),
the product (4.1) remains constant in time.

Proor. For notational convenience, we set x3(f)= — o,
Xy +1(t) = + 0. Integrating each component v*v; along the corre-
sponding characteristic lines & = 1;(u), the time derivative of (4.1) can
be computed as

46) —[jvaM+Z&a]

dt
2q +1(1)

N
= 2 J (Wi v + (A; (W) v*vy),] de +

a=0
24 (1)

Iy +

j- €0

+;|: Ilj(ut)—d?al'vj*:vj—_ z ll,-(ut)—d:al-vi*:vi:
1T ey

+ 2@, + 2.
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From (4.3) and (3.10), a straightforward computation shows that
(4.7) 2 ('Ui* vi)t + z (/11 (u) v,-* vi)x =0.
(3 1

Therefore, all the integrals on the right hand side of (4.6) equal
zero.

Next, we observe that, for each a, the functions V7, ¥, in (3.11)-
(3.12) are linear homogeneous w.r.t. the independent variables &, v;-,
1* € 4. Therefore, we can write

. ow, ow,
§a= _'§a+ E . Ui,

a&a iteld a,vit
48 Vi E1%
=g, et E Gy v TE0

From (4.6), using (4.8) and factoring out the terms &,, v;:, we
obtain

4.9 %“ E_vi*vi dw+§a:§:§a =2 2

3 e vy L v,
* jzeollj(u_)_xalvjﬁ' ait - Ili(u_)—xal'viﬁ"'gg'—_ait:I"Uit'*‘
. v oV
E: * *, L E (uE) — x. 2 |LE =90
+ = [ a +§a aga +jzeoll](u ) xalv] aga ga b

because of (4.4), (4.5). This proves Proposition 1.

REMARK 1. The equations (4.4)-(4.5) determine the incoming vari-
ables v%, 1™ € 4, in terms of the outgoing variables v%, j* € O. There-
fore, the Cauchy problem for the adjoint linear system (4.3)-(4.5) is well
posed if one assigns the terminal values (v*(T, -), £*(T)) and seeks a
solution defined backward in time.

REMARK 2. If, at x,, the jump of % consists of a contact discontinu-
tity in the k,-th characteristic family, then the equations (4.5) deter-
mine only the m — 1 incoming components v%, i ™ € 3, with J defined by
(2.14). In this case, the equations (4.9) still hold, because the functions
¥,, Vi do not depend on v:.
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5 - A Maximum Principle.

Consider again the optimization problem (1.2) for the system (1.1).
We assume that F satisfies the basic hypotheses (H1) in § 2 and that the
functions h = h(t, x, u, z) and V = V(a, u) in (1.1), (1.3) are continuous-
ly differentiable. Let % be an optimal solution, corresponding to the
control z. In order to derive necessary conditions on z, we shall con-
struct a family of controls {z¢; ¢ € [0, £(]}, obtained by changing the
values of z in a neighborhood of a given point (¢, x,). We then study
how the corresponding solution #° behaves at the terminal time 7.

By the results in [2], the change in %(T, -) can be described up to
first order in terms of a generalized tangent vector, provided that all
solutions #° remain piecewise Lipschitz continuous, with the same
number of discontinuities. To ensure this condition, some stronger reg-
ularity assumption on the solution % will be used. Namely

(H2) The function % = %(t, x) is piecewise ! on [0, T] X R, with finite-
ly many, noninteracting jumps, say at

2, (t) < ... <ay(t), tel0, T].

Any two weak discontinuities of % can interact with these jumps
only at distinct points.

Otherwise stated, if « = x,(t) is the location of a jump in % and
¥;(t), y;(t) denote the position of two weak discontinuities (where % is
continuous but #%, jumps), then there exists no time z such that

2, (1) =y () = (), 4 (®) <y;(¥) fort<rz.
In the following, V, V denotes the gradient of V = V(x, ) w.r.t. u, while
the jump of V at the point (T, x,(T)) is written
AV(wa(T)) = lim  V(x, (T, x)) - 1l V(w, u(T, x)).

x—2q(T) + x>z (T) —

THEOREM 1 (Maximum Principle). In connection with the optimiza-
tion problem (1.1)-(1.8), let the functions h, V be continuously differen-
tiable and let F satisfy the basic hypotheses (H1). Let z = 2(t, x) be a C*
optimal control, and assume that the corresponding optimal solution
u = u(t, x) of (1.1) is piecewise C' and satisfies the additional regulari-
ty assumptions (H2).

Define the adjoint vector (v*, £*) as the solution of the linear sys-
tem (4.3)-(4.5), with terminal conditions:

(5.1) v¥*(T, ) =V, Wz, u(T, x)),
(5.2) EX(T)=AV(x (T)) a=1,...,N.
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Then the maximality condition

6.3)  v*(t, x) -kt @, ult, ©), 2(, ¥)) = max v*(, x)-h(t, ©, U, ), 2)
holds at each point (t, x) where both v* and u are comtinuous.

Proor. 1) If the conclusion of the theorem fails, then in the ¢-x-
plane there exists a point (z, #) where v*, u are continuous, such
that

(G4)  v*(t, n)-h(z, n, W, ), 2, n) <v*(r, n)-k, n, 4, n), 24),

for some admissible control value 2% e Z.
By continuity, and by possibly changing the value of 7, we can
choose 6 > 0 such that % is @! on a neighborhood of the segment

S={{t,x);t=1,celn—0,n+ 0]}
and, in addition,
(65)  v*(t, x) h(t, ©, u(t, ©), 2(7, ) < v* (1, ) h(T, ©, (T, ©), 27)
Vexeln—96,n+4].
2) We now construct a family of piecewise C! control variations 2*

as follows. Choose a @* function ¢: R+~ [0, 1] whose support is precise-
ly the interval [ —1, 1]. For € > 0 small, define the open domain

CDEi[(t,x);f'—£¢(x;”)<t<t]

and the control function

Ch o 2h if (¢, x) e ®,,
ULk Ve ST s P
Call u* the corresponding solution of (1.1).

3) For each ¢ = 0 sufficiently small, the curve
(5.6) ye x> (7 — ep((x — 1)/6), x)

is space-like, and crosses all characteristics transversally. Hence the
solution u*® is well defined and the map x—u® (7, ) is ¢ on a neighbor-
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hood of the interval [ — &, n + 6]. Moreover, as € — 0, one has
(GX) U’ —u, u:f—)?;x’

in the space L” ([0, 7] X R). As a consequence, the family {u*(z, -);
e€[0, g1} is clearly a Regular Variation of u(z, -). We claim that it
generates the tangent vector (v, &) e L' x RV, with

(5.8 E,()=0 Va, ov(r,x)=0 |if |x—7y|>4,

59 o(z, %) = [h(z, &, (7, x), 28) — k(z, , U4(t, ), 2(7, x))]-(p( x;n )
if |x — 17| <4.

4) Since the curves (5.6) are space-like, for all ¢ =0 one has
u®(z, ) = u(t, x) whenever |x — 5| = 6. This clearly implies (5.8).
Observing that both %* and % are ¢! on ®@,, we can subtract the
equations satisfied by %° and % one from the other, and obtain

(6.10)  (uf—u) = —A@W)us — u,) —
—[A@®) — A@)] 4, + h(t, , u®, 2°) — h(t, x, 4, 2).

Because of the uniform limits (5.7) and the fact that «® = % on the lower
boundary y° of @,, from (5.10) it follows

5.11)  ut(zr, x) —u(r, x) =

= {h(z, x, u(z, x), 20— h(z, =, U(z, ), 2(z, 2))+ D, (t, x)} dt,
7 — ep((x — 7)/0)
with

(5.12) lim sup |®,(, x)|=0.

e=0 (¢, x)e,
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Together, (5.11) and (5.12) imply

u(z, x) — ulr, x) _

(5.13) lim

e—0 €

= {h(z, x, i(z, ), 28) — b(z, @, U(z, ), 2(7, )} ‘<P( 2 ; ! )’

uniformly for x e[y — 6, n + 6]. This establishes (5.9).

5) The regularity assumptions (H2) on the optimal solution %
guarantee that the perturbations «° all have the same number of lines
of discontinuity, and that the derivatives % remain uniformly bounded,
for £ > 0 suitably small.

By the results in [2], we conclude that, for all ¢t € [z, T] the family
ut(t, ) is a R.V. of u(t, -) which generates a tangent vector (v, &)(t).
This vector is determined as the unique broad solution of the corre-
sponding linear system (3.6)-(3.8). Using Proposition 1, together with
(5.8)-(5.9) and then (5.5), we now compute

(6.14)  ((*(D), £* (D), (D), &T))) =

= ((*(v), £* (1)), (v(), £(7))) =

n

n+o
v* (1, )

[

{r(z, @, 4(z, ), 2%) — h(z, @, 4(z, x), 2(z, 2)) } 'w(f—;ﬁ) de>0.

6) In order to derive a contradiction, it now suffices to interpret

(5.14) at the light of the definitions (3.1), (3.2) and (5.2). Indeed, the reg-
ularity of the functions V and «°® implies

(5.15) j [V(z, u* (T, %)) — V(z, a(T, ©))] doc =

= eof [0V, AT, 0001, ) i + gAVm(T))-&a(T)] +o(e) =

=g ((* (D), £*(T)), (1), &T))) + o(e),

where o(g) denotes an infinitesimal of higher order w.r.t. ¢.
By (5.14), for £ > 0 sufficiently small the quantity in (5.15) is strictly
positive. This contradicts the optimality of %, proving the theorem.
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