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Functional Differential Equations
of Mixed Type in Banach Spaces.

CUI BAOTONG (*)

1. Introduction.

In the last few year the fundamental theory of functional differen-
tial equations with a single delay in a Banach space has undergone in-
tensive development (see [1,2]). The fundamental theory of functional
differential equations of mixed type, however, is still in a initial stage of
development [3-8]. In this paper, we consider the functional differential
equation of mixed type of the form

in a Banach space B.
Let B = (B, () ’ 11) be a Banach 0, s &#x3E; 0 are constants and

- m  a  {3 ~ +00. Assume that f : [ a, ~ ] x B x B x B - B satisfies
the conditions:

(a) f (’, x, y, z) is strongly measurable for all fixed x, y, z E B and

there exist xo , yo , zo E B such that

( b ) there exist nonnegative constants a, b and c such that

(c) is continuous and r 5 i( t ) ~ s.

(*) Indirizzo dell’A.: Department of Mathematics, Binzhou Normal College,
Shandong 256604, People’s Republic of China.
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We consider the equation (1) with two boundary conditions:

where

is Bocher integrable function},

is Bocher integrable function} ,

DEFINITION. x: [a - + s) ~ B is a solution of the Problem (1)
(2), if x(t) is continuous on [a, P) and satisfies (1) and (2).

Let

a = [a - s, P + s) is continuous on [a, {3)

and satisfies (2)},

It is easy to see that x is a solution of the problem (1), (2) if and only
if x is a fixed point of the operato T, defined on ci by

2. Existence and uniqueness.

THEOREM 1 (Existence and uniqueness). Let (a),(b) and (c) hold
and s ~ l = p - a. If there exists a ~, ~ 0 such that

then, for each xor= ai the iterates T : ai - ai is defined by
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(3), converge in the metric ez of ai defined by

to a solution of the problem (1) (2), which is unique in tL,l.

PROOF. L et x E aA, then sup and x(t) is continu-
a  t  B 

ous on [a, fl) and satisfies (2). Hence Tx(t) is continuous on [a, {3) and
satisfies (2).

From (3), for each A &#x3E; 0 and any t E [a, /3), we have that

Note that x E a., q5 and are Bocher integrable functions, so we can ob-
tain that

For A = 0, using (ac) and x e t1o , i.e. sup ~~ Tx(t) ~~ I  00, we have Tx E
E So T(aA) c aA for each A &#x3E;
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Now we define

is continuous in [a, fl),

and

then the operator W maps the set 1B into itself. We can prove that

for any y E 93 and each 

where

and

Thus from (5) we have that

Hence T is contractive with respect to gi by (4). Since ai is complete in
this metric, the Banach’s contractive mapping theorem implies that the
iterates xo E converge in ( rz~, , to a unique fixed point of T,
i.e. to a unique solution of the problem (1), (2) in a..

COROLLARY 1. Let (a) and ( b ) hold, and = r = const &#x3E; 0. If
there exists £ * 0 such that

then the problem (1), (2) has an unique solution in aA.

EXAMPLE. Consider the Lecornu’s equations [4, 6]
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where a and b are constants and r(t) = 1. The conditions (a) and ( b ) are
verified. By the Corollary 1 and (6), if there exists a ~, ~ 0 such that

I 1

, then the problem (7), (2) has a unique

solution in ai for r = s = 1.

COROLLARY 2. Let the hypotheses of the Theorem 1 hold and ~i 
 00, then the problem (1), (2) has a bounded solution on [a, 

PROOF. Since fl  00, then ai = t1o for all Â. ~ 0. Hence the problem
(1), (2) has a unique solution in t1o by the Theorem 1, and the solution is
bounded.

3. Dependence on the boundary equations.

THEOREM 2 (Dependence). Let all conditions of the Theorem 1
hold. Suppose 

and wn (a) - o(a) Let be the solution of the equation
(1) with the boundary conditions

n = 1, 2, .... Then the sequence (t)) of the solutions of the problem
(1), ( 8 )n ( n = 1, 2, ...) has the following properties:

(i) if fl  00, then as n ~ ~ uniformly on [a, #);

(ii) if fl = 00, then xn ( t ) ~ x(t) uniformly on the com-
pact intervals of [a, {3).
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PROOF. Let

is continuous on [ a, P)

and satisfies ( 8 )n ~ ,

and we define the operators Tn :

for n = 1, 2, .... Similarly to the proof of the Theorem 1, we can prove
that c ani and the operator Tn has a unique fixed point for each
n . Hence for each n the problem (1), ( 6 )n has a unique solution in
anA.

Let x E ai be the fixed point of T and xn E ani be the fixed point of
Tn for each n, then we have that

where Mn = Const. &#x3E; 0 and lim Mn = 0 . Thus from
n - oo

it is easy to prove our results.

4. Remarks.

REMARK 1.. The above results can be estended naturally to the
problem involving several arguments

where &#x3E; 0 ( i = 1, 2, ... , m ) are continuous, and the exist nonnega-
tive constants ri and si ( i = 1, 2, ... , m ) such that 0 ~ ri ~ and
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also to functional differential equation of mixed type of the form

where p and q are positive numbers, rj (t) and hj (t) are nonnegative
continuous functions.

REMARK 2. The equations

and

where g, h, gi ( i = 1, 2, ... , p) and hj ( j = 1, 2 , ..., q ) are continuous,
andg&#x3E; 1,0h 1,0h~ 1 for each i and, are of type (10)
too.

In fact, let then we have that from (11)

where &#x3E; 0,  0 .
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