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A Corollary to the Evans-Griffith Syzygy Theorem.

ANNE-MARIE SIMON (*)

ABSTRACT - Height two ideals of finite projective dimension in a Cohen-Macaulay
or Gorenstein local ring are investigated, providing slight extensions of re-
sults of Serre and Evans-Griffith concerning the problem to know when they
are two-generated, when the quotient ring is Cohen-Macaulay if they are
three-generated.

Introduction.

This note is concerned with the height two ideals of a Cohen-
Macaulay noetherian local ring: when are they two-generated, what can
we say about them when they are three-generated?

In the second direction we have an important theorem of Evans-

Griffith.

THEOREM 1. ([E.G.81] Theorem 2.1, or [E.G.85] Theorem 4.4). Let
A be a regular local ring containing a field. If I is an unmixed three
generated ideal of height two, then the ring A/l is Cohen-Macaulay.

In the first direction we have first a Serre’s theorem, one formula-
tion of it is the following.

(*) Indirizzo dell’A.: Service d’Algebre, Université Libre de Bruxelles, Bou-
levard du Triomphe CP.211, B-1050 Brussel, Belgium.
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THEOREM 2. ([Se, Proposition 5] [B-E]). Let I be a height two ideal
of a regular local ring A. If the quotient ring A/l is Gorenstein, then
the ideal I is two-generated.

However, another formulation of Serre was a little bit different.

THEOREM 2'. [Se, corollaire a la Proposition 2]. Let A be a noethe-
rian domain such that all projective A-modules of rank one or two are
Jree, and let I be a non-zero ideal of projective dimension less or equal
to one. Then the ideal I is two-generated if and only if the A-module
Ext} (I, A) is principal.

We note that in Theorem 2’ only the case where I is an ideal of projec-
tive dimension one and of height two is of some interest, at least to us.

In Theorem 2, the hypothesis on I imply that the projective dimen-
sion of I is one, they imply also that the A-module Ext} (I, A) is princi-
pal, since Ext}(I, A)=Ext%(A/I, A). Indeed, the last module
Ext? (A/I, A) is the canonical module of the ring A/I, hence it is princi-
pal since A/I is Gorenstein (a local ring is Gorenstein if and only if it is
Cohen-Macaulay and if its canonical module is principal).

Then we have another Evans-Griffith’s theorem.

THEOREM 3. ([E.G.81], Theorem 2.2, or [E.G.85], Theorem 4.7). Let
A be a regular local ring containing a field and let I be a prime ideal of
height two such that the A-module Ext} (A/I, A) is principal. Then I is
two generated.

There is an evident analogy between Theorem 3 and Theorem 2, in
the hypothesis, the conclusions and even the proofs. Both proofs use an
extension 0 > A - M — I — 0 whose class generates the principal A-
module Ext} (I, A), and one observes that Ext} (M, A) = 0. From this
observation the conclusion of Theorem 2’ follows rather quickly, while
for theorem 3 one has to use the syzygy theorem; and the hypothesis
that I is a prime ideal of a regular ring is strongly used. Concerning
that last Theorem 3 we have also to mention [Br.E.G.].

The aim of this note is to provide slight generalizations of the above-
mentioned theorems. The generalizations of Theorem 1 and 2 are
straightforward, indeed the proofs are essentially the same. The gener-
alization we give of Theorem 3 requires not only the preceding exten-
sions but also a rather different proof, using the linkage theory as de-
velopped in [P.S] or [Ul] as well as the syzygy theorem.

As a general reference for homological background we quote
[E.G.85], [St], [Ul].
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1. Preliminaries.

To state the syzygy theorem we must recall the Serre k-condition.

DEFINITION. An A-module M is said to be Sy if, for all prime ide-
als p of A one has depth M, = min {k, htp}.

So, if an A-module is S, for some k > 0, then all the associated prime
ideals of M are minimal in Spec A.

A key result is the theorem of Auslander-Bridger which shows that
a finitely generated A-module of finite projective dimension is S;, if and
only if it is a k™ syzygy (see [E.G.85] Theorem 3.8) when the ring itself
is Sk.

THE SYZYGY THEOREM. ([E.G.81], Theorem 1.1, or [E.G.85], Theo-
rem 3.15, see also [Br] or [0g]). Let A be a noetherian local ring con-
taining a field and let M be a finitely generated Si-module over A of fi-
nite projective dimension. Then if M is not free, it has rank at least k.

We note that the rank of a finitely generated A-module of finite pro-
jective dimension is a well-defined natural number: if 0 > A™ —
— A1 ... 5>A™>M—>0 is a free resolution of M, then rank

S
M =r= > (—1)'n;; and, for all minimal prime ideals p of Spec A one
i=0
has M, =A;.
In the syzygy theorem, the hypothesis that the local ring contains a
field is still essential. Indeed, the proof uses a Big Cohen-Macaulay

module, only available by now in equal characteristic.
Here is the straightforward generalization of theorem 1.

PROPOSITION 1. Let A be a Cohen-Macaulay noetherian local ring
containing a field, and let I be an unmixed three generated ideal of
height two of finite projective dimension. Then the ideal I is perfect,
i.e. the quotient ring A/l is Cohen-Macaulay. Moreover, the module
Ext%(A/1, A) is also a perfect module, i.e. it is a Cohen-Macaulay
module of projective dimension two.

PrROOF We resolve A/I and have an exact sequence 0 —» M — A% —
—A—> A/l -0, where M is a second syzygy of A/I.

We need to show that M is free. (If M is free, using the Auslander-
Buchsbaum equality we obtain depth A/I=dimA —pd A/I =
= dim A — 2 = dim A/I).

We observe that M is a finitely generated A-module of finite projec-
tive dimension and of rank two.
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On the other hand, the A-module M is S3. Indeed, let p be a prime
ideal of A at which we localize.

If ppI, then M, =A} and depth M, = htp = min {3, htp}.

If p> 1 and htp = 2, the above exact sequence localized at p shows
that depth M, =2 = min {3, 2}.

If p> I and htp > 2, the above exact sequence localized at p shows
that depth M, = 3, because depth (4/I), = 1, I being unmixed.

The freeness of the module M follows now from the syzygy theorem
and M = A2

For the second assertion, we apply the functor Hom, (-, A) = ()* to
the exact sequence 0 —» A% — A% — A — A/l —0. We obtain a complex
0—>A* > A% - A% — 0 whose homology is concentrated in degree 2,
where it is Extj (4/1, A).

So pd Ext%(A/I, A) = 2, and again the conclusion follows from the
Auslander-Buchsbaum equality: dim A — 2 = depth Ext3(A4/I, A) <
< dim Ext%(A/I, A) < dim A - 2.

We give now the straightforward generalization of Theorem 2,
though this has nothing to do with the syzygy theorem.

PROPOSITION. 2. Let I be a height two ideal of a Gorenstein local
ring. If the projective dimension of I is finite and if the quotient ring
A/l s Gorenstein, then the ideal I is two-generated

Proor. The hypotheses imply that the ideal I is perfect, i.e. the
projective dimension of A/I is two, the height of I.
A minimal resolution of A/I has the form

054" 1 25 A" 5A—> A/l -0,

t
and Ext3(A/I,A)=coker Homy(a,A): the sequence A™ s Amls
— Ext}(4/1, A) -0 is exact.

As the resolution of A/I is minimal the entries of the matrix associ-
ated to a and to its transposed a' are in the maximal ideal of A. This
shows that the minimal number of generators of Ext(A4/I, A) is
m—1.

On the other hand, this number is one since A/I is assumed to be
Gorenstein, so 1 =m — 1, m =2 and the ideal I is two generated.

2. An extension of Theorem 3.

PROPOSITION 3. Let A be a Gorenstein noetherian local ring con-
taining a field and let I be an unmixed ideal of finite projective dimen-
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sion and of height two. If the A-module Ext3 (A/I, A) is principal, then
the ideal I can be generated by 2 elements.

Proor. We choose in I a regular sequence x;, ¥, and use it to
make an algebraic link: if J = (21, 2): I, then I = (a;, x,): J since [
is unmixed and since the ring A is Gorenstein [P.S.]; moreover, the
ideal J is also unmixed. The isomorphisms Ext3(4/I, A)=
= Homy (A/I, A/(x;, 5)) = J/(x;, ;) and the hypothesis on I imply that
the linked ideal J is a height two ideal three generated: J = (2, 25, ¥)
for some y in A.

As I = (a1, x2): J, we have an exact sequence

0 I/(y, ) = A/(1, @) —> J/ (1, 23) =0
which shows that A/I = J/(x,, x,). So we have also an exact sequence
0->A/I->Af(xy, 2) > A0,

this shows that the A-module A/J is of finite projective dimension.

By proposition 1, we conclude that the ring A/J is Cohen-Macaulay;
but then A/I is also Cohen-Macaulay by the linkage theory in a Goren-
stein ring A ([P.S], or [Ul]). Consequently the ring A/I is Gorenstein
since it is Cohen-Macaulay and since its canonical module Extj (4/1, A)
is principal, and the conclusion follows from proposition 2.

NotE. the above proposition is to be compared with a geometric
result of Fiorentini and Lascu ([FiLa.], Theorem 2 (iii)).

The hypothesis in Proposition 3 are slightly weaker then in Proposi-
tion 2; in Proposition 3, the ring A/I is not assumed to be Cohen-
Macaulay in advance.

3. Some Examples.

ExaMPLE 1. To the twisted cubic curve (s2, s%t, st?, t3) of the
projective space P% is associated an ideal I of the regular local ring A =
= K[X,, X;, X5, X3]. This ideal is a height two prime ideal which is three-
generated: I = (X, X5 — X1 Xp, X2 — Xy X5, X2 — X; X;). Hence the ring
A/I is Cohen-Macaulay, not Gorenstein. In fact the ideal I is the ideal of
the 2 X 2 minors of the matrix

X1 X

X, X
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A minimal projective resolution of the A-module A/I is given by

0—>A2 LNy —A/I—-0,

this shows that the canonical module of A/I, Ext}(A/I, A) = coker ¢'
(where ¢' is the transposed of ¢) is minimally generated by 2
elements.

ExaMpLE 2. To the quartic curve (s*, s%t, st®, t*) of the projec-
tive space P% is associated a height two prime ideal I of the ring A =
= K[X,, X;, X,, X5], this ideal I is four-generated: I = (X,X; —
-X.X,, X} - X¢X,, X3 — X, X2,X, X} — X2X;). The quotient ring A/I is
not Cohen-Macaulay, however it is a Buchsbaum local ring.

ExampPLE 3. Bertini constructed an example of a non Cohen-
Macaulay factorial ring B which is an image of a regular local ring
A: B = A/I, the height g of I is greater than 8. Since B is factorial, the
module Extf (B, A) is principal. This illustrates the fact that the hy-
pothesis in Proposition 3 are weaker than those in Proposition 2. On the
other hand, Theorem 1 is concerned with unmixed ideals I of height ¢
generated by g + 1 element. When g = 2, when the ring A is regular,
the quotient A/I is Cohen-Macaulay. When g > 2, this conclusion is not
valid anymore. Indeed, in Bertin’s example we can choose in the ideal 1
a regular sequence &, ..., ¥, such that IA; = (x,, ..., x,) A; (I is a prime
ideal of the regular ring A). This gives us a link (even a geometric link):
J = (@, ..., x5): I. The ideal J is an unmixed ideal of height g of the
ring A, the quotient ring A/J is not Cohen-Macaulay (since A/ is not),
but J can be generated by g + 1 elements: the module J/(x,, ..., x,) =
= Homy (A/I, A/x,, ..., x,) = Ext} (A/I, A) is principal.

Schenzel gave other examples of prime ideal of height g in a regular
local ring, minimally generated by g + 1 elements, and such that the
quotient ring is not Cohen-Macaulay.

This work was done while the author was visiting the University of
Ferrara.
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