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A Maximum Principle for Optimally Controlled Systems
of Conservation Laws.

ALBERTO BRESSAN - ANDREA MARSON (*)

ABSTRACT - We study a class of optimization problems of Mayer form, for the
strictly hyperbolic nonlinear controlled system of conservation laws

ut + [F(u)]x = h(t, x, u, z), where z = z(t, x) is the control variable. Intro-
ducing a family of «generalized cotangent vectors», we derive necessary con-
ditions for a solution to be optimal, stated in the form of a Maximum
Principle.

1. Introduction.

This paper is concerned with a class of optimization problems for a
strictly hyperbolic system of conservation laws with distributed con-
trol, in one space dimension:

Here (t, x) E [0, T] x R, while u E I~m is the state variable, and the
control z = z(t, x) varies inside an admissible set Given a

smooth function V: R x we consider the optimization prob-
lem

where is the family of all measurable control functions taking values
inside Z, u(z) is the solution of (1.1) corresponding to the control z, and

(*) Indirizzo degli AA.: S.I.S.S.A., Via Beirut 4, Trieste 34014, Italy.
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J is a functional which depends on the terminal values of u:

Necessary conditions will be derived, in order that a control function
i = i(t, x ) be optimal for the problem (1.1)-(1.2). The key for obtaining
such conditions is to understand how the values u ( t, x ) of the solution
of (1.1) are affected, if the control z is varied in the neighborhood of any
given point (to , xo ).

Assuming that the optimal solution i is piecewise Lipschitz with
finitely many lines of discontinuity, the behavior of a slightly per-
turbed solution u ~ can be described using the calculus for first order
generalized tangent vectors developed in [2]. In this paper, we intro-
duce a class of «generalized cotangent vectors» and derive an adjoint
system of linear equations and boundary conditions, determining how
these covectors are transported backward in time along i. We then
prove a necessary condition for the optimality of a sufficiently regular
control i, stated in the form of a Maximum Principle.

The main technical problem arising in the proof is the fact that the
transport equations for tangent vectors can be justified only under the
a-priori assumption that all perturbed solutions u E remain piecewise
Lipschitz continuous, with the same number of jumps as ic. Therefore,
when a of control variations is constructed, it is essential to
check that the corresponding solutions u’ = do not develop a gra-
dient catastrophe before the terminal time T. For this reason, strong
regularity assumptions on the optimal control i and on the optimal sol-
ution K will be used. We conjecture that these requirements could be
considerably relaxed.

Our main theorem, stated in § 5 in the form of a Maximum Principle,
covers the case of an optimal solution with finitely many, non-intersect-
ing lines of discontinuity. In the light of the analysis in [2], it is expect-
ed that similar results should be valid also in the case of interacting
shocks.

2. Basic assumptions and notations.

In the follov4ng, [ . I and ( . , . ) denote the Euclidean norm and inner
product on R~, respectively. We first consider the unperturbed system
of conservation laws
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under the basic hypotheses

(H 1) The set ,S~ c open and convex, F: S2 H is a e1 vector field.
The system is strictly hyperbolic, and each characteristic field is
either linearly degenerate or genuinely nonlinear.

For the basic theory of discontinuous solutions of conservative sys-
tems, we refer to [5, 6, 7, 8].

We denote by Ài (u), ri ( u ), respectively the i-th eigenvalue
and i-th right and left eigenvector of the Jacobian matrix A(u) =
= DF(u), normalized so that

where 8ij is the Kronecker symbol. For u, define the averaged
matrix

Clearly A(u, u’ ) = A(u’, u) and A(u, u) = A(u). For i = 1, ... , m, the
i-th eigenvalue and eigenvectors of A ( u, u ’ ) will be denoted by
~, i (u, u’ ), ri (u, u’ ), li (u, u’). We assume that the ranges of the

eigenvalues Ài 2 do not overlap, i.e. that there exist disjoint intervals
L~ i , A~ ], such that

Because of the regularity of A, it is possible to choose ri, li to

be e1 functions of u, u’, normalized according to

If 0 is any function defined on Q, its directional derivative along
ri at u is denoted by

For the differential of the i-th eigenvalue of the matrix A in (2.3)
we write
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A similar notation is used for the differentials of the right and
left eigenvectors of A.

For each 1~ E ~ 1, ... , ~n ~, vve assume that either the k-th characteris-
tic field is genuinely nonlinear and

for some E1 &#x3E; 0 and all u + , u - e Q connected by an admissible shock of
the k-th family, or else that the k-th characteristic field is linearly de-
generate, so that ~~/c(~) = 0 and

whenever u ’ and u - are connected by a contact discontinuity of the
k-th family.

For every fixed k ~ {1, ... , m 1, the couples of states u + , U - which
are connected by a shock of the k-th characteristic family can be deter-
mined by the system 1 equations

Differentiating (2.4) w.r.t. u + , ~c - , one obtains the system

To express the general solution of (2.5), define the sets 3 and o (incom-
ing and outgoing) of signed indices

if the k-th characteristic field is genuinely nonlinear, while

in the linearly degenerate case. Observe that the system of n - 1 scalar
equations (2.7) is linear homogeneous w.r.t. w - , w + , with coefficients
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which depend continuously on u - , u + . one has

Therefore, if u - and u + are sufficiently close to each other, one
has

In turn, when the (n - 1) x (n - 1) determinant in (2.9) does not

vanish, one can solve (2.5) for the n - 1 outgoing variables Wi II
j

Here w ~ denotes the set of n + 1 incoming i:t e 3). We
remark that, in the case where the k-th characteristic field is linearly
degenerate, one has

hence all functions do not depend on This is consistent
with our definition (2.8) of incoming waves.

Next, consider the perturbed system

where h is a continuously differentiable function of its arguments. We
say that u = u ( t, x ) is a piecewise C1 solution of (2.12) if there exists
finitely many e1 curves

in the t-x-plane, such that

(i) The function u is a continuously differentiable solution of

(2.12) on the complement of the curves y a .
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(ii) Along each curve x = xa (t), the right and left limits

exist and remain uniformly bounded. Moreover, the usual Rankine-
Hugoniot and the entropy admissibility conditions hold.

For the uniqueness of solutions of (2.12) within this class of func-
tions, we refer to [3, 4,10]. We say that u has a weak discontinuity along
xa if ux is discontinuous but the function u itself is continuous at each

point (t, Xa (t)). In the case u(t, Xa + ) ~ u(t, Xa - ), we say that u has a
strong discontinuity, or a jump, at xa .

3 - Generalized tangent vectors.

Let be a piecewise Lipschitz continuous function
with discontinuities at points x,  ...  xN . Following [2], we define
the space Tu of generalized tangent vectors to u as the Banach space
L1 x R~. On the family ~u of all continuous paths y : [ 0, with

y(O) = u (with E o &#x3E; 0 possibly depending on y), consider the equiva-
lence relation - defined by

We say that a continuous path y E ~u generates the tangent vector
(v, ~) E Tu if y is equivalent to the path y (v, s; u) defined as

Up to higher order terms, is thus obtained from u by adding Ev
and shifting the points xa , where the discontinuities of u occur, by 
In order to derive an evolution equation satisfied by these tangent vec-
tors, one needs to consider more regular paths y E taking values in-
side the set of all piecewise Lipschitz functions.
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DEFINITION 1. In connection with the system (2.12), we say that a
function u : R - is in the class PLSD of Piecewise Lipschitz func-
tions with Simple Discontinuities if it satisfies the following condi-
tions.

(i) u has finitely many discontinuities, say at Xl  x2  ...  xN ,
and there exists a constant L such that

whenever the interval [x, x’ ] does not contain any point xa .
(ii) Each jump of u consists of a contact discontinuity or of a sin-

gle, stable shock. More precisely, for every a E ~ 1, ... , N ~, there exists
ka E { 1, ... , m} such that

where u + , u - denote respectively the right and left limits of u ( x ) as
x - xa.

DEFINITION 2. Let u be a PLSD function. A path y E I u is a Regu-
Lar Variation (R.V.) for u if, for e E [ o, £0], all functions u £ = are in

PLSD, with jumps at points xf  ... depending continuously on E.
They all satisfy Definition 1 with a Lipschitz constant L independent
of £.

For each e E [ o, let u E = U £ (t, x ) be a piecewise e1 solution of the
system (2.12), with jumps at  ...  Assume that, at some
initial time t, the family u’(t, -) is a R.V. of ), generating the tan-
gent vector (v, ~). Then, as long as the discontinuities in u E do not inter-
act and the Lipschitz constants of the u ~ (outside the jumps) remain
uniformly bounded, for t &#x3E; t the family u E (t, ~ ) is still a R.V. of u ° ( t, ~ )
and generates a tangent vector (v(t, ., ~(t)). According to Theorem 2.2
in [2], this vector can be determined as the unique broad solution with
initial condition (v, ~)(t) _ (V, ~) of the linear system

outside the discontinuities of u, coupled with the boundary condi-
tions
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along each line x = xa (t) where u suffers a discontinuity in the 
characteristic family. We recall that a broad solution of a semilinear hy-
perbolic system is a locally integrable function whose components sat-
isfy the appropriate integral equations along almost all characteristics.
See [1, 6] for details.

For future applications, it is convenient to derive a version of (3.6)-
(3.8) involving the components ux = (li (u), = (li (u), v). Differen-
tiating w.r.t. E the equation

one obtains

Using (3.9) together with the relations

multiplying (3.6) on the left by li we find

Here [rj, rk] denotes the Lie bracket of the vector fields

rj, rk.
Concerning the equations (3.7)-(3.8), for each fixed a call u - , u + the

limits of u ( t, x ) as x ~ from the left and from the right, respect-
ively. Similarly, define the components (~c ± ), v ± ~, so that v + =
= 2 ~ ~ ~ ’ =2 ri vi . Comparing (3.7) with (2.5), where = it
follows that if (2.9) holds then, for any fixed values vi± (i ± E ~) of the in-
coming components, the linear equations (3.7) can be uniquely solved
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for the m - 1 outgoing components:

Observe that the Va are linear homogeneous functions of i and of the
incoming variables v ~ . In turn, inserting these values in (3.8), one ob-
tains an expression for the time derivatives

4 - The adjoint equations.

Let the function u : be piecewise Lipschitz continuous with
N points of jump. We then define the space of generalized cotangent
vectors (or adjoint vectors) to u as the Banach space Tu =L°° (R) x 
Elements of Tu will be written as (v * , ~ * ) and regarded as row

vectors.
Given a piecewise Lipschitz solution u = u(t, x) of (2.12), with

jumps along the lines x = a = 1, ... , N, we shall derive an adjoint
system of linear equations on 7~* whose solutions (v * ( t, ~ ), ~ * ( t )) have
the property that the duality product

remains constant in time, for every solution (v, ~) of the linear system
(3.6)-(3.8).

Assume that (4.1) holds for every solution v of (3.6) which vanishes
on a neighborhood of all lines x = xa (t). Then an integration by parts
shows that, away from the discontinuities of u, the function v * must
satisfy

where, referred to a standard basis {~i,..., em ~ of DA(u) ux is the
m x m matrix whose ( j , i ) entry is

In order to formulate also a suitable set of boundary conditions, valid
along the lines x = xa (t), it is convenient to work with the components

v * _ (v * , ri (u)~. For each fixed a, we shall write

+ )) and for the the i-th charac-
teristic speeds to the right and to the left of the a-th discontinuity, re-
spectively. Similarly, we write == vt (xa + ), ’-- v * (Xa -)- In the
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following, P a are the linear homogeneous functions introduced at
(3.11 )-(3.12).

PROPOSITION 1. Let u be a piecewise C1 solution of the hyperbolic
system (2.12), with jumps occurring along the (nonintersecting) lines
x = Assume that the map t H (v * ( t, ~ ), ~ * ( t )) E T.* , with v * _

provides a solution to the linear system

outside the lines where u is discontinuous, together with the equa-
tions

along each line x = xa (t). Then, for every solution (v, ~) of (3.6)-(3.8),
the product (4.1 ) remains constant in time.

PROOF. For notational convenience, we set xo (t) _ - ~ ,
XN + 1 (t) = + oo . Integrating each component along the corre-

sponding characteristic lines x = Ài(u), the time derivative of (4.1) can
be computed as
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From (4.3) and (3.10), a straightforward computation shows that

Therefore, all the integrals on the right hand side of (4.6) equal
zero.

Next, we observe that, for each a, the functions Va in (3.11)-
(3.12) are linear homogeneous w.r.t. the independent variables Ea, vi ± ,
i:t e 3. Therefore, we can write

From (4.6), using (4.8) and factoring out the terms ~ a , we

obtain

because of (4.4), (4.5). This proves Proposition 1.

REMARK 1. The equations (4.4)-(4.5) determine the incoming vari-
ables I * E :1, in terms of the outgoing variables E n. There-

fore, the Cauchy problem for the adjoint linear system (4.3)-(4.5) is well
posed if one assigns the terminal values (v * ( T, ~ ), ~ * ( T )) and seeks a
solution defined backward in time.

REMARK 2. If, at xa , the jump of u consists of a contact discontinu-
tity in the characteristic family, then the equations (4.5) deter-
mine only the m - 1 incoming components I * E :1, with 4 defined by
(2.14). In this case, the equations (4.9) still hold, because the functions

do not depend on vk a ± .
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5 - A Maximum Principle.

Consider again the optimization problem (1.2) for the system (1.1).
We assume that F satisfies the basic hypotheses (HI) in § 2 and that the
functions h = h(t, x, u, z) and V = V(x, u) in (1.1), (1.3) are continuous-
ly differentiable. Let i be an optimal solution, corresponding to the
control i. In order to derive necessary conditions on i, we shall con-
struct a family of E obtained by changing the
values of i in a neighborhood of a given point (to , xo). We then study
how the corresponding solution u ~ behaves at the terminal time T.

By the results in [2], the change in K(T, .) can be described up to
first order in terms of a generalized tangent vector, provided that all
solutions u E remain piecewise Lipschitz continuous, with the same
number of discontinuities. To ensure this condition, some stronger reg-
ularity assumption on the solution i will be used. Namely

(H2) The function i = û(t, x) is piecewise e1 on [0, T] x R, with finite-
ly many, noninteracting jumps, say at

Any two weak discontinuities of i can interact with these jumps
only at distinct points.

Otherwise stated, if x = xa ( t ) is the location of a jump in i and
yi ( t ), Yj (t) denote the position of two weak discontinuities (where K is
continuous but ûx jumps), then there exists no time r such that

In the following, V. V denotes the gradient of V = V(x, ~c) w.r.t. u, while
the jump of V at the point (T, Xa (T» is written

THEOREM 1 (Maximum Principle). In connection with the optimiza-
tion problem (1.1)-(1.3), let the functions h, V be continuously differen-
tiable and let F satisfy the basic hypotheses (Hl). Let z = z(t, x) be a e1
optimal control, and assume that the corresponding optimal solution
i = i(t, x ) of ( 1.1 ) is and satisfies the additional regulari-
ty assumptions (H2).

Define the adjoint vector (v * , ~ * ) as the solution of the linear sys-
tem (4.3)-(4.5), with terminal conditions:
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Then the maximality condition

holds at each point (t, x) where both v * and i are continuous.

PROOF. 1) If the conclusion of the theorem fails, then in the t-x-
plane there exists a point (t, n) where v * , û are continuous, such
that

for some admissible control value 

By continuity, and by possibly changing the value of 1], we can

choose 6 &#x3E; 0 such that i is e1 on a neighborhood of the segment

and, in addition,

2) We now construct a family of piecewise e1 control variations z E
as follows. Choose a eoo function cp : R - [ 0, 1 ] whose support is precise-
ly the interval [ -1, 1 ]. For c &#x3E; 0 small, define the open domain

and the control function

Call uE the corresponding solution of (1.1).

3) For each E &#x3E; 0 sufficiently small, the curve

is space-like, and crosses all characteristics transversally. Hence the
solution u £ is well defined and the map x) is d on a neighbor-
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hood of the interval [1] - 6, n + 6]. Moreover, as E -~ 0, one has

in the space L °° ([ o, r] x R). As a consequence, the .);
E E [0, Co]} is clearly a Regular Variation of û(7:, .). We claim that it
generates the tangent vector (v, ~) E L1 x RN , with

4) Since the curves (5.6) are space-like, for all E ~ 0 one has
u -’ (,r, x ) = x ) whenever x - ~ ~ ~ 3 . This clearly implies (5.8).

Observing that both u ~ and K are C~ on (Dc, we can subtract the
equations satisfied by u’ and K one from the other, and obtain

Because of the uniform limits (5.7) and the fact that u ~ = i on the lower
boundary y ~ of from (5.10) it follows

with
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Together, (5.11) and (5.12) imply

uniformly for x E [11 - 3, q + 0]. This establishes (5.9).

5) The regularity assumptions (H2) on the optimal solution ic
guarantee that the perturbations u e all have the same number of lines
of discontinuity, and that the derivatives ux remain uniformly bounded,
for E &#x3E; 0 suitably small.

By the results in [2], we conclude that, for all t E [r, T] the family
u e (t, .) is a R.V. of i(t, -) which generates a tangent vector ( v, ~ ) ( t ).
This vector is determined as the unique broad solution of the corre-
sponding linear system (3.6)-(3.8). Using Proposition 1, together with
(5.8)-(5.9) and then (5.5), we now compute

6) In order to derive a contradiction, it now suffices to interpret
(5.14) at the light of the definitions (3.1), (3.2) and (5.2). Indeed, the reg-
ularity of the functions V and u’ implies

where o ( E ) denotes an infinitesimal of higher order w.r,t. E.
By (5.14), for E &#x3E; 0 sufficiently small the quantity in (5.15) is strictly

positive. This contradicts the optimality of i, proving the theorem.
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